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Transition from weak turbulence to collapse turbulence regimes
in the Majda-McLaughlin-Tabak model
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It is well known that wave collapses can emerge from the focusing one-dimensional (1D) Majda-McLaughlin-
Tabak (MMT) model as a result of modulational instability. However, how these wave collapses affect the
spectral properties and statistics of the wave field has not been adequately studied. We undertake this task by
simulating the forced-dissipated 1D MMT model over a range of forcing amplitudes. Our results show that when
the forcing is weak, the spectrum agrees well with the prediction by wave turbulence theory with few collapses
in the field. As the forcing strength increases, we see an increase in the occurrence of collapses, together with a
transition from a power-law spectrum to an exponentially decaying spectrum. Through a spectral decomposition,
we find that the exponential spectrum is dominated by the wave collapse component in the nonintegrable MMT
model, which is in analogy to a soliton gas in integrable turbulence.
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I. INTRODUCTION

Wave turbulence occurs in physical systems consisting of
large ensembles of weakly interacting nonlinear dispersive
waves. Wave turbulence theory (WTT) provides a statistical
description of the behavior of these wave systems and has rich
applications in many physical contexts such as plasma physics
(e.g., Ref. [1]), physical oceanography (e.g., Ref. [2]), acous-
tics (e.g., Ref. [3]), and optics (e.g., Ref. [4]). The centerpiece
of WTT is the so-called wave kinetic equation (WKE), which
describes the evolution of the wave spectrum due to wave-
wave interactions, and yields the Kolmogorov-Zakharov (KZ)
spectra as stationary solutions [5]. Over the decades, many
efforts (e.g., Refs. [6–14]) have been made to verify the WKE
and KZ solutions in both numerical and experimental settings.

One model that holds a special position in the develop-
ment of WTT verification is the Majda-McLaughlin-Tabak
(MMT) model, which was introduced in 1997 in Ref. [15]
as a testbed for WTT. In Ref. [15], it was found that the
numerical simulation of the MMT equation yields a stationary
spectrum that is significantly steeper than the KZ solution.
Among several efforts to explain the discrepancy, Zakharov
[16] argued that it may result from the existence of coherent
structures in the wave field generated by the MMT model. In
particular, it is shown in Refs. [16–18] that the defocusing
MMT model allows the solution of quasisolitons, while the
focusing MMT model allows wave collapses, i.e., finite-time
high-amplitude singularities. In this paper, we adopt the ter-
minology of focusing or defocusing nonlinearity [19] to refer
to cases where the nonlinear and dispersive terms have the
opposite or same sign, despite possible confusion in the con-
text of the MMT model, as pointed out in Ref. [20]. However,
Zakharov’s argument is not widely accepted and the result
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of the MMT study [15] has remained unresolved within the
wave turbulence community for many years. This was until
recent studies [21,22] (also see Ref. [23]) for the defocusing
MMT model. In particular, Ref. [21] argues that intermittency
at high nonlinearity can lead to spectral anomaly compared
to the KZ solution. Reference [22] clarifies that the width of
the inertial range, a factor ignored in previous studies, must
be sufficiently large for the KZ solution to be observed. This
means that the inertial range realized in Ref. [15] (as well as
in Ref. [21] as shown in the Appendix of Ref. [22]) is not
wide enough. Further widening of the inertial range allows
the spectrum to approach the KZ solution, regardless of the
nonlinearity level and possible coherent structures. However,
it remains unclear how the spectrum behaves in the focusing
MMT model and whether wave collapses affect the spectral
properties.

Generally speaking, wave collapses can be induced by
modulational instability, resulting in the formation of a point
singularity in finite time. At the time of a collapse, both the
quadratic and quartic components of the Hamiltonian surge
with the total Hamiltonian conserved, which prohibits col-
lapses for defocusing nonlinearity. Although wave collapses
and the mechanism for their formation are well studied in the
nonlinear Schrödinger equations (NLS) (e.g., Ref. [24]), we
highlight that the MMT model is susceptible to a different
kind of instability. In Ref. [20] it was shown that the focusing
MMT equation admits a modulational instability by short-
wave modulations, i.e., the wavelength of the modulation is
much smaller than that of the carrier wave, in contrast to
the typical Benjamin-Feir instability. Wave collapses gener-
ated from a random wave field have been investigated in
several studies (e.g., Refs. [16,17,19,20,25–27]), focusing on
their effect on intermittency, energy transfer mechanisms, and
inception of modulational instability. However, the nonlinear-
ity level achieved in these studies is only moderately high,
with random waves remaining the dominant feature and the
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spectrum maintaining a power-law form (which is not the
case with a further increase in nonlinearity, as we will show).
The regime of wave collapses dominating the wave field at
stronger nonlinearity has not been well understood.

In this work, we numerically study the focusing MMT
dynamics in forced-dissipated simulations covering a broad
range of nonlinearity levels, from a weak wave turbu-
lence regime to a regime where wave collapses become
dominant. At a low nonlinearity level, we find a wave
turbulence–dominated regime with few collapses, and a spec-
trum consistent with the KZ solution. With an increase in
nonlinearity level, we see more collapses in the field, with a
flattened spectrum and departure from Gaussian statistics. At
a sufficiently high nonlinearity level, collapses become more
dominant, and the spectrum transitions from a power-law to
an exponential form, together with the statistics returning to
quasi-Gaussian. Through a spectral decomposition, we show
that the exponential spectrum is due to the dominant collapse
components, indicating a transition to a new “collapse tur-
bulence” regime. This can be understood as an analogy to
soliton turbulence in integrable systems, e.g., 1D Korteweg-de
Vries (KdV) and focusing NLS equations, where exponential
spectrum is also observed (e.g., Refs. [28,29]). We finally
show that the random wave components evolve toward a
thermoequilibrium state with reduced flux in the collapse
turbulence regime. We remark that these findings for the fo-
cusing MMT are drastically different from the defocusing case
(e.g., Refs. [18,19,21,23]), and shed light on physical systems
where modulational instability-induced coherent structures
are important, such as nonlinear optics, plasma waves, and
deep water waves (see Ref. [30]).

II. MMT EQUATION AND NUMERICAL PROCEDURE

We consider the 1D MMT equation with focusing nonlin-
earity,

i
∂ψ

∂t
= |∂x|αψ − |∂x|β/4(||∂x|β/4ψ |2|∂x|β/4ψ ), (1)

where ψ (x, t ) is a field taking complex values and the operator
|∂x|α denotes the multiplication by |k|α on each component in
the spectral domain. The parameter β controls the nonlinearity
formulation and α controls the dispersion relation ω(k) = |k|α
with ω the frequency and k the wave number. We set α = 1/2
and β = 0, which aligns with the parameters used in previous
studies (e.g., Refs. [16,17,20,26,27]). The MMT equation (1)
conserves total action N = ∫ |ψ |2dx and the Hamiltonian
H = H2 + H4 with linear and nonlinear parts,

H2 =
∫

||∂x|α/2ψ |2dx,

H4 = −1

2

∫
||∂x|β/4ψ |4dx. (2)

It is shown in Refs. [16] and [17] that (1) allows a solution
of wave collapse. Under the choice of α = 1/2 and β = 0,
such a solution corresponds to an integrable singularity in
physical space. We summarize the theoretical argument fol-
lowing Refs. [16] and [17] in Appendix A, where we also
point out skepticism toward procedures and suggested mod-
ifications, e.g., how the original solution can be modified to

be more consistent with our numerical observations. We note
that after Refs. [16] and [17], the terminology “wave collapse”
is adopted in many studies (e.g., Refs. [20,26,27]) for coherent
structures observed in simulations of (1), even though the cor-
respondence is not directly established. In this paper, we will
continue to use this terminology; however, the reader should
keep in mind that the correspondence to Ref. [16] and [17] has
yet to be established. Furthermore, the modification proposed
in the Appendix A needs to be implemented in future work to
improve the consistency between theory and observation.

We next present details of our simulations. Each numerical
simulation is performed with 4096 modes, which corresponds
to a maximum wave number of 1024 after dealiasing, on
a periodic domain of L = 2π . We find that this number of
modes is sufficient to capture the main discovery in this paper.
This is documented in Appendix B that the use of more modes
provides consistent results as presented in the main article. We
start simulations of (1) from a low-amplitude background of
random waves as initial conditions, and let the field evolve into
a stationary state under forcing and dissipation. The forcing is
in white-noise form, given by

F =
{

Fr + iFi, 4 � |k| � 13,

0, otherwise,
(3)

with Fr and Fi independently drawn from a Gaussian distribu-
tion N (0, σ 2). We use a broad range of σ ∈ [0.037, 3.41] in
the simulations to ensure that the nonlinearity level achieved
covers the range of interest. We remark that alternative forcing
schemes with deterministic forms (e.g., Refs. [9,19,21,31])
can also be effective.

The dissipation is imposed with the addition of two hyper-
viscosity terms

D1 =
{−iν1ψ̂k, |k| � 900,

0, otherwise,

D2 =
{−iν2ψ̂k, |k| � 4,

0, otherwise,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4)

at small and large scales, respectively. The MMT model ad-
mits an inverse cascade; therefore, the addition of large-scale
dissipation is necessary to prohibit the accumulation of en-
ergy at these scales. The dissipation coefficients are set to
ν1 = 10−14(|k| − 900)8 and ν2 = 3|k|−4 for all numerical ex-
periments. We note that one can alternatively use a continuous
dissipation scheme as in, e.g., Refs. [21,32]. Additional details
on the numerical schemes used to solve (1) can be found in
Refs. [8,14,33].

III. RESULTS

A. Spectral properties and statistics

We define ε = H4/H2 in the stationary state as a measure
of the nonlinearity level of the wave field and the wave ac-
tion spectrum nk = 〈ψ̂kψ̂

∗
k 〉 with ψ̂k the Fourier transform

of ψ and the angle brackets denoting an ensemble average
(or time average for numerical results). Figure 1 shows the
wave action spectrum nk , as well as the corresponding wave
field for three very different nonlinearity levels ranging from
ε ∈ [0.03, 0.89]. At a low nonlinearity level [Figs. 1(a) and
1(d)], there are few collapses in the field and the spectrum
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FIG. 1. (Top) Wave action spectra and (bottom) corresponding snapshots of the |ψ |2 for three levels of nonlinearity with [(a) and (d)]
ε = 0.03, [(b) and (e)] ε = 0.21, and [(c) and (f)] ε = 0.89.

exhibits a power-law form with a slope close to the KZ predic-
tion of γ = −1. With an increase in nonlinearity [Figs. 1(b)
and 1(e)], we see more collapses emerging from the field, and
the power-law spectrum becomes flatter than the KZ predic-
tion. These observations are consistent with previous studies
[19,25]. At very high nonlinearity exceeding that of previous
studies [Figs. 1(c) and 1(f)], the field becomes saturated with
collapses, and the wave action spectrum departs from a power
law and tends toward an exponential form. We remark that
such an exponential spectrum is similar to that of a soliton
gas in integrable turbulence (e.g., Refs. [28,29,34,35]), where
a large number of solitons exist with a background of random
waves [36]. For nonintegrable systems, the only known exam-
ple (to the authors) of an exponential spectrum is observed in
the discrete NLS [37]. This state, involving the coexistence
of waves and localized excitations, is termed a“ two-species
gas.” For continuous nonintegrable systems, the authors are
not aware of other examples, and the result for the MMT
model is therefore a new finding.

We further investigate the wave statistics at different levels
of nonlinearity. Figure 2 shows the probability distribution
functions (PDFs) of Re[ψ] and the squared amplitude |ψ |2 at
the same nonlinearity levels as those in Fig. 1. At a low non-
linearity level [Figs. 2(a) and 2(b)], we see that the histogram
of Re[ψ] is well fitted by a Gaussian distribution and |ψ |2
follows an exponential distribution. At a higher level of non-
linearity [Figs. 2(c) and 2(d)], deviations from the Gaussian
and exponential distributions are observed with fatter tails,
indicating increased intermittency of the system. These behav-
iors are consistent with those observed in previous studies of
the MMT model [26,27,38], as well as with general observa-
tions of intermittency in wave turbulence (e.g., Refs. [39–42]).
With a further increase in nonlinearity to the level where wave
collapses become dominant [Figs. 2(e) and 2(f)], we observe
that the statistics of Re[ψ] interestingly return to being close

to Gaussian (and |ψ |2 to exponential). This is likely because
when collapses are dominant, they become the main feature
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FIG. 2. Probability distributions functions of (left) Re[ψ] and
(right) |ψ |2 for three levels of nonlinearity with [(a) and (b)] ε =
0.03, [(c) and (d)] ε = 0.21, and [(e) and (f)] ε = 0.89. Each panel is
fitted with a Gaussian or exponential distribution of the same mean
and standard deviation (solid line).
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FIG. 3. The wave number–frequency spectra S/Ŝ for nonlinearity
level (a) ε = 0.03, (b) ε = 0.21, (c) ε = 0.48, and (d) ε = 0.89. The
red dashed lines indicate the renormalized dispersion relation ω̃(k).

of the field rather than an intermittent one. Consequently, the
intermittency and non-Gaussian tail of the PDF have to be
reduced.

We note that an extended self-similarity analysis (ESS)
can also be performed following the procedure in Ref. [21].
Assuming structure functions Sp ∼ rξp and S2 ∼ rξ2 , the pur-
pose of this analysis is to compare ξp/ξ2 from numerical data
with scale-invariant scaling p/2. Our results of this analysis
(not shown) indicate that as ε increases from 0.03 to 0.21,
ξp/ξ2 departs from p/2 due to intermittency, consistent with
Ref. [21]. As ε increases further to 0.89, we observe that ξp/ξ2

returns to the p/2 scale. However, it must be emphasized that
the spectrum is not a power law at high nonlinearity, violating
the scaling of the structure functions as the basis of ESS.
Therefore, this result needs to be interpreted with caution,
which we choose not to stress in this paper.

B. Wave number–frequency spectrum and spectral
decomposition

We next examine the wave number–frequency spectrum
at different nonlinearity levels, as plotted in Fig. 3. Specif-
ically, we have plotted the normalized spectrum S/Ŝ, where
S is the standard wave number–frequency spectrum and
Ŝ = maxωS(k,w). In this way, the spectral behavior at each
k (especially large k) can be elucidated. Also shown in
Fig. 3 are the renormalized dispersion relation curves ω̃(k) =
ω(k) − 2

∑
k1

|ψ̂1|2 [43] as dashed lines. At low nonlinearity
[Fig. 3(a)], we see that the spectral intensity aligns well with
the dispersion relation curve, suggesting the dominance of
random waves in the field consistent with WTT. With an
increase in the level of nonlinearity [Figs. 3(b) and 3(c)],
we see spectral broadening around the dispersion relation
curve, as well as the emergence of components below the
dispersion relation curve, especially in Fig. 3(c). These are
exact representations of the collapses that do not satisfy the
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FIG. 4. Spectral decomposition for the case with ε = 0.89. (a) an
illustration of the broadening parameter  for defining the wave
component; (b) the kurtosis κ as a function of ; (c) the decom-
posed wave action spectrum with the total spectrum (solid black), the
wave component spectrum (solid blue), and the collapse component
spectrum (solid red). The Rayleigh-Jeans spectra with nk ∼ k0 and
nk ∼ k−1/2 are indicated by the dashed black lines. A zoomed-in view
of the high-wave-number region of the spectra is included as an inset.

dispersion relation. At high nonlinearity [Fig. 3(d)], we see
that the collapse component becomes more dominant, shown
as signals that fill a large area in the ω-k space. We also
note that in all figures, the random wave components follow
the renormalized dispersion relation ω̃(k) [instead of ω(k) =
k1/2], which is more clearly seen at higher nonlinearity. We
further decompose the field at high nonlinearity ε = 0.89 into
wave and collapse components using a variation of the method
developed in Ref. [44]. Generally speaking, the method de-
composes the wave and collapse components according to
their proximity to the dispersion relation curve. Our applica-
tion of the method is described in Fig. 4. We first choose a
broadening parameter  [see Fig. 4(a)] such that the spectral
content within ω̃(k) ± /2 satisfies a Gaussian distribution.
This can be achieved by measuring kurtosis κ as a function of
 as in Fig. 4(b), and choosing the value of  for which κ = 3.
For our case, the optimal  is approximately 20–25, and we
use 25 for this study. Figure 4(a) shows that such a choice
of  roughly incorporates the major spectral content around
the dispersion relation curve. We can then define the ran-
dom wave component as the spectral content within ω̃(k) ±
/2, and the collapse component as the rest. Specifically,
we take the inverse Fourier transform of each component,
returning their respective wave fields ψ (x, t ) and compute the
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relevant decomposed quantities accordingly. Figure 4(c)
shows the decomposed wave action spectra for both the wave
and the collapse components. We see that the exponential total
spectrum indeed results from the collapse component that is
dominant for most wave numbers, with its spectrum taking
an exponential form. On the other hand, the spectrum of the
random wave component remains power-law form close to a
thermoequilibrium state [see fitting with Rayleigh-Jeans spec-
trum in Fig. 4(c)], indicating that the energy flux by random
waves is suppressed in the collapse-dominant regime.

We next perform a more detailed analysis of the energy flux
mechanism of the system. As mentioned in Refs. [19,25,26],
there are two mechanisms of energy cascade in the focusing
MMT model: one local transport in k space from wave-wave
interactions of random waves and the other nonlocal transport
in k space from the formation of small-scale wave collapses.
Therefore, the total energy flux results from the summation
of the two mechanisms. Our goal is to understand the rela-
tive importance of the two mechanisms at different levels of
nonlinearity. Considering that the energy flux from the two
mechanisms is equal to the dissipation of random waves and
collapses, respectively, we define a ratio

ρ = P̄d
(W )

P̄d
(C) , (5)

where P̄d
(W ) and P̄d

(C) are the dissipations of wave and col-
lapse components, calculated as

P̄d
∗ =

∑
k>kd =900

−2ν1ωkn∗
k , ∗ = (W ), (C), (6)

with n∗
k decomposed as in Fig. 4(c).

Figure 5(a) plots the ratio ρ as a function of the nonlin-
earity level ε. We see a significant reduction in ρ with an
increase in ε, indicating that the fraction of energy flux from
random waves decreases substantially with increasing nonlin-
earity. According to this result, we conclude that the system
behaves in the following way: As nonlinearity increases, the
energy flux due to wave-wave interactions grows following
the WTT prediction of P̄d

(W ) ∼ H (W )3

2 up to moderately high
nonlinearity. Beyond this point, the energy flux from the wave
component becomes lower than the WTT prediction, as seen
in Fig. 5(b). This is consistent with the flattened spectrum

toward the thermal-equilibrium state. This transition point
occurs at approximately ρ � O(1), indicating a significant
portion of the contribution to the energy flux of the collapse
component. Meanwhile, the energy flux from the collapse
component increases much faster than that from waves, lead-
ing to a decreased value of ρ with an increase in nonlinearity
as seen in Fig. 5(a).

IV. CONCLUSION

In this work, we numerically study the spectral proper-
ties and statistics of the forced-dissipated 1D focusing MMT
equation, which admits wave collapses due to modulational
instability. Our work covers a broader range of forcing (thus
nonlinearity levels) than previous works and therefore reveals
the physics at a sufficiently high nonlinearity level when wave
collapses become the dominant feature. We show that as non-
linearity increases toward this collapse-dominant regime, the
spectrum departs from a power-law form and tends toward an
exponential form. In the meantime, the system surpasses the
intermittent regime characterized by strongly non-Gaussian
statistics and recovers the quasi-Gaussian statistics. The expo-
nential spectrum resembles what is typically seen for soliton
gas in integrable turbulence, but is now realized in a noninte-
grable system. Through a spectral decomposition method, we
show that the nature of the exponential spectrum can indeed
be attributed to the dominant collapse component. With the
presence of these coherent structures, the energy flux from
wave-wave interactions is reduced from the prediction by
WTT with the spectrum of wave component tending toward
a thermoequilibrium state.
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APPENDIX A: STRUCTURE AND FORMATION
OF COLLAPSES IN THE FOCUSING MMT MODEL

We first follow Ref. [16] to write (1) in the Fourier space:

i
∂ψ̂k

∂t
= |k|αψ̂k −

∫
|k1k2k3k|β/4ψ̂1ψ̂2ψ̂

∗
3

× δ(k1 + k2 − k3 − k)dk1dk2dk3, (A1)

where δ denotes the Dirac delta function and ψ̂∗ the complex
conjugate of ψ̂ .

We express the wave collapse singularities by a family of
self-similar solutions to (A1), written as

ψ̂k (t ) = (t0 − t )p+iεχ (K ), (A2)

where K = k(t0 − t )1/α , p = (β − α + 2)/2α and ε is a real
constant. Substituting (A2) to (A1), one obtains

i(p + iε)χ + i

α
Kχ ′ + |K|αχ −

∫
|K1K2K3K|β/4

× χ1χ2χ
∗
3 δ(K1 + K2 − K3 − K )dK1dK2dK3 = 0.

(A3)

Therefore, ε should be chosen as an eigenvalue of (A3) with
boundary conditions to be specified.

As t → t0, the solution (A2) should remain finite, which
means that the dependence on t must cancel. This imposes an
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FIG. 6. (Left) Wave action spectra and (right) probability dis-
tribution fuctions of Re [ψ] at three different forcing amplitudes
using 16 384 modes. [(a) and (b)] σ = 0.037, ε = 0.019; [(c) and (d)]
σ = 0.59, ε = 0.13; [(e) and (f)] σ = 3.41, ε = 0.50. Each panel on
the right is fitted with a Gaussian distribution of the same mean and
standard deviation (solid line).

asymptotic behavior on χ (K ):

|χ (K )| ∼ CK−ν, as K → 0. (A4)

with ν = (β − α + 2)/2. Therefore, at t = t0, (A2) takes the
form |ψ̂k| ∼ Ck−ν . Due to the conservation of wave action,
the integral

∫ ∞
0 |ψ̂k|2dk has to converge at infinity (i.e.,

considering the power-law solution as a high-wave-number
behavior). This gives a condition β > α − 1, which is shown
in Ref. [16] to be consistent with a criterion of soliton
instability.

Under the condition β > α − 1, we have ν > 1/2. Let us
further analyze (A4). If β < α, i.e., ν < 1, then the Fourier-
domain behavior (A4) corresponds to an integrable singularity
in the physical domain as a wave collapse. If β > α, i.e., ν >

1, then the singularity is nonintegrable and is a discontinuity
of the function ψ (x) or its derivatives.

For our case, we have α = 1/2 and β = 0. This leads to
p = 3/2 and ν = 3/4, so that our wave collapse corresponds
to an integrable singularity in physical space. The condition
β > α − 1 for the finiteness of wave action is also satisfied.

The material above directly follows Refs. [16] and [17]
However, we have reason to be skeptical about the proposed
solution. From the method itself, first, the self-similar solution
(A2) seems to be set up in an arbitray manner, e.g., the form
of p. This was probably done in Zakharov’s work to match
the soliton instability criterion, but we do not believe this to
be necessary. Evidently, modifying the form of (A2) leads to
a change of (A4) (in particular, the form of ν), which changes
the Fourier-domain footprint of the collapse structure. Second,
the validity of the above analysis lies in the existence of a
solution to (A3) with boundary conditions (A4) and χ (K ) = 0
as K → ∞. This is not discussed in Refs. [16] and [17]. Third,
the method essentially deduces the structure of the collapse
based on the Fourier-domain footprint, which is not rigorous,
since the map may not be unique. In addition, the integrable
singularity for ν < 1 can be checked with functions in the
form of f (x) = |x|γ with 0 < γ < 1. We are uncertain about
the underlying basis for the nonintegrable singularity when
ν > 1.

Our numerical results also suggest that the solution pro-
posed above needs to be modified (or generalized). The
condition (A4) with ν = 3/4 leads to a spectrum nk ∼ k−3/2

that is steeper than the KZ solution. However, we have ob-
served a shallower spectrum when collapses are present. The
steeper spectrum nk ∼ k−3/2 also implies that at the time of
collapse, both H2 and |H4| decrease (since H2 takes more
weight at high k and the total H is conserved). This is also
in contradiction to our observation that both H2 and |H4|
surge in the simulations. Based on these observations, we
believe that (A2) should be modified such that one obtains
|χ (K )| ∼ CK−ν with ν < 1/2 (i.e., shallower spectrum). This
will require us to consider a finite k space such that the finite-
ness of the wave action can be satisfied. Such a solution still
corresponds to an integrable singularity in physical space, and
one also has to consider the boundary value problem regarding
(A3) to ensure that the solution exists. We leave this for future
work.
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FIG. 7. The wave action spectra for 4096, ε = 0.89 (green line);
8192, ε = 0.67 (blue line); and 16 384, ε = 0.50 (red line) modes.
All cases have a forcing amplitude of σ = 3.41.

APPENDIX B: IMPACT OF NUMBER OF MODES

In the main paper, our numerical simulations are performed
with 4096 modes, corresponding to a maximum wavenumber
of 1024 after dealiasing. This leads to an inertial range of
about two decades. In this Appendix, we simulate additional

cases with 8192 and 16 384 modes to assess the effect of
lengthening the inertial range. In all simulations, the forcing
scales [i.e., (3)], dissipation parameters (i.e., ν1 and ν2), and
domain length of L = 2π are kept constant. The only param-
eter adjusted is kd , which is set to kd = 1800 and kd = 3600
for cases of 8192 and 16 384 modes, respectively, so that the
inertial range can be lengthened with increasing number of
modes.

We first show that the main results of the paper are not
affected by using more modes in the simulation. Figure 6
shows the spectrum and probability distribution of Re[ψ] at
three different forcing amplitudes (i.e., nonlinearities) using
16 384 modes. We see that the main features detected with
4096 modes are reproduced here, in terms of the transition
from power-law to exponential spectrum, as well as the devi-
ation from and return to the Gaussian distribution.

We next study the impact of the number of modes on the
spectral properties when the forcing amplitude is kept the
same. Figure 7 shows the spectra with 4096, 8192, and 16 384
modes at the same forcing amplitude σ = 3.41. We see that
the spectra differ from each other. This is mainly because the
effective damping is different given different damping ranges,
which affects the global amplitude of the spectrum. This is
especially the case when constant flux is not possible as the
spectrum transits toward an exponential form. As a result of
this, the nonlinearity parameter ε also varies with the number
of modes if the forcing amplitude is kept the same.
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