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Dynamic behavior and driving region of spray combustion instability
in a backward-facing step combustor
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We numerically study the dynamic behavior and driving region of spray combustion instability in a backward-
facing step combustor using analytical methodologies based on dynamical systems theory, symbolic dynamics,
complex networks, and machine learning. The global dynamic behavior of a heat release rate field represents
low-dimensional chaotic oscillations with deterministically aperiodic intercycle dynamics. Spray combustion
instability is driven in the formation and separation region of a large-scale organized vortex induced by the
hydrodynamic shear layer instability at the edge of the backstep. This region corresponds fairly to that of the
hub in an acoustic-energy-flux-based spatial network. The feature importance in a random forest is valid for
clarifying the feedback coupling of spray combustion instability.
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I. INTRODUCTION

Combustion instability is a self-excited nonlinear phe-
nomenon stemming from the amplification of natural acoustic
resonance modes in a confined combustion system due to a
mutual interplay among pressure, heat release rate, and flow
velocity fields [1]. The incidence and subsequent sustainment
of combustion instability can lead to the profound structural
breakage of various combustors involving ground-based gas
turbines and aircraft engines through strong mechanical vibra-
tions of the combustor and the local increase in the quantity
of heat transfer to the combustor wall. The flow field in these
combustors basically consists of shear flow. The roll up of a
shear layer and the breakdown of vortices affect a feedback
loop of acoustic pressure and heat release rate fluctuations
during combustion instability. A backward-facing step com-
bustor is one of the simplest configurations for examining
the dynamics of combustion instability. A well-recognized
physical mechanism of combustion instability in this type of
combustor is that the large-scale organized vortex from the
backstep induces large changes in heat release rate fluctua-
tions, thereby forming a strong feedback loop. This has been
intensively investigated in many experimental and numerical
studies [2–7].

One of the most typical complex chemically reacting two-
phase turbulent flows is spray combustion accompanied by
elementary processes via fuel atomization, droplet disper-
sion, and droplet evaporation. Spray combustion potentially
allows the emergence of a rich variety of spatiotemporal
dynamic behaviors in thermoacoustic systems. Kurose and
co-workers [8–10] have recently conducted three impor-
tant numerical studies on spray combustion instability in
a backward-facing step combustor. They have shown the
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importance of large-scale vortical motion near the dump plane
due to the periodic oscillations of the inlet flow velocity in the
driving of combustion instability. They have also clarified the
effects of droplet size and temporal fluctuations in liquid fuel
flow rate on the intensity of spray combustion instability.

Complex-systems-based analysis has recently yielded a
new paradigm in the study of combustion instability and
enabled us to provide an in-depth physical understand-
ing and interpretation of nonlinear dynamics of combus-
tion instability in various turbulent combustors such as
swirl-stabilized combustors [11–28] and bluff-body-stabilized
combustors [14–16,19,29–33]. The importance of complex-
systems-based analysis has been emphasized by Sujith and
co-workers [34,35]. In relation to combustion instability in a
backward-facing step combustor, the randomness of acoustic
pressure fluctuations has been examined by quantifying the
permutation entropy based on symbolic dynamics [36]. Ma-
chine learning technologies derived from statistical learning
theory have made remarkable advances in data-driven sci-
ence and related fields of nonlinear physics. A wide variety
of supervised machine learning technologies have recently
stood out in terms of the aims to (i) create futuristic detec-
tors of a portent of combustion instability and (ii) deeply
comprehend the nonlinear dynamics of combustion instabil-
ity [37–42]. The former aim has been attempted using a
support vector machine [43] and a convolutional neural net-
work [44], whereas the latter has been attempted by a reservoir
computing [45] that belongs to a subclass of recurrent neu-
ral networks. However, many previous studies [21,22,36–42,
46–48] were limited to gaseous combustion and did not ex-
plore the nonlinear dynamics and driving region of spray
combustion instability in a backward-facing step combustor
from the perspectives of complex-systems-based analysis and
machine learning.

The purpose of this study is to clarify the nonlinear dy-
namics and driving region of spray combustion instability in a
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backward-facing step combustor by using analytical methods
based on dynamical systems theory, symbolic dynamics, syn-
chronization, complex networks, and machine learning. We
mainly undertake an intensive analysis of acoustic pressure
and heat release rate fluctuations, focusing on the following
three points. First, we characterize the global dynamic behav-
ior of spray combustion instability using the ordinal partition
transition network (OPTN) entropy [49] in combination with
surrogate data methods [50,51]. Second, we clarify the motion
of an acoustic power source using an acoustic-energy-flux-
based spatial network [48] and deduce the driving region
of spray combustion instability using a symbolic dynamics-
based synchronization index (SDSI) [42]. Finally, we clarify
the directional coupling during spray combustion instability
by a causality analysis based on a random forest [52]. Note
that, similarly to Mori et al. [42], we exploit a random forest
because it is applicable to the elucidation of the formation
mechanism of spray combustion instability rather than the
detection of a portent of spray combustion instability.

The remainder of this paper is organized as follows. A
brief description of the numerical computation and analytical
methods is provided in Sec. II. We present and discuss results
in Sec. III. We summarize in Sec. IV.

II. NUMERICAL COMPUTATION
AND ANALYTICAL METHODS

A. Numerical computation

In this study we apply complex-systems-based analysis and
machine learning to the simulation data of the spatiotemporal
structures obtained by a large-eddy simulation (LES) of spray
combustion instability in a backward-facing step combus-
tor [8–10]. The governing equations and boundary conditions
are almost the same as those in previous studies [8–10]. Fig-
ure 1(a) shows the computational domain and conditions. Air
is released from the inlet of the combustor, and fuel droplets
are injected vertically upward from a position 5 mm upstream
from the edge of a step, i.e., x = −5 mm. The temperature
T and cross-sectional plane velocity U of the incoming air
are set to 760 K and 50 m/s, respectively. The temperature
TL,in j and velocity VL,in j of the incoming fuel droplets are set
to 300 K and 2 m/s, respectively. We use a nonequilibrium
Langmuir-Knudsen model [53–55] for the evaporation of fuel
droplets. We employ the atomization model proposed by Lee
et al. [56]. In this atomization model, the droplet-size distri-
bution dynamically changes during fuel droplet injection by
considering the cross-sectional plane average air velocity. The
equivalence ratio is set to 1.2. Kitano et al. [8] have reported
that both the dominant frequency and intensity of the acoustic
pressure fluctuations remain almost unchanged even under a
coarser-grained LES than the present study. We conduct a LES
with a finer grid resolution than those reported in Refs. [8–10].
Note that the time resolution of the numerical computation
is 0.001 ms. Figures 1(b) and 1(c) show time variations in
spatially averaged pressure 〈p〉 and total heat release rate 〈q〉
inside the combustor. Both 〈p〉 and 〈q〉 exhibit a dominant
frequency of approximately 700 Hz, which corresponds to the
longitudinal acoustic mode in the combustor [9]. In this study
we analyze the spatiotemporal data during well-developed
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FIG. 1. (a) Computational domain and conditions. Time varia-
tions in (b) spatially averaged pressure 〈p〉 and (c) heat release rate
〈q〉 during spray combustion instability.

spray combustion instability at t � 105 ms after sufficiently
removing the transient in numerical computation due to the
injection initiation of the fuel droplets at t = 75 ms and the
subsequent forced ignition.

B. The OPTN and surrogate data method

The OPTN [49,57] is a directed and weighted network
constructed from the transition of permutation patterns in a
time series. The importance of the OPTN to the analysis of
combustion instability has been highlighted in many recent
studies [25,42,58]. For the construction of the OPTN, we first

024204-2



DYNAMIC BEHAVIOR AND DRIVING REGION OF SPRAY … PHYSICAL REVIEW E 110, 024204 (2024)

extract permutation patterns (rank-order patterns) �
de
〈q〉(i =

1, 2, . . . , de!) from {〈q〉(ti )}N
i=1. Here de is the rank-order pat-

tern length and N is the total number of data points. We define
a node in the OPTN as �. The transition probability wi j from
�i to � j is used as a link in the network. We estimate the
OPTN entropy St defined as

St = −∑de!2

i, j=1 wi j log wi j

4 log de!
. (1)

Kulp and Zunino [59] reported the appearance of forbidden
permutation patterns in a short time series of a stochastic pro-
cess at de � 6. This means that a suitable value of de should
be set at de � 5. In our preliminary test, we have examined
the number of forbidden permutation transition patterns in
the OPTN constructed from the stochastically fluctuating time
series data of Brownian motion and white Gaussian noise,
where the possible permutation transition patterns are (de!)2.
The forbidden permutation transition patterns in the OPTN
appear at de � 4 for their data with 10 000 data points. We
set de = 3 for the estimation of St to prevent the onset of
forbidden permutation transition patterns.

Schreiber and Schmitz [50] proposed an iterative
amplitude-adjusted Fourier transform (IAAFT) surrogate
method as one of the statistical tests to verify the presence
of nonlinearity underlying a time series. This method en-
ables us to obtain the time series data with almost the same
probability distribution and power spectrum as the original
data. The null hypothesis of the IAAFT surrogate method is
that irregular components in the original data are generated
by a linear stochastic process. Small et al. [51] proposed a
pseudoperiodic (PP) surrogate method to verify the presence
of deterministically nonperiodic intercycle dynamics in a time
series. The null hypothesis of the PP surrogate method is that
there is no determinism other than the periodic behavior in a
time series. The null hypothesis can be rejected if there is a
significant difference between the OPTN entropy values for
the original and surrogate data. We prepare 1000 sets of the
IAAFT and PP surrogate data in this study. To discern the
significant difference between the values of St for the origi-
nal and surrogate data, we set N = 4618 and �t = 0.01 ms,
corresponding to approximately 20 cycles of well-developed
high-frequency combustion instability, where �t is the time
resolution of the analyzed 〈q〉.

C. The SDSI

Asami et al. [25] have proposed the SDSI for deducing the
driving region of combustion instability. For the estimation of
the SDSI, we first construct symbolic recurrence plots (SRPs)
with the matrix element of SR,i j by color coding the time series
of the acoustic pressure p′ and heat release rate q′ into de!
permutation patterns,

SR,i j =
{

1 for π
de
p′ (ti ) = π

de
q′ (t j )

0 otherwise,
(2)

where π
de
p′ (ti ) and π

de
q′ (t j ) denote the permutation patterns of

p′ and q′, respectively.

Here, SSI is defined as the product of the determinism Dsr

in SRPs and the synchronization parameter rp′q′ ,

SSI = Dsrrp′q′ , (3)

Dsr =
∑Ne−|τa|

l=lmin
lPl∑Ne−|τa|

l=1 lPl

, (4)

rp′q′ = 1

N

∣∣∣∣∣
N∑

k=1

ei[θp′ (tk )−θq′ (tk )]

∣∣∣∣∣, (5)

where τa is the time distance between the main diagonal of
SR,i j and the diagonal parallel to the main diagonal, lmin is
the minimum diagonal length, N is the number of data points
in p′ and q′, Pl represents the frequency distribution of the
length l of each diagonal parallel to the main diagonal, and
Ne = N − de + 1. Note that θp′ and θq′ denote the instanta-
neous phases of p′ and q′, respectively, obtained by the Hilbert
transform. The SSI reflects not only the phase synchronization
but also the recurrence between acoustic pressure and heat
release rate fluctuations. It ranges from zero to unity and takes
a high value as the mutual coupling between acoustic pressure
and heat release rate fluctuations strengthens. In this study, we
set lmin = 5 and N = 46 177. We set de = 5 for the estimation
of Dsr in SRPs to prevent the onset of forbidden permutation
patterns.

D. Acoustic-energy-flux-based spatial network

Krishnan et al. [33] proposed an undirected weighted
network, i.e., a thermoacoustic power network, to deduce
the acoustic power source during combustion instability in
a bluff-body-stabilized turbulent combustor. They consider
grid points in an OH* chemiluminescence intensity image as
nodes of the network. These nodes are connected via a link
when the product of acoustic pressure and heat release rate
fluctuations at a node is positive. Kawano et al. [48] have
proposed an acoustic-energy-flux-based spatial network as a
new thermoacoustic power network for clarifying the motion
of the acoustic power source in a subscale rocket engine com-
bustor. In this network, the weight of the link between nodes
is defined as the average of energy fluxes at the nodes. The
energy outflow or induction is defined as the acoustic energy
produced per unit volume and unit time. The acoustic energy
flux Ii j that reaches another position x j via the generated
acoustic energy at position xi is defined as

Ii j = |�(xi )�x�y|
2π |xi − x j | , (6)

where �(xi ) is the acoustic energy produced at position xi,
and �x and �y are each the length of each edge of the grid. In
this study, unlike the method proposed in Ref. [48], we do not
consider the acoustic energy source due to molecular produc-
tion [60]. Let us assume that the acoustic power source �(xi )
produced at position xi is calculated as �(xi ) = p′

1(xi )q′
1(xi )

p′
0(xi )

.
Here subscript 1 (0) is the fluctuation value (time-averaged
value). We consider each grid in the computational domain
as a node. The weight wi j of the link between nodes is the
average of the energy fluxes Ii j from the ith to jth nodes and

024204-3



KENTA KATO et al. PHYSICAL REVIEW E 110, 024204 (2024)

I ji from the jth to ith nodes:

wi j = 1
2 (Ii j + I ji ). (7)

Similarly to the thermoacoustic power network proposed by
Krishnan et al. [33], we connect links only between nodes
with �(xi ) > 0 that amplify the acoustic power source. Thus,
the weighted adjacency matrix Ai j is expressed as

Ai j =
{

wi j for i, j �= 0, �(xi ) > 0, �(x j ) > 0

0 otherwise.
(8)

The node strength si of the weighted network is defined as

si =
M∑

j=1

Ai j, (9)

where M is the total number of nodes. Here, M = 15 325 in
this study, which corresponds to the analytical region (−1 �
x/H � 7 and 0 � y/H � 1.3 except for the surface of the
backward-facing step). As shown in Eq. (9), si at a node is
the summation of the link weight representing the transport
degree of energy flux between a node i and other nodes j. A
node with high si corresponds to a network hub representing
the acoustic power source. An important point is that high
node strength indicates the formation of an acoustic power
source.

E. Random forest

A random forest [61] is a supervised machine learning for
regression and classification using multiple decision trees. It
is an ensemble learning method that enables the multiple ran-
dom sampling of the training data to avoid over learning and
the loss of learning accuracy. We can obtain highly accurate
results for the entire decision tree by majority voting to clas-
sify problems and averaging for regression problems. Leng
et al. [52] reported that the feature importance in a random
forest can be used to estimate causality among features. In
this study, we evaluate the spatial interaction between ther-
moacoustic and vorticity fields using the feature importance of
a random forest. We define the feature importance as the sum
of the mean-square error reduced by the split of each decision
tree. Assuming that there is a total of T splits of each decision
tree, the feature importance of ṁ′

i on the target variable q′ can
be defined as

fṁ′
i→q′ =

T∑
s=1

(
ET s − E1

T s − E2
T s

)
�(T s = i), (10)

where ET s is the mean-square error from the T sth split, E1
T s

and E2
T s are the mean-square error from further splits, and

�(T s = i) is the indicator function. In addition, � = 1 when
the T sth division is attributable to ṁ′

i; otherwise � = 0. In
this study, the total number of splits is set to T = 100.

III. RESULTS AND DISCUSSION

Figure 2 shows the frequency distribution of the OPTN
entropy St for the surrogate and original data of the total heat
release rate 〈q〉 inside the combustor. Note that we estimate
St of 〈q〉 at −1 � x/H � 7. The values of St for both the
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FIG. 2. Frequency distribution of the OPTN entropy St for the
surrogate and original data of 〈q〉 during spray combustion instabil-
ity: (a) IAAFT surrogate data and (b) PP surrogate data.

IAAFT and PP surrogate data do not coincide with those of
the original data. The significant rejection of the null hypothe-
ses indicates the presence of deterministically nonperiodic
intercycle dynamics in a heat release rate field. The Rössler
system with three degrees of freedom is a well-recognized
low-dimensional nonlinear dynamical system and can cre-
ate a low-dimensional deterministic chaos [62]. Godavarthi
et al. [63] have recently studied the relevance of the Rössler
system to a transition from combustion noise to combustion
instability in a bluff-body-stabilized turbulent combustor. As
shown in Fig. 1(c), the time variation in 〈q〉 is similar to that
of the Rössler chaos. Small et al. [51] clearly showed that
the Rössler chaos exhibits deterministically nonperiodic in-
tercycle dynamics by estimating the correlation dimension in
combination with the PP surrogate method. In our preliminary
test, St takes approximately 0.35 for the Rössler chaos. This
value roughly corresponds to that of the original 〈q〉. On the
basis of the above findings, the global dynamic behavior of
the heat release rate field represents low-dimensional chaotic
oscillations. In this study, we have estimated St for a down-
sampled time series of 〈q〉 with N = 4618 and �t = 0.01 ms,
but the null hypotheses of the surrogate data can be rejected
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FIG. 3. (a) Time variation in the spatially averaged pressure field 〈p〉, (b) spatial distribution of node strength s in the acoustic-energy-flux-
based spatial network, and (c) spatial distribution of vorticity ω during spray combustion instability for (i) t1 = 135.82 ms, (ii) t2 = 136.19 ms,
(iii) t3 = 136.52 ms, and (iv) t4 = 136.84 ms.

by a t-test regardless of with or without downsampling. Note
that, as shown in Fig. 1(c), the global dynamic behavior of
an acoustic pressure field represents a limit cycle with large
modulations in oscillation amplitudes.

Figure 3 shows the spatial distributions of the node strength
s and vorticity ω, together with short-time variation in spa-
tially averaged pressure 〈p〉. At t1 corresponding to the local
maximum of 〈p〉, an acoustic power source with high s
is formed in the upstream region of the combustor (0.5 �
x/H � 2.0), whereas at t3 corresponding to the local mini-
mum of 〈p〉, s takes high values near the upper wall of the
combustor (0.5 � x/H � 4.0 and 1.0 � y/H � 1.3). We do
not observe acoustic power sources at t2 and t4. The formation
and collapse of acoustic power sources occur during spray
combustion instability. As shown in Fig. 3(c), a large-scale
organized vortex in response to a dominant acoustic mode
is formed and detached at the step edge at t1. It collapses
at t3. These results indicate that the formation and collapse
of an acoustic power source are closely associated with the

motion of a large-scale organized vortex at the step edge. The
time variation in average node strength 〈si〉y in terms of the y
direction is shown in Fig. 4. We observe the aperiodic changes
in the region where 〈si〉y takes high values over time. The
acoustic pressure fluctuations take extreme values at t = 112
and 136 ms when 〈si〉y takes a high value. The node strength
in the acoustic-energy-flux-based spatial network adequately
extracts the formation region of the strong acoustic power
source that drives spray combustion instability. The irregular
formation of hubs in the network generated by a large-scale
organized vortical structure plays an important role in the
emergence of low-dimensional chaotic oscillations in the heat
release rate field during spray combustion instability.

Figure 5 shows the spatial distribution of the symbolic
dynamics-based synchronization index SSI and the synchro-
nization parameter rp′q′ . Both SSI and rp′q′ take high values
in the upstream region of the combustor (0.6 � x/H � 2.4
and 0.4 � y/H � 0.7). This indicates that spray combustion
instability is driven in the upstream region, showing a strong
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FIG. 4. Time variation in average node strength 〈si〉y in terms of
the y direction in the acoustic-energy-flux-based spatial network.

phase-synchronized state between p′ and q′. The formation
region of high SSI almost corresponds to that of the hub in an
acoustic-energy-flux-based spatial network [Fig. 3(b)]. Asami
et al. [25] and Mori et al. [42] have reported that the SDSI
takes high values in the formation region of the detached
large-scale vortex from a injector rim in a swirl-stabilized
turbulent combustor. On the basis of the findings obtained by
these studies [25,42], SSI is found to be a useful measure for
deducing the driving region of spray combustion instability in
a backward-facing step combustor.

Figure 6 shows the spatial distribution of the feature
importance fṁ→q ( fω→�) for predicting heat release rate fluc-
tuations (acoustic energy) from evaporation rate (vorticity)
fluctuations. We observe locally high fṁ→q at x/H ≈ 1.2
and y/H ≈ 0.6, indicating that the evaporation rate relatively
predominates the heat release rate. A similar trend is ob-
served for fω→� in the same region of x/H and y/H , which
indicates that vorticity relatively predominates acoustic en-
ergy. The feature importance in a random forest is valid for

(b)

(a)

FIG. 5. Spatial distribution of the (a) symbolic dynamics-based
synchronization index SSI and (b) synchronization parameter rp′q′

during spray combustion instability.

FIG. 6. Spatial distribution of the feature importance (a) fṁ→q

for the prediction of the heat release rate from evaporation rate
fluctuations and (b) fω→� for the prediction of acoustic energy from
vorticity fluctuations.

clarifying the feedback coupling of spray combustion instabil-
ity. Pillai et al. [9] have reported that the entrainment of fuel
droplets within a large-scale organized vortex increases their
residence time, thereby increasing the evaporation rate. The
ignition of premixture owing to the increase in evaporation
rate induces the subsequent heat release. The high values of
fṁ→q at x/H ≈ 1.2 and y/H ≈ 0.6 fully support the findings
obtained by Pillai et al. [9]. On the basis of the results shown
in Figs. 3–6 and the findings reported by Pillai et al. [9], we are
able to explain the formation mechanism of spray combustion
instability in a backward-facing step combustor as follows.
The hydrodynamic shear layer instability causes the formation
and detachment of a large-scale organized vortex near the step
edge. The entrainment by the organized vortex increases the
residence time of the fuel droplets in the upstream region of
the combustor and increases the evaporation rate. The fuel
ignition in the upstream region induces a rapid increase in heat
release rate, which results in a strong phase synchronization
between acoustic pressure and heat release rate fluctuations.
This strong phase synchronization leads to the formation of
acoustic power sources. These physical processes play an
important role in the driving and sustainment of spray com-
bustion instability.

Mori et al. [42] have recently shown that reservoir comput-
ing [64], which is a class of supervised machine learning, is a
useful recurrent neural network for clarifying the directional
coupling of acoustic pressure and heat release rate fluctuations
during combustion instability in a swirl-stabilized turbulent
combustor. However, this method requires the optimization
of many setting parameters during the learning process such
as the size of the adjacency matrix in the reservoir network,
leaking rate, and a regularization coefficient. In contrast, the
main advantage of the feature importance in a random forest
is that the number of setting parameters is small. This is very
important when one wants to promptly know the causal con-
nection between physical quantities during spray combustion
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instability. Recent experimental studies [32,41,65] have
adopted various causality analyses such as the transitivity [66]
of joint recurrence and cross recurrence networks [67], cross
convergent mapping [68], transfer entropy [69], symbolic
transfer entropy [70], and spatial-network-based transfer en-
tropy [41], for combustion instability in a swirl-stabilized
and/or a bluff-body-stabilized turbulent combustor. In addi-
tion to these analytical methods, the importance in a random
forest will become a useful machine-learning-based causality
measure for understanding the feedback coupling during com-
bustion instability.

Finally, there is an interesting concern related to the nu-
merical simulation of spray combustion instability. Xu and
co-workers [71–73] recently showed the importance of a
discrete Boltzmann model to study both hydrodynamic and
thermodynamic nonequilibrium effects in various fluid sys-
tems, including combustion systems [74,75]. It would be
interesting to examine how this model is useful for simulating
spray combustion.

IV. SUMMARY

We have numerically studied the dynamic behavior and
driving region of spray combustion instability in a backward-
facing step combustor using analytical methodologies based
on dynamical systems theory, symbolic dynamics, complex
networks, and machine learning. The global dynamic behavior
of an acoustic pressure field represents a limit cycle with
large modulation in oscillation amplitude. In contrast, the
global dynamic behavior of a heat release rate field represents
low-dimensional chaotic oscillations with deterministically
aperiodic intercycle dynamics. This is clearly identified by the
OPTN entropy in combination with IAAFT and PP surrogate
data methods. The node strength in the acoustic-energy-flux-

based spatial network clearly shows that the formation and
collapse of an acoustic power source during spray combus-
tion instability are closely associated with the motion of a
large-scale organized vortical structure owing to the hydrody-
namic shear layer instability at the step edge. The irregular
formation of hubs in the acoustic-energy-flux-based spatial
network plays an important role in the emergence of low-
dimensional chaotic oscillations in the heat release rate field.
The driving region of spray combustion instability extracted
using the SDSI is the formation and separation region of
the organized vortex, which fairly corresponds to that of the
hub in the acoustic-energy-flux-based spatial network. The
order parameter identifies the formation of a strong phase
synchronization between acoustic pressure and heat release
rate fluctuations in the driving region of spray combustion
instability. The feature importance in the random forest shows
not only that the evaporation rate affects the heat release rate,
but also that the vorticity affects the thermoacoustic energy.
This feature importance enables us to clarify the feedback
coupling of spray combustion instability.
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