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Involution symmetry quantification using recurrences
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Symmetries are ubiquitous in science, aiding theoretical comprehension by discerning patterns in mathe-
matical models and natural phenomena. This work introduces a method for assessing the extent of symmetry
within a time series. We explore both microscopic and macroscopic features extracted from a recurrence plot. By
analyzing the statistics of small recurrence matrices, our approach delves into microscale dynamics, facilitating
the identification of symmetric time series segments through diagonal macroscale structures on a recurrence plot.
We validate our approach by successfully quantifying involution symmetries for three-dimensional dynamical
models, specifically, order-2 rotational symmetry in the Lorenz ’63 model, and inversion symmetry in the Chua
circuit. Our quantifier also detects symmetry breaking in the modified Lorenz model for El Niño phenomenon.
The method can be applied in a versatile manner, not only to three-dimensional trajectories but also to univariate
time series. Symmetry quantification in time series is promising for enhancing dynamical system modeling and
profiling.
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I. INTRODUCTION

Symmetry is a fundamental concept pervasive in every
field of study, especially mathematics, physics, and biol-
ogy [1–3]. It offers convenient frameworks for understanding
various concepts and phenomena, and serves as a rigorous
property that, when detected from data, can significantly en-
hance modeling efforts.

There is a noticeable gap in research concerning the impact
of symmetric dynamical systems models in the time series
analysis. This study addresses this gap, focusing on exploring
time series from symmetric strange attractors, which exhibit
flexible polarity reversals in specific system variables [4–8],
facilitating coexisting attractors, alternative chaotic signals,
the convenience of chaos application [9–11], and the design
of complex dynamical systems modeling [12,13].

Recurrence plots [14,15] quantifiers are advanced time se-
ries analysis methods to extract information from nonlinear
data. By assessing both microscopic and macroscopic struc-
tures derived from a recurrence plot, we utilize the set of
generated recurrence motifs [16–18] in each particular row (or
column) to better qualify the time series microstates at each
time instant, which facilitates the detection of symmetry from
time series.

To evaluate the effectiveness of our approach, we test it on
two types of involution symmetries [19] for three-dimensional
chaotic attractors. The first is the Lorenz ’63 model [4],
with rotation by π symmetry. The second is the Chua circuit
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[20], which presents inversion symmetry for all its vari-
ables [19,21]. For the Lorenz model we also incorporate an
additional symmetry-breaking parameter. This modification
induces asymmetrical development in the attractor’s wings,
resembling the anomalous scenario observed in the El Niño
climate pattern [22–25].

The paper is organized as follows: In Sec. II we introduce
the background knowledge that is necessary to understand
this paper, in Sec. III we develop the technique based on
recurrences, and in Sec. IV we test the proposed quantifier.
Then we discuss the results in Sec. V, and finally, in Sec. VI
we summarize the article and provide suggestions for future
work.

II. BACKGROUNDS

A. Symmetric dynamic models

In dynamic models the involution symmetry occurs when
a time evolution rule remains unchanged under an involution
transformation. The simplest type of such transformation is
represented by the function f (x) = −x, which is its inverse
so f ( f (x)) = x [19]. For three-dimensional chaotic systems,
the symmetry is classified as reflection, rotation (by π ), or
inversion, depending on which variables adhere to this trans-
formation [21].

To evaluate rotation by π symmetry, we propose the anal-
ysis of the Lorenz ’63 model [4], which can be written as

ẋ = −s(x − y),

ẏ = −xz + gx − y,

ż = xy − bz,

(1)
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where we use the typical values s = 10, g = 28, and b = 8/3,
which generate a chaotic attractor. This model exhibits sym-
metry, as its dynamic equations remain unchanged under the
transformation x → −x, y → −y, and z → z [26].

The inversion symmetry occurs when the equations of
motion are equivalent under the transformation (x, y, z) →
(−x,−y,−z). A model that has such a property is the Chua
circuit [20], here used in its simplified version,

ẋ = a(y − x − g(x)),

ẏ = x − y + z,

ż = −by,

(2)

where the variables represent the voltages across two capac-
itors and the current of the inductor, respectively; a and b
are parameters related to resistance, capacitance, and induc-
tance. The function g(x) is piecewise linear, representing a
non-Ohmic resistor,

g(x) = m1x + (m0 − m1)

2
(|x + 1| − |x − 1|), (3)

where m0 and m1 are the slopes associated with the change
in resistance, the only nonlinear component in the circuit.
The function g(x) can be defined differently without losing
the qualitative dynamics; however, it needs to be an odd
function for the system to be equivalent under the inversion
transformation. To generate a chaotic double-scroll attractor,
we set the parameters α = 15.6, β = 28.0, m0 = −8/7, and
m1 = −5/7.

Let us write a set of differential equations concisely as ẋ =
f (x). In a time series from the symmetric nonlinear system,
the distance between two vectors remains unchanged after
a symmetry transformation. Consider a time series vector xi

and its respective symmetric vector si = I (xi ), given by an
involution symmetry, specifically an inversion or a rotation by
π transformation such that we also have ṡ = f (s) with the
resulting symmetric variables s.

Each variable can be transformed either through the iden-
tity I j (x) = x j or its sign reversal I j (x) = −x j . In both cases,
the absolute value is preserved. This transformation is asso-
ciative and follows the property xi = I (si ).

In this context, the distances respect the relation

‖xi − x j‖ = ‖I (si ) − I (s j )‖ = ‖I (si − s j )‖ = ‖si − s j‖,
(4)

where ‖ · ‖ denotes the norm (e.g., Euclidean).
Therefore, if the trajectory presents vectors such that xk =

si and xp = s j , each trajectory instant has the same distance
statistics as an instant in its symmetric state. In practice, this
property only holds for a periodic time series; in a chaotic
attractor, the trajectory can only recur to a small neighbor-
hood of a specific state in finite time so xk ≈ si and xp ≈ s j .
Consequently, the distribution of distances around symmetric
coordinate points in chaotic systems should be alike. This
property is hypothesized to generate similar rows or columns
for symmetric instants in a recurrence plot, which we exploit
and test using our proposed quantifier.

B. Asymmetric Lorenz ’63 model

To analyze the loss of symmetry, we add an asymmetry
constant to the original Lorenz model variable x. The modified
model is based on the Vallis system, which is the Lorenz
system with a parameter breaking the rotation symmetry. It
is one of the simplest chaotic models for the El Niño anomaly
[22,24]. It is mathematically expressed by

ẋ = −s(x − y) + ε,

ẏ = −xz + gx − y,

ż = xy − bz,

(5)

where we set s = 10, g = 28, b = 8/3, and ε is the symmetry-
breaking parameter. Notice this only has rotation symmetry if
ε = 0.

In Fig. 1 we plot two trajectories of the modified Lorenz
model, one unperturbed and the other with a high-asymmetry
parameter value. For the plots and analysis, we used a sam-
pling step size of 0.1, a time series of size N = 5000 collected
after an equal-size transient, and integrated with 0.01 time step
using the fourth-order Runge-Kutta method.

The asymmetric model shows a tendency for trajectories
to remain longer in the positive x-value wing. Both wings
are preserved, but the vector field is not symmetric so one
wing is not the symmetric of the other. Our method aims
to quantitatively detect this symmetry breaking by analyzing
the recurrence statistics of trajectory points, with no prior
knowledge of the attractor structure.

C. Recurrence plots

Recurrence plots (RPs) were first proposed by Eckmann
et al. [14] in 1987 and have been improved since then [15,27].
Nowadays, it is a significant technique in time series analysis,
and studies propose that the plot encapsulates all essential
dynamical information [28,29]. Yet, there is still undeveloped
potential in exploring recurrences [15].

A recurrence plot is a binary matrix. Mathematically, an
RP can be written as

Ri j = �(ε − ||xi − x j ||), (6)

where �(·) is the Heaviside function and ε is the recurrence
threshold. The trajectory {xt } is evaluated in distinct time
frames i and j. This work uses the Euclidean distance to assess
the proximity between trajectory points.

The conventional quantifiers derived from recurrence plots
usually involve examining specific patterns within the plot,
such as the (non)recurrent diagonal or vertical lines [15]. Re-
cent research has focused on evaluating generic small matrices
(motifs) derived from RPs to characterize both stochastic and
deterministic properties of time series [16]. The diversity ob-
served within these motifs facilitates entropy measurement
[16], parameter-free quantification of stochastic and chaotic
signals [17]. Moreover, it also contributes to the characteriza-
tion of random dynamical systems [18].

In this context, our approach broadens as we gather infor-
mation from all possible patterns of a designated size, referred
to as recurrence motifs (RM), which are small matrices
within an RP, defined by RM(i, j, k, L) = {Rab | a = i, i +
1, . . . , i + L − 1; b = j, j + 1, . . . , j + L − 1}, where L is
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FIG. 1. Modified Lorenz ’63 model dynamics, left panels illustrate the symmetric case while the right panels depict asymmetric dynamics.
The trajectory on the x-z plane for (a) the original symmetric model and (b) for the asymmetric model with parameter ε = 12.0. The bottom
panels display the time series for (c) and (d) component x, and (e) and (f) component z.

the motif size and k = 1, . . . , 2L2
is the motif index encom-

passing all the possible recurrence configurations for a square
matrix of side L.

III. THE PROPOSED METHOD

For a symmetry quantification of time series, we need a
better qualification of data points than their measured values.
In this sense, here we introduce a time series representation as
a sequence of pattern probabilities associated with each time
instant, named, recurrence motif probability distributions. In
contrast to other variations that rely on the recurrence of
distinct features beyond the phase space distance, such as iso-
directional segments [30], ordinal pattern symbolic dynamics
[31], or representing time series as a time-ordered sequence
of probability density functions [32], our proposed recurrence
plot variation maintains its foundation in structures derived
from the usual RPs. In Fig. 2 we present an overview of the
method, which described next.

A. Microstate description of a time series

The microstate consists of values that more accurately de-
scribe the dynamics at each moment. We start with the RP of
a time series {xt | t = 1, 2, . . . , N} given by the matrix Ri j .
In this framework the recurrence patterns generated each time
correspond to a specific row (or column) on the RP. Therefore

to define the microstate based on recurrences of our time
series, we use the recurrence motifs concept [16–18].

Next, we systematically gather square motifs from the
RP at each fixed time index, ensuring that each time
instant is associated with a probability distribution of recur-
rence motifs. We convert the time series in a sequence of
probability distribution {Pt | t = 1, 2, . . . , N − L + 1}, with
each component k given by [Pt ]k = Pr [RM(t, t ′, k, L) | t ′ =
1, 2, . . . , N − L + 1], which we use as the microstate descrip-
tion of a time series.

This represents constructing a histogram for each row from
the recurrence plot, encompassing all potential 2L2

motifs, and
subsequently normalizing by the total number of collected el-
ements within the row of width L starting at time t . In this way
the xt values associated with consecutive microstates overlap.
For instance, Pt is associated with segment xt , xt+1, ...xt+L−1

and Pt+1 is associated with segment xt+1, xt+2, ...xt+L.
The RP for the probabilities time series {Pt | t =

1, 2, . . . , N − L + 1} defines the motif probability distribu-
tion recurrence plot (PR) as

PRi j = �(εPR − d (Pi, P j )), (7)

where εPR is the threshold to ascertain if two times generate
a similar motif distribution on their RP rows. For the PRi j

matrix computation we use the Hellinger distance [33], which
is appropriate for probability distribution comparison.
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FIG. 2. Method based on recurrence to identify symmetry on a time series. In all plots, black regions correspond to a matrix value of 1,
while white corresponds to a value of 0. In panel (a) the original recurrence plot for the Lorenz ’63 model is presented; in (b) the recurrence
plot utilizes the probability distribution of motifs series, with one probability distribution for each row from the original plot; and in (c), the
symmetry recurrence plot is demonstrated, representing the joint product between the first two matrices, that is, PRi j and (1 − Ri j ). For this
example we used the three-dimensional Lorenz ’63 system, which has symmetry for variables x and y, a 20% recurrence rate for Ri j , motifs’
size L = 3, and εPD = 0.2 for the PRi j construction. The bottom panels represent the method diagram in four steps to set up the symmetry
quantifier and some examples of typical motifs collected within an RP row.

B. Symmetry quantification

Recurrences in PR encompass any time pair with a sim-
ilar row structure on the RP regardless of their proximity,
more rigorous time instants that satisfy Eq. (4). Therefore, to
detect similar dynamics only at distant trajectory points, we
have to filter trivial recurrences due to the proximity in the
phase space. To solve this we combine the times with similar
motif probability PRi j = 1 and the times with no recurrence,
Ri j = 0.

The joint recurrence plot [34] between PRi j and (1 − Ri j ),
which we refer to as a symmetry recurrence plot (SR), is
defined as

SRi j = PRi j (1 − Ri j ), (8)

where the value 1 in this plot indicates a pair of times i and j
with similar microstate dynamics but distant in the state space.
The SR matrix size matches PR because we do not use the
last (L − 1) points’ part of the time series for Ri j to form the
Hadamard product.

Additionally, we will show that the count of recurring
points in SRi j may not precisely measure the symmetry of
chaotic attractors. For a more accurate measurement of sym-
metry, it is necessary that two distant trajectory segments
consistently present a similar microstate sequence.

Similarly to the well-known quantifier of determinism
from RPs [15], the diagonal lines parallel to the main diagonal
denote similar dynamics segments, but in the SR plot such se-
quences are related to reflected time sequences. Consequently,
here we propose a quantifier for the estimation of symmetry

based on the diagonal line length,

SYM =
∑N−L+1

l=lmin
lP(l )

∑N
l=1 lP(l )

, (9)

where P(l ) is the probability of finding a diagonal line with
length l in the SRi j matrix, and lmin is the minimal line length
of consecutive diagonal line segments on SR that contributes
to the numerator of the index SYM [Eq. (9)]. Although the op-
timal parameters to improve the efficacy of quantifiers based
on diagonal line lengths remain an open question [35], in this
work we choose the generally used value lmin = 2. In this way,
SYM is a recurrence-based quantifier restricted to a range
between 0 and 1. The higher its value, the more symmetric
the time series is.

Our approach is designed for the comparative analysis of
diverse time series, and it relies on a sufficiently detailed Ri j

matrix. For consistency, employing a fixed recurrence rate for
the Ri j matrix may be advised to be used, ensuring that various
RPs have an equal opportunity to generate patterns, at least
concerning the number of recurrences. In this context, em-
ploying a defined threshold εPR for PRi j yields robust results,
as we will demonstrate in the following section.

C. Qualitative example

To provide a qualitative understanding of the method’s
operation, as a visual tool to assess dynamics information
from the observed trajectory, Fig. 2 displays example plots of
the three proposed matrices for symmetry estimation, employ-
ing the symmetric Lorenz model [Eq. (1)]. Panel (a) depicts
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FIG. 3. Joint plot for the recurrences of time series values (Ri j) and the motifs probabilities values (PRi j) for components (a) x and (b) z of
the Lorenz ’63 model. The parameters for the plots are a fixed recurrence rate value RR = 0.5 for Ri j matrix, a fixed threshold of εPR = 0.3, and
motif size L = 2 for PRi j . The panels depict distinct structures in the joint recurrence plot from (a) symmetric and (b) asymmetric time series.
White regions denote the absence of recurrence for both time series values and motif probability distribution space. Blue signifies recurrences
solely of time series values. Red regions represent no recurrence in the time series space but recurrence in the motif probability distribution
space, serving as an indicator for symmetry. Black color corresponds to times with similar values and similar motif distribution.

the typical recurrence plot, while panel (b) illustrates the
recurrence of motif probability distributions PRi j , and panel
(c) presents the joint plot SRi j , which highlights symmetric
patterns within a time series.

The PRi j matrix tends to form diagonal structures, indicat-
ing the time evolution of microstates is coherent over distinct
trajectory instants, generating fewer artifacts than the standard
RP. So this RP variation differs from Ri j because its main
benefit is the capability to detect time sequences with similar
dynamics evolution regardless of their position on the phase
space.

On the other hand, the SRi j matrix exhibits shorter di-
agonal lines and more isolated points compared to PRi j .
Trajectories at symmetrically distant coordinates evolve ac-
cording to the same rules over time, but the system may not
recur exactly to the symmetry location due to the chaotic
nature of the dynamics. Therefore, the lengths of diago-
nal lines in the SRi j plot indicate how long trajectories
tend to recur to almost symmetric segments. In practice,
the longer the analyzed trajectory, the more likely it is to
observe closer recurrences to symmetric locations in phase
space.

Certain factors may hinder the correct match between tra-
jectory points at a coordinate and their respective symmetric
counterpart. Such factors could impede the observation of
long symmetric segments or foster false symmetric segment
measurements. We list contributions from asymmetric com-
ponents, regions characterized by large Lyapunov exponents,
and inadequate motif statistics (stemming from a short dataset
or inappropriate recurrence threshold).

IV. RESULTS

To test our method on examples, we compare the perfor-
mance between symmetric and asymmetric time series and
present the recurrence matrices in the same diagram. Figure 3
presents the recurrence plot (Ri j) and the motif probabil-
ity distribution plot (PRi j) for components x and z from
the symmetric Lorenz ’63 model, where the intersections of
Ri j = 0 and PRi j = 1 correspond to SRi j = 1, or SRi j = 0
otherwise.

The recurrence plots of the components x and z have been
constructed with the same recurrence rate, which ensures the
same possibility of variability on the motifs within the RP.
The compound RP and PR plots reveal additional structures
in regions with and without recurrences in the phase space
that correspond to Ri j = 0 with PRi j = 1 and Ri j = 1 with
PRi j = 0.

The presence of structured patterns, where PRi j = 1 and
Ri j = 0, signifies the detection of dynamic properties within
an RP region where no information was anticipated by con-
ventional analysis. This phenomenon is more pronounced in
the symmetric component plot [Fig. 3(a)], attributed to the in-
herent property of these structures to share identical dynamic
equations across distant points in the phase space.

Although the asymmetric component also exhibits in-
stances of SRi j = 1, it is presumed that these points are
incidental occurrences, because they do not form diagonal
structures. Consequently, for the asymmetric component, each
trajectory point mostly shares a similar motif distribution with
its neighbors.
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Our approach is suitable for analyzing dynamics in single-
component time series, as it filters potential artifacts from
trajectory projection onto a single component, and the SYM
quantifier exclusively considers diagonal structures within the
SRi j plot. Prior studies suggest that recurrence-based statistics
relying on diagonal structures parallel to the main diago-
nal demonstrate comparable performance, whether the phase
space is reconstructed or not [36,37].

In addition, we believe the analysis of PRi j and Ri j reveals
information about artifacts, which are undesirable recurrences
generated from false neighbors (e.g., when using just one vari-
able to construct the RP) or orthogonal motion for recurring
instants (expected to happen for high recurrence threshold
values) [30]. The condition Ri j = 1 with PRi j = 0 indicates
that a recurrence using the time series does not match a
recurrence in the microstates description, suggesting artifact
recurrences. This result implies that our method estimates not
only time series instants with symmetric properties but also
similar values that do not correspond to the same phase space
state.

To ascertain the parameter range within which our method
operates effectively, Fig. 4 illustrates the dependency of SYM
[Eq. (9)] on the recurrence plots parameter, more specifically,
the recurrence rate and the recurrence threshold. We show the
range for which the quantifier has consistent results and that
motifs of size L = 1 cannot distinguish symmetric and asym-
metric variables properly. Curve disruptions are caused by
plots SR with no symmetric time series instants, a condition
that makes the SYM value undefined, indicating an extreme
degree of asymmetry in the time series or insufficient motif
variety on the recurrence plot.

There are better recurrence parameter values that optimize
the method. The most relevant one is the recurrence rate for
the Ri j plot, ensuring diverse motifs are generated to capture
system dynamics accurately. Limitations arise at both low and
high recurrence rates. Low rates result in an overflow of non-
recurring motifs. Conversely, high rates saturate the number
of fully recurring motifs, diminishing variety and hindering
accurate representations of system dynamics.

Comparing the performance on the Lorenz ’63 symmetric
variable x and asymmetric variable z, we find the threshold
range εPR for distinguishing symmetry within time series is
typically between 2 × 10−2 and 2 × 10−1. High εPR treats all
RP rows similarly and inflates the diagonal line count for
SYM due to a lack of discrimination. Low value constraints
are due to the time series size, as precision in {Pt } components
depends on the number of elements in each RP row.

The Chua circuit SYM quantification indicates a high de-
gree of symmetry for the same range as the Lorenz ’63 model.
As expected, both x and z components present symmetry with
similar values for all the motif sizes considered. In this case,
even motifs of size 1 were enough to detect symmetry, indicat-
ing that no influence of asymmetric variables on the analyzed
time series facilitates symmetry detection for a system with
inversion symmetry.

To extend the test on the capabilities of the SYM quanti-
fier, we analyze the modified Lorenz ’63 model changing the
symmetry-breaking parameter. In Fig. 5 we show the symme-
try quantification for the three-component trajectory and each
component, considering size 2 or 3 motifs.

FIG. 4. Symmetry quantifier dependence on recurrence plot pa-
rameters for the Lorenz ’63 models in panels (a) and (c), and Chua
circuit in panels (b) and (d). In panels (a) and (b) we consider the
SYM [Eq. (9)] as a function of the εPR threshold while maintaining
a fixed 50% recurrence rate. In panels (c) and (d) we consider the
dependence on the recurrence rate for a fixed εPR = 0.1 threshold.
We compare the performance of our quantifier for each variable and
certain motif sizes L.

FIG. 5. Symmetry-breaking quantification on the modified
Lorenz ’63 model, considering a recurrence rate of 50% for the
Ri j matrix and εPR = 0.1 for the PRi j matrix. Panel (a) presents the
results for motifs of size L = 2, while panel (b) shows the results
for size L = 3 motifs. We test for all components in solid black,
component x in dashed blue, component y in dash-dot green, and
component z in dotted red.
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The components x and y, along with the entire trajectory,
exhibit symmetry when ε = 0. Our approach effectively dis-
cerns the impact of the symmetry-breaking parameter. Despite
introducing an asymmetry term to variable x, the time series of
variable y and the three-dimensional trajectory similarly lose
symmetry. This highlights our capability to detect the indirect
effects of asymmetry terms.

In contrast, component z lacks symmetry, even in the orig-
inal Lorenz ’63 model. Consequently, the influence of the
asymmetric parameter ε does not impact the symmetry (SYM)
value for this component. Size-2 motifs still capture some
symmetric trajectory points satisfying Eq. (8), which are not
detected as symmetric segments, so the SYM value for the
asymmetric component remains near zero.

On the other hand, the size-3 motifs have a more pro-
nounced measure of symmetry breaking, having a higher
contrast between symmetric and asymmetric time series. They
detect differences among variables as ε increases and reaches
SYM = 0.0 before the case using the size-2 motif.

V. DISCUSSIONS

All tests conducted indicate that larger motifs provide a
better quantification of symmetry. The most significant im-
provement is observed when moving from motif size 1 to
size 2, suggesting that motifs of size L = 2 are sufficient for
accurately quantifying symmetry in the Lorenz ’63 system.
However, larger motifs can detect symmetry breaking for
lower values of symmetry-breaking parameters.

The motifs of size larger than 1 quantify more than the
distance distribution for each trajectory instant. They also
consider how the distances of consecutive times relate to other
values in the time series. Motifs with a size of 1 cannot
properly detect symmetry, likely because their probability dis-
tribution captures only the local recurrence rate information.

For larger motifs, we get a better measure of symmetry.
Therefore understanding symmetry requires more than just
knowing the probability of individual points repeating. So,
the probability distribution of motifs from the recurrence plot
is good at capturing dynamic information for each time in a
time series because they trace the relations between segments
of data rather than isolated value distances.

In this work we chose to vary the recurrence thresholds
and recurrence rates for RPs. Still, previous works on the
recurrence motifs have proposed an entropy maximization
principle to assert the optimal values [16,17]. Such a principle
might provide a parameterless improvement of our method in
a way that promotes diversity of motifs, which should improve
the microstates profiling to create the PR matrix.

The method described in this context is not suitable for
measuring symmetric states near the origin, particularly as
seen in the Lorenz model, in cases where the trajectory
changes wings. However, we anticipate that this limitation
does not significantly impact the symmetry estimation of an
attractor because it typically affects only a small portion of
trajectory points.

Currently, we use the square motifs of size 2 or 3 in
a recurrence plot to obtain the motif probability for each

row. We could estimate the motif probability for each row
appropriately here with L = 3, because the size of a recur-

rence plot is about 5000, even though the variety 2L2
of the

possible square motifs makes 512. In the future we may have
to use the recurrence triangles [18] to construct the motif prob-
ability, because a recurrence plot is symmetric to the central
diagonal line, and the number of possible kinds of recurrence
triangles is reduced to 2

L(L−1)
2 .

VI. CONCLUSIONS

Understanding dynamical systems is crucial for advanc-
ing data assimilation and modeling. We introduce a method
for quantifying inherent symmetry in time series using mi-
croscopic and macroscopic features of recurrence plots. Our
method applies to order-2 rotation symmetry and inversion
symmetry, and it detects the symmetry of individual variables
or the entire trajectory.

By analyzing the influence of symmetry on the probability
distribution of motifs in recurrence plots, we deduce the sym-
metry level in underlying dynamics. Symmetric systems show
consistent dynamics across time segments, while asymmetric
systems exhibit similarities only at recurring instants. Our
method effectively detects symmetry on the Lorenz ’63 model
and the Chua circuit, just as the asymmetry introduced in the
Lorenz attractor by a symmetry-breaking parameter.

Future work will extend this method to a broader range of
deterministic and stochastic systems, test experimental data,
and refine empirical models based on observed symmetry.
Potential improvements include phase space reconstruction,
alternative distance metrics, and optimizing motif statistics
through recurrence entropy maximization [38].

Our findings demonstrate that recurrence motifs effec-
tively characterize local dynamics (microstate) from a time
series, highlighting the need for further research into symbolic
dynamics approaches based on recurrences [39]. We are con-
fident that our method will significantly advance the analysis
and modeling of complex dynamical systems.
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