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Coarsening and metastability of the long-range voter model in three dimensions
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We study analytically the ordering kinetics and the final metastable states in the three-dimensional long-range
voter model where N agents described by a Boolean spin variable Si can be found in two states (or opinion)
±1. The kinetics is such that each agent copies the opinion of another at distance r chosen with probability
P(r) ∝ r−α (α > 0). In the thermodynamic limit N → ∞ the system approaches a correlated metastable state
without consensus, namely without full spin alignment. In such states the equal-time correlation function C(r) =
〈SiS j〉 (where r is the i − j distance) decreases algebraically in a slow, nonintegrable way. Specifically, we find
C(r) ∼ r−1, or C(r) ∼ r−(6−α), or C(r) ∼ r−α for α > 5, 3 < α � 5, and 0 � α � 3, respectively. In a finite
system metastability is escaped after a time of order N and full ordering is eventually achieved. The dynamics
leading to metastability is of the coarsening type, with an ever-increasing correlation length L(t ) (for N → ∞).
We find L(t ) ∼ t

1
2 for α > 5, L(t ) ∼ t

5
2α for 4 < α � 5, and L(t ) ∼ t

5
8 for 3 � α � 4. For 0 � α < 3 there

is not macroscopic coarsening because stationarity is reached in a microscopic time. Such results allow us to
conjecture the behavior of the model for generic spatial dimension.
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I. INTRODUCTION

Albeit statistical mechanics is a general approach capable,
in principle, to explain the properties of basically any physical
(and not only) system, it faces the problem of the overwhelm-
ing difficulty of the calculations whenever the constituents are
interacting. Major advances in this field have been promoted
by the study of critical systems and phase transitions where
the concept of universality has been elucidated. This opened
the way to the study of paradigmatic models, such as the
Ising one, which, although perhaps too simple at first sight,
have been shown to retain the basic ingredients—the so-called
relevant parameters in the renormalization-group language—
characterizing a plethora of by far more complicated systems,
all belonging to the same universality class. However, even
with this drastic simplification, solvable models are scarce
and usually confined to low-dimensional spaces. The afore-
mentioned Ising model, for instance, can only be solved in
equilibrium in D = 1, 2 [1,2]. As far as nonequilibrium phe-
nomena are investigated, the situation is even worse, and
the Glauber solution [3] of the kinetics in one dimension
still remains the only available for this system. Analytically
tractable models, particularly in D = 3, are therefore mostly
welcome to frame in a clear way the physical behaviors. In
this paper we provide a contribution in this direction by study-
ing the ordering kinetics and the metastablity properties of
the three-dimensional voter model with long-range algebraic
interactions. This article concludes a series of papers [4–6]
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where the properties of the model have been addressed in the
lower dimensionalities D = 1, 2.

Systems with long-range interactions have been the subject
of an increasing interest [7–9]. Perhaps the simplest nonequi-
librium process in this context is the phase-ordering kinetics
of ferromagnetic materials. These can be effectively mod-
eled by the Ising or related models which, however, are not
amenable of exact solutions, neither in D = 1. This topic has
been the subject of many studies [10–19]. In some of these
papers [10,11] the problem has been addressed analytically
in arbitrary dimension by means of scaling arguments devel-
oped for a continuum approach based on a Ginzburg-Landau
free-energy functional. The predictions obtained therein have
only been put to the numerical test in D = 1, 2 [12–19] but,
to the best of our knowledge, not in the physically more
relevant case with D = 3. Indeed, numerical simulation of
long-range 3D systems are very demanding, particularly due
to the strong finite-size effects introduced by the slow decay
of correlations produced by the extended interactions. More-
over, the analytical approaches mentioned above are only
able to access some properties of the ordering kinetics, such
as the asymptotic growth law of the coarsening domains,
but cannot describe other features, neither any preasymptotic
behavior.

The voter model is an alternative playground where the
kinetics with long-range interactions can be considered. In
its original formulation with nearest-neighbor (NN) inter-
actions, it was first introduced in the study of genetic
correlations [20,21]. Later its basic properties were derived
in Refs. [22,23] and widely studied along the years [22–33],
along with its many variants [34–46] designed to make it
suited for applications to various disciplines [32,45,47–51].
The model is formed by a collection of N agents described by
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a spin variable, as in the Ising model. However, the elementary
dynamical rule is different, in that a randomly selected agent
takes the status of one of its NN. In the long-range version of
the model considered in this paper, a spin can confront with
another one at distance r, extracted with probability P(r) ∝
r−α , α being a parameter regulating the decay of interactions.

The voter model has the advantage of being analytically
solvable in any spatial dimension [27,28] and for any form of
the interactions [4–6], in the sense that closed equations can
be arrived at for most observables, e.g., see Eq. (4) for the
equal-time correlation function. This allows a precise deter-
mination of its behavior which is not possible in the Ising
model. It is true that the voter model does not fall into the
Ising universality class and, therefore, it cannot be used as a
simplified description of magnetic materials. More than that,
detailed balance is violated in this model. However, broadly
speaking, it exhibits ferromagnetic behavior and undergoes
ordering kinetics characterized by the formation and coars-
ening of domains, similarly to what is observed in other more
physically based magnetic models.

In previous papers [4–6], some of us investigated the
ordering kinetics of an initially (at time t = 0) disordered
long-range voter model in spatial dimension D = 1, 2. In this
study, we expand on that analysis by exploring the evolution
of the three-dimensional case. The problem is addressed an-
alytically and the results are benchmarked against numerical
solutions.

Our investigation reveals both similarities and notable dif-
ferences when compared to lower dimensions. A concise
summary of our findings is provided below. For any value of
α, the model converges towards a metastable stationary state,
with a lifetime that diverges in the thermodynamic limit. This
is somewhat different to what is found in D = 1, 2 [4,5] where
such metastable states are present only for sufficiently small
values of α (α � 2 in D = 1 and α � 4 in D = 2). Such states
are only partially ordered, in the sense that consensus, i.e., full
spin alignment, is not present (or, magnetization is zero). The
equal-time correlation function C(r) = 〈SiS j〉 exhibits in this
condition a slow algebraic decay with the i − j distance r,
and the correlation length is infinite. The power-law exponent
takes different forms depending on the range of α. Specifi-
cally, for α > 5 it is C(r) ∼ r−1, as in the NN model, while
one has C(r) ∼ r−(6−α) for 3 < α � 5, and C(r) ∼ r−α for
α � 3.

Such stationary states are approached through a coarsening
stage characterized by dynamical scaling and a correlation
length increasing as L(t ) ∝ t

1
z , with the growth exponent

given by 1
z = 1

2 , for α > 5, 1
z = 5

2α
, for 4 < α � 5, and 1

z =
5
8 , for 3 < α � 4. For smaller values of α, i.e., α < 3, metasta-
bility is attained in a time of order one, and hence there is
not a proper coarsening phenomenon. The lifetime of the
metastable state is of order N for any value of α. After that
time, the system quickly attains the fully ordered absorbing
state.

Therefore, this paper not only provides one of the rare
examples of analytical solutions for systems with long-range
interactions far from equilibrium, but it also completes a series
of papers aimed at characterizing the features of this model.
This study, along with its predecessors, helps to elucidate

general characteristics that are likely valid in all dimensions
and will be discussed throughout the paper.

The structure of the paper is outlined as follows: In Sec. II,
we introduce the voter model with long-range interactions
and derive the evolution equation for the equal-time correla-
tion function, which serves as the fundamental observable for
studying most dynamical properties. In the following Sec. III
we discuss the expected effects of using different lattices and
a possible generalization, dubbed pseudolattice, which is par-
ticularly suited to solve numerically the model equations in an
efficient way. Subsequently, Secs. IV, V, and VI focus on the
cases with α > 5, 3 < α � 5, and 0 � α � 3, respectively.
Each section provides an in-depth analysis of the model’s
behavior within the respective parameter range. The two short
Secs. VII and VIII are devoted to exploring the size depen-
dence of L(t ) in the coarsening stage, and of the consensus
time T (N ), i.e., the time needed to reach the fully ordered ab-
sorbing state. Last, in Sec. IX, we recap our findings, compare
them with what is observed in lower dimensionalities, present
some discussions and draw our conclusions.

II. THE MODEL

The voter model is described by a set of N binary variables
located on the nodes i of a graph, which can assume the
values Si = ±1. In the following we will consider the case of
a three-dimensional regular lattice. In the long-range version
of the model previously analyzed in Refs. [4–6] in D = 1, 2,
the spins interact with a probability P(�) = 1

Z �−α , where �

is the distance between two of them, and Z a normalization.
Distances on a lattice are not, in general, integer numbers:
In the case of a simple cubic lattice in D = 3, for instance,
they are � = 1,

√
2,

√
3, 2, . . .. In the following we will need

to perform summations over all possible distances and, in
view of that, we introduce an integer summation index, p,
indicating the proximity of two spins at a given distance �.
Namely p = 1 means NN spins (corresponding on the simple
cubic lattice to � = 1), p = 2 amounts to next-NN (� = √

2
on the aforementioned lattice), and so on. Then

Z =
∑

p

np �−α
p , (1)

where np is the number of lattice sites at proximity p and
�p the distance between two p-neighboring sites. Notice that
this notation allows us to remain generic with respect to the
choice of a particular lattice. In Eq. (1) p runs from 1 to the
maximum proximity number in the considered system. This
will be always implicitly understood in any p-summation. np,
which is constrained to be a multiple of 2D, is an irregularly
increasing function of p, located around an average trend
given by the continuum approximation np = �D−1lD−1

p , �D

being the surface of a unit D-dimensional sphere. Summing up
the expression (1), replacing the sum with an integral for large
N and assuming the lattice to fill a sphere of radius L ∝ N

1
D ,

one has

Z 	 2π
D
2

�
[

D
2

] 1 − LD−α

α − D
, (2)
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FIG. 1. The three points i, j, k, are represented in a reference
system with origin in i and y axis on the direction i − j. The polar
coordinates are also indicated.

for α 
= D, and Z 	 2π
D
2

�[ D
2 ]

(logL − 1), for α = D. �[x] in

the equation above is the Euler Gamma function. Notice that
Z depends on the number N of spins for α � D also in the
thermodynamic limit.

The probability to flip a spin Si is [4–6]

w(Si ) = 1

2N

∑
p

P(�p)
∑

|k−i|=�p

(1 − SiSk ), (3)

where k are the np sites p neighbors of i and |k − i| means
the distance between sites k and i. In this work we will focus
on the equal-time correlation functions C(r, t ) = 〈Si(t )S j (t )〉,
where r = |i − j|. Proceeding as in Refs. [4–6], the evolution

equation for this quantity reads

Ċ(r, t ) = −2C(r, t ) + 2
∑

p

P(�p)
np∑

k=1

C([[dk (r, �p)]], t ), (4)

where the dot indicates the time derivative, as usual. The
distance dk is defined as follows: let i, j, and k be three points
on the lattice. In Fig. 1 these are represented on a reference
system with origin in i and y axis directed along the direction
i − j. Of course, there are a certain number np of points k at
distance � from i, and this is the reason of the sum over k
in Eq. (4). With this disposition, dk is the distance between k
and j. The double square-brackets in Eq. (4) mean that we are
employing periodic boundary conditions

[[n]] =
{

n, if n ∈ D
M(n), if n /∈ D,

(5)

where D is the set of all possible distances on 1/8 of the
lattice and M(n) is the shorter distance computed moving
through the boundary. In a system with long-range interac-
tions like the one we are considering now (for sufficiently
small α), observable quantities become size dependent also
in the thermodynamic limit. An example is given by the N
dependence of the dynamical correlation length L(t ) [defined
below in Eq. (8)], reported in Eq. (60). This is at variance
with the case of short-range systems. Boundary conditions,
therefore, are relevant and must be precisely specified. Those,
like open ones, disturbing space translational invariance are
not suited for analytical approaches. This is the reason for
the choice made here of periodic boundary conditions which,
besides these considerations, are also widely used in numeri-
cal studies.

The distances dk can be expressed easily using spherical
coordinates. Recalling that the distance d (r, r′) between two
points located at r = (r, θ, φ) and r′ = (r′, θ ′, φ′) is

d (r, r′) =
√

r2 + r′2 − 2rr′(sin θ sin θ ′ cos(φ − φ′) + cos θ cos θ ′), (6)

we get (see Fig. 1)

dk (r, �p) = d ( j, k) =
√

r2 + �2
p − 2r�p sin θ sin φ. (7)

In the following we will study the ordering kinetics of the
model after an initial preparation in a fully disordered state,
i.e., with P(Si ) = 1

2δSi,1 + 1
2δSi,−1, ∀i, namely C(r, t = 0) =

δr,0, where δ is the Kronecker function.
A dynamical correlation length can be extracted from C as

L(t ) =
∑

p np rp C(rp, t )∑
p npC(rp, t )

. (8)

We will see that L(t ) may depend on N even asymptotically in
some cases (for sufficiently small α, see Sec. VII); however,
we omit such dependence for simplicity. As it can be seen by a
preliminary observation of the data in Fig. 2, which have been
obtained by solving numerically Eq. (4) on a simple cubic lat-
tice and using Eq. (8) to extract L(t ) from C(r, t ), this quantity
grows in time while the system orders, reflecting the presence
of larger and larger correlated regions with a certain degree

of alignment among the spins. Finally, for large times, L(t )
saturates to a final value ∝ N (�30 in figure) corresponding to
a fully ordered state C(r, t → ∞) = 1. Taking the thermody-
namic limit this saturation limit is pushed further and further
and the ordering kinetics lasts for longer and longer times (as
we will see, this is correct for α � 3 only). This figure will be
discussed further in the following sections. However, one can
already appreciate that L(t ) increases with different velocities
as α is varied.

We remark that, depending on the way it is defined, the
average size of domains LD(t ) can be very different from L(t ).
A possible and frequently used definition of LD is LD(t ) ∝
ρ(t )−1, where

ρ(t ) = 1
2 [1 − C(r = 1, t )] (9)

is the average interfacial density, i.e., the fraction of an-
tialigned spins. As we will show below, while L(t ) always
grows unbounded in time (in the thermodynamic limit), ρ(t )
attains a finite number in any case, due to the ubiquitous
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FIG. 2. L(t ) is plotted against time on double-logarithmic axes,
for different values of α, see legend. System size is N = 673. The
straight dashed lines are the analytic predictions. The dotted curve
is the result obtained on the PL. In the inset, schematic plot of the
behavior of the growth exponent 1/z (L(t ) ∝ t1/z) as a function of α.

presence of non–fully ordered stationary states. Then LD does
not grow at large times.

For the remainder of this article, we will delve into the
model introduced thus far, specifically focusing on the three-
dimensional case (but we will also conjecture extrapolations
to generic D).

Let us emphasize that the results presented are indeed
expected for t � 1, as will be explained in more detail be-
low. Consequently, our analytical calculations will always be
conducted under this condition. The long-time condition is a
common assumption in studies of this kind [33]. Additionally,
while it is possible to derive an exact solution that is valid for
short time intervals, such a solution would be considerably
more complex and less insightful. Approximations were used,
in some cases, solely to verify the consistency of the analytical
solutions, such as illustrating the behavior of certain inte-
grals. However, these approximations are only for validation
purposes and do not affect the accuracy of our solutions. In
any case, all the approximations made are confirmed through
numerical integration.

III. LATTICE EFFECTS

The model is fully specified by choosing the form of the
lattice. Many dynamical properties, however, are expected to
be universal and, hence, independent of such choice. Indeed,
in the following sections, most of the analytical calculation
will be made by working on a continuum space, instead of
restricting on a specific lattice. This approximation essentially
yields exact results for large systems over long timescales. In
fact, any corrections would involve powers of a/L(t ), where
a is the lattice spacing. Since L(t ) increases with time, as
will be determined in the different α regimes, the contin-
uum approximation should become increasingly accurate for
t � 1. This being said, the definition of the lattice is unavoid-
able for an exact solution, in particular if it is obtained by
the numerical integration of Eq. (4) [52]. Looking at Fig. 1
one understands that, in order to do that, one has to determine
the distance dk (r, �p) between two lattice points k, j, for any

possible choice of j at distance �p from i, i.e., for any value
of the angles θ, φ (provided these angles correspond to lattice
points). We did this procedure on a simple cubic lattice and
results on this structure will be presented shortly. However
this is numerically very time and/or memory consuming, thus
severely limiting the values N that can be used. This in some
cases hinders the possibility to avoid important finite-size
effects.

In order to overcome this difficulty and reach larger values
of N , enforcing the universality of the dynamical properties
mentioned above, we devised an integration scheme of Eq. (4)
on an hybrid structure, that we will denote as a pseudolattice
(PL), which incorporates some continuum properties on an
underlying lattice. Referring again to Fig. 1, it is defined
as follows. First, we discretize distances in a reasonable yet
arbitrary manner. Specifically, we chose the simplest approach
where distances take on integer values, similar to a one-
dimensional lattice, so that r, � ∈ N. Second, the angles θ

and φ are assigned nθ and nφ discrete values, respectively,
with the constraint nθ nφ = ��2, where � is a constant. This
ensures the three-dimensional nature of the lattice, meaning
the number of points in a shell of radius � is proportional to
�2, with only minor fluctuations due to geometry. In a contin-
uous space, these fluctuations are absent and � = 4π , but in
general, the value of � depends on the type of lattice used.
On the pseudolattice, � can be treated as a free parameter to
optimize performance. We determined � = π/2 and used
this value. Additionally, since θ ∈ [0, 2π ] and φ ∈ [0, π ], we
made the natural choice nθ = 2nφ to ensure the same dis-
cretization step for both angles.

After defining the allowed values for r, �, θ, φ, we calcu-
late the distance dk (r, �) using Eq. (7). Since this distance
is generally not an integer, it cannot directly serve as the
argument of C in the last term on the right-hand side of
Eq. (4). Therefore, we replace C([[dk (r, �p)]], t ) with a value
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,t)
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FIG. 3. C(r, t ), computed on the PL for α = 6, is plotted against
r on a double logarithmic scale, for different times (see legend). The
curves for the last two times are perfectly superimposed. System size
is N = 1003. The green-dashed line is the analytical expression (10)
in the stationary state. The turquoise long-dashed line is the large-
r behavior (39) during the coarsening stage whereby stationarity is
approached.
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obtained through interpolation. The simplest approach is to
perform a linear interpolation between the values of C(r, t ) at
r = Int([[dk (r, �p)]]) and r = Int([[dk (r, �p)]]) + 1, where Int
represents the integer part of a number. Since the variations
in C occur on a scale proportional to the growing length L(t ),
this straightforward interpolation improves in accuracy over
time (although, as we will discuss, in some cases, we observe
excellent results even at very short times).

As said, the solution of Eq. (4) on the PL is expected
to become equal to the one on any arbitrary 3d lattice for
sufficiently large times. Indeed, lattice effects should become
negligible because the length governing the physics is L(t ),
which has grown much larger than the lattice spacing. We
have checked that this is true by comparing the outcomes of
the numerical solution of Eq. (4) on the simple cubic lattice
and on the PL. An example can be seen in Fig. 2 where,
only for α = 10 we report the behavior of L(t ) computed
on the true lattice (continuous black curve) and on the PL
(dotted black curve). The two curves are close to each other
and tend to coincide for sufficiently long times. However, it
must be made precise what sufficiently large times means. For
large values of α, say α > 5, the evolution of C(r, t ) on the
cubic lattice and on the PL are practically indistinguishable
starting from very short times of order t 	 1. However, on
decreasing α, differences appear up to times which become
progressively larger. For this reason, for a precise quantitative
determination of the growth law L(t ) we preferred to resort
to a determination on the cubic lattice (Fig. 2), while all the
other figures are obtained on the PL, which has the advantage
of making larger system sizes accessible. Indeed, it must
be emphasized that, in order to solve Eq. (4) on a regu-
lar lattice one has to handle the matrix dk (r, �p) which is
a huge object. For instance, for the case with N = 67 con-
sidered in Fig. 2 there are 2040 possible distances r (and
�p) on the square lattice, and np = 672. Then dk (r, �p) is a
2040 × 2040 × 672 matrix.

Let us also remark that the PL is surely accurate for the
study of the stationary states, since these are approached at
the largest times. Another advantage of the PL is the fact that
np is a smooth function of distance, whereas it is a rather
irregular function on real lattices. This determines the fact that
C(r, t ) has some irregular fluctuations when plotted against r
if computed on a lattice, while it is a smooth function, much
easier to be interpreted, on the PL. This can be appreciated,
for instance, in Fig. 3.

In the following we study the behavior of the model, an-
alyzing distinct regimes for the parameter α separately. We
emphasize that in the following the pseudolattice is used only
to determine the stationary states because this is a practical ap-
proach to achieve larger system sizes, which would otherwise
be unattainable with our available resources. The numerical
analysis is primarily intended to validate the analytical results,
as it will be seen in the following.

IV. CASE α > 5

A. Stationary state

It is known that in the NN case the system tends to a
stationary state, where the two-point correlation function has

the form [33],

Cstat (r) = a

r
for r > a, (10)

with a � 1. We now show that actually this is the case even
in the present model, for any α > 5.

Before deriving this result analytically, we can visually
confirm that it is correct by looking at Fig. 3, where the
evolution of C(r, t ) computed numerically by solving Eq. (4)
on the PL is plotted for α = 6. It is clearly seen that the form
(10) (green dashed line) is approached at small r already at
early times (of order t 	 20) and then propagates to larger
and larger values of r as time increases. Notice that the curves
for the last two times are completely superimposed, indicating
full stationarization. A slight deviation from the pure algebraic
law (10) is observed at large r, which is an effect of the finite
size (increasing N it would be pushed to larger and larger
r). Since the system size is finite, the stationary state has a
finite life and C eventually starts increasing again. However
this occurs on much larger times.

Now we proceed analytically. For sufficiently large values
of α we can expand the sum on the right-hand side of Eq. (4) in
a McLaurin series around dk ≈ r, � ≈ π/2, � ≈ π/2, where
the capital Greek letters indicate the spherical coordinates
in a system centered in j, so that a point k has coordinates
(dk,�,�). After doing that, we will retain only the lowest-
order terms. Such approximation is justified because, for
sufficiently large α (this will be better specified to be α > 5
by the self-consistency of the computation), P(�) decays so
fast that only the smallest values of �p contribute appreciably
to the sum on the right-hand side of Eq. (4). In other words,
only interactions among neighbors really count in such case.
Since small �p amounts to dk 	 r, the truncated McLaurin
expansion is actually sufficient to get the exact result. In such
case, Eq. (7) gives

dk (r, �p) ≈ r − �p sin θ sin φ. (11)

The zero-order contribution from the expansion cancels the
first term on the right-hand side of Eq. (4). Further, taking into
account that

� ≈ π/2 − (�p/r) cos θ, � ≈ π/2 − (�p/r) sin θ cos φ,

(12)
the first-order term cancels because

∫
d� sin θ sin φ =

∫
d� cos θ =

∫
d� sin θ cos φ = 0,

(13)
with d� ≡ dθ dφ sin θ being the elementary solid angle.
Then we need to compute the second-order term of the expan-
sion. In order to do this, we remind that the Hessian matrix
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in spherical coordinates reads

H =

⎡
⎢⎢⎣

∂2 f
∂r2

1
r

∂2 f
∂r∂�

− 1
r2

∂ f
∂�

1
r sin �

∂2 f
∂�∂r − 1

r2 sin �

∂ f
∂�

1
r

∂2 f
∂r∂�

− 1
r2

∂ f
∂�

1
r2

∂2 f
∂�2 + 1

r
∂ f
∂r

1
r2 sin �

∂2 f
∂�∂�

− cos �

r2 sin2 �

∂ f
∂�

1
r sin �

∂2 f
∂�∂r − 1

r2 sin �

∂ f
∂�

1
r2 sin �

∂2 f
∂�∂�

− cos �

r2 sin2 �

∂ f
∂�

1
r2 sin2 �

∂2 f
∂�2 + 1

r
∂ f
∂r + cot �

r2
∂ f
∂�

⎤
⎥⎥⎦, (14)

where we already set d = r. Thus one finds that, up to second order in the McLaurin expansion, Eq. (4) reads

Ċ(r, t ) =
∫

d� d��2 P(�)

[
�2 sin2 θ sin2 φ

∂2C(r)

∂r2
+ r2

(
� − π

2

)2 + r2
(
� − π

2

)2

r

∂C(r)

∂r

]
. (15)

Using Eq. (12) and the trivial identities∫
d� sin2 θ sin2 φ =

∫
d� sin2 θ cos2 φ =

∫
d� cos2 θ

= 4π

3
, (16)

one easily shows that Eq. (4) has the form of a diffusion
equation

Ċ(r, t ) = J�C(r, t ). (17)

Here � ≡ TrH = ∂2

∂r2 + 2
r

∂
∂r is the Laplace operator, while

J ≡ 4π
3

∫
d� �4P(�), which only converges for α > 5. This

establishes the limit of validity of the current calculation based
on the McLaurin expansion. For smaller values of α the cal-
culation must be carried over differently, as it will be detailed
in Secs. V and VI. Computing J explicitly one has

J = α − 3

3(α − 5)
. (18)

This quantity decreases with increasing α and tends to 1/3 =
1/D when α → ∞, i.e., in the NN limit. Indeed this is the
correct value computed for the NN model in Ref. [33].

If one looks at stationary solutions (Ċ = 0), then Eq. (17)
amounts to the Laplace equation

�C(r) = 0. (19)

This has to be solved with the boundary condition C(0) = 1.
However, following what is done in the continuous approxi-
mation in the NN case [33], one can insert a small distance
a as regularization and impose C(r = a) = 1. Therefore, the
problem coincides with that of finding the electrostatic po-
tential generated by a sphere of radius a, whose boundary is
maintained at a unit potential. We thus recover the result (10).

We can also explicitly verify that the above solution (i.e.,
Eq. (10)) is consistent by substituting it in Eq. (4). One has

Cstat (r) =
∑

p

P(�p)
np∑

k=1

Cstat ([[dk (r, �p)]]). (20)

Moving to the continuum approximation one has

Cstat (r) 	
∫ L

1
d�

∫
d��2 P(�)Cstat[[d (r, �, θ, φ)]]. (21)

where L was defined before Eq. (2) and we wrote dk (r, �p) =
d (r, �, θ, φ) to make all the dependencies explicit. As before,
the integrals are dominated by the region θ 	 φ	π/2, ��r,

namely dk ≈ r. Using this approximation and the stationary
form (10) on the right-hand side of Eq. (21) one has

Z Cstat (r) = 4πar−1
∫ L

1
d� �2−α 	 4πa

r (α − 3)
, (22)

the last equality holding for L � 1. Recalling that, from
Eq. (2),

Z 	 4π

α − 3
, (23)

Eq. (22) is fully consistent.
The stationary correlation length can be computed using

the definition (8). One finds that this diverges in the thermo-
dynamical limit as

Lstat = 2
3 L ∝ 2

3 N
1
3 . (24)

B. Approaching the stationary state

In order to study the kinetics for α > 5, for distances r
smaller of a certain r∗, which will be later determined, we
have to solve the diffusion equation (17) with the initial condi-
tions C(r, 0) = δ(r) and the boundary condition C(a, t ) = 1.
The basic solution (heat kernel) of Eq. (17) is

C0(r, t ) = e− r2

4J t

(4πJ t )
3
2

. (25)

This satisfies the initial condition, while the boundary condi-
tion is only fulfilled at t = 0. Following the same procedure
that was adopted in the NN case [28], one can then write the
complete solution in the form

C(r, t ) = C0(r, t ) +
∫ t

0
dτ G(t − τ )C0(r, τ ), (26)

where the second piece on the right-hand side can be tuned
as to have the boundary condition respected at each time. One
can now perform the Laplace transform of both members of
Eq. (26) and impose the boundary condition at r = a:

s−1 = C0(r = a, s) + G(s)C0(r = a, s). (27)

It easy to compute that

C(r, s) = e− r
√

s√
J

4πJ r
. (28)

Because we are interested in the large-t case, we consider s �
1. The Green’s function is thus constant in the large-t limit

G ≈ 4πJ a. (29)
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Then we can explicitly compute C(r, t )

C(r, t ) ≈ a

r
erfc

(
r

2
√
J t

)
, (30)

where erfc is the complementary error function and we
dropped C0 because it is negligible for t � 1. Note that

lim
t→∞C(r, t ) = a

r
, (31)

thus recovering the stationary state form (10). By means of the
definition (8), we can compute the correlation length

L(t ) ≈ 8

3

√
J
π

t
1
2 . (32)

Such behavior is well observed in Fig. 2. Here the curves for
α = 5, 6, 7, 10, after a microscopic time of order t 	 2, grow
algebraically with an exponent very well consistent with 1/2.
Notice that curves for larger values of α are lower, as expected
due to the form of J [see Eq. (18) and discussion below]
entering the prefactor of Eq. (32).

A comment regarding the effects of finite-size effects is
now in order. As discussed in Sec. II, these produce the
flattening of the curves at the plateau value L(t → ∞) �
30. However, for intermediate values of α, immediately be-
fore such flattening, the same finite size effects produce a
faster growth. This can be appreciated particularly for α =
4.75, 5, 6 in Fig. 2. This explains why for α = 5 the curve
starts growing faster at times of order t � 30, shadowing
somehow the t1/2 growth law (in addition, it must be also
recalled that α = 5, being a critical value below which there
is a change of behavior (see Sec. V), is expected to display
logarithmic corrections).

Let us notice that the expression 30 cannot be put in a stan-
dard scaling form of low-temperature coarsening phenomena
[53]

C(r, t ) = f

(
r

L(t )

)
. (33)

Instead, defining the scaling variable x ≡ r/L(t ), Eq. (30) can
be cast as

C(r, t ) ≈ L(t )−1 f

(
r

L(t )

)
, (34)

with f (x) = ax−1 erfc( 4
3
√

π
x), which resembles the scaling

form found in critical coarsening [53] (i.e., after quenching
to the critical temperature) where one finds

C(r, t ) ≈ L(t )−2(D−D f ) f

(
r

L(t )

)
, (35)

where D f = D − β/ν [54] is the fractal dimension of the
critical correlated clusters (β and ν are the usual critical
exponents). Therefore, the form (34) implies that correlated
regions are growing fractal, with a fractal dimension D f =
5/2.

The solution obtained thus far, based on a Maclaurin ex-
pansion for small �, is only valid for sufficiently small values
of r. Indeed, as one can verify looking at Eq. (30), for small r,
C varies much less than P which, in turn, decays sufficiently
fast as to make relevant only the contributions produced at
small �. However this no longer true for larger distances (we

will determine soon how large). In this case, the sum on the
right-hand side of Eq. (4) is dominated by the contributions
at k ≈ j, i.e., for dk ≈ 0, namely � ≈ r and θ ≈ φ ≈ π/2.
Notice that, according to Eq. (30), the stationary expression
(10) is approached initially for small r, extending then to
larger and larger values of r as time goes by. This can clearly
be seen in Fig. 3. Therefore, in the region dk ≈ 0 where the
sum on the right-hand side of Eq. (4) takes most contributions,
we can approximate C with its stationary form (10). The first
term on the right-hand side of Eq. (4) can be proven to be
subdominant and can be discarded, so, going again in the
continuum, and using C(r, t ) ≈ a/r in the integral, one has

Ċ(r, t ) ≈ 2 P(r)
∫

d� d��2 a

d (r, �, θ, φ)
. (36)

The approximation is correct up to d � L(t ), because for
larger distances C departs from the stationary form, see Fig. 3,
and decays faster [see Eq. (39) below] and gives a negligible
contribution to the integral. Since in the above approximation
d (r, �, θ, φ) ≈ r|π − 2φ| ≈ �|π − 2φ|, we can integrate up
to � ≈ L(t ). Evaluating the integral and retaining the domi-
nant term for large L(t ) one has

Ċ(r, t ) ∝ P(r)L2(t ). (37)

Integrating the differential equation yields

C(r, t ) ∝ P(r) t2. (38)

In such case the correlation function takes a scaling form

C(r, t ) ∝
(

r

�(t )

)−α

, (39)

with

�(t ) ∝ t2/α. (40)

Notice that for large r, C turns from the fast decay of Eq. (30)
to a slower algebraic decrease, as it can be clearly seen in
Fig. 3. The typical length also changes from L(t ) ∝ t1/2 to the
slower one �(t ) ∝ t2/α . A similar behavior was also observed
in D = 1, 2 [4,5].

The value of x which separates the two regimes can be
determined requiring the matching of the two forms (30)
and (39). In order to do this, we remark that for t � 1 we
can use the expression (30). We can then use the asymptotic
expression of the complementary error function [55]

erfc(z) ≈ e−z2

√
π z

, (41)

valid for large z. We thus find

x∗(t ) ∝
√

(α − 5) ln t . (42)

As time increases, the critical value x∗ does the same, pushing
this behavior to larger and larger distances, i.e., smaller and
smaller correlations. Also this can be spotted in Fig. 3. It
is worth noting that as the parameter α approaches α = 5+,
the critical value x∗ tends to zero, indicating that the argu-
ment leading to Eq. (30) becomes invalid for α � 5. This
result is analogous to the ones obtained for D = 1 and D = 2
[4,5], where, however, a factor α − 3 or α − 4, respectively,
was found under the square root in Eq. (42). Then, defining
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FIG. 4. C(r, t ), computed on the PL for α = 4, is plotted against
r on a double logarithmic scale for different times (see legend). The
curves for the last two times are perfectly superimposed. System size
is N = 1003. The green-dashed line is the analytical expression (44)
in the stationary state. The turquoise long-dashed line is the large-
r behavior (49) during the coarsening stage. In the inset the same
curves (limited to times t � 20) are plotted against r/L(t ).

αSR = D + 2 as the value of α above which a behavior anal-
ogous to the NN case is found, we argue that the following
expression:

x∗(t ) ∝
√

(α − αSR) ln t . (43)

could apply to any dimension D.

V. CASE 3 < α � 5

A. Stationary state

In such case we will show that the stationary expression for
the correlation function is

Cstat (r) ∝ r−(6−α), for r > 1. (44)

Postponing the analytical argument, we can verify that this
is correct by looking at Fig. 4, showing the evolution of C(r, t )
computed numerically by solving Eq. (4) on the PL for α = 4.
As in the case α > 5, the stationary form (44) (green dashed
line) is approached at small r at early times (of order t 	 5)
and then extends to larger distances.

In order to verify Eq. (44) analytically, one should consider
Eq. (20) [or Eq. (21)]. Since for r � 1 Eq. (44) holds, while
Cstat (0) ≡ 1, we can use the interpolating form

Cstat (r) 	 (1 + κr)−(6−α), (45)

where k is a constant, in the sum on the right-hand side of
Eq. (4). Plugging into Eq. (21) we get

Z Cstat (r) 	
∫ L

1
d�

∫
d��2−α[1 + κ d (r, �, θ, φ)]−(6−α),

(46)

where we used Eq. (7). The integrand is still dominated by the
small � region so d (r, �, θ, φ) ≈ r. Then, for r � 1 one finds

Z Cstat (r) = (κr)−(6−α)
∫

d�

∫
d� �2−α ≈ 4π r−(6−α)

α − 3
,

(47)

where the last passage holds for N � 1. Recalling Eq. (23),
this proves the consistency of the ansatz (44).

Using the definition (8), the correlation length in the sta-
tionary state diverges, for large-N , as

Lstat = α − 3

α − 2
L ∝ α − 3

α − 2
N

1
3 . (48)

Expression (47) indicates that the present solution can only be
valid for α > 3. Indeed a different behavior will be found for
α � 3 in Sec. VI.

B. Approaching the stationary state

We argue again that C(r, t ) initially approaches the station-
ary form (10) for small values of r, and subsequently this
behavior extends to encompass larger and larger distances.
This can be observed in Fig. 4. Notice that, repeating the
argument developed around Eq. (35), this behavior implies
that correlated regions grow with a fractal dimension D f =
α/2. Additionally, we will demonstrate, by verifying the con-
sistency at the conclusion of the current calculation, that a
scaling form (33) for C is obeyed at large r, with

f (x) ∝ x−α, for x � 1, (49)

where L(t ) has to be computed. This can be observed in the
inset of Fig. 4, where it is seen that curves for C(r, t ) at dif-
ferent times tend to collapse when plotted against x = r/L(t )
[where L(t ) has been obtained through Eq. (8)]. Plugging the
scaling assumption (33) into Eq. (4) we arrive at

L̇(t )

L(t )
x f ′(x) = S(x), (50)

with

S(x) = 2

⎡
⎣ f (x) −

∑
p

P(�p)
np∑

k=1

f

(
[[dk (r, �p)]]

L(t )

)⎤
⎦. (51)

Once again we have to evaluate the sum appearing in
Eq. (51). We work for large r. For small � � r we can set
f ([[dk]]/L(t )) 	 f (x) in the sum on the right-hand side of
Eq. (51). The contribution originated in this way cancels with
the first term on the right-hand side. What remains is due
to the pronounced peak of the correlation at dk 	 r. This
contribution can be estimated as the volume of an iper-solid
whose maximal height is P(r) and with a “base” (actually a
volume in 3D) of size V which we are not currently able to
determine. Putting everything together one has S ∝ r−αV . We
can argue the following. First, V must be independent of r;
otherwise, we would not have consistency with respect to x
once plugged S into Eq. (50). Regarding the L dependence,
we expect it to be algebraic as V ∝ L(t )3β , where β has to be
determined. Then S ∝ r−αL3β . After inserting this value into
Eq. (50) the x dependence cancels and, solving the resulting
equation for L, we arrive at L(t ) ∝ t

1
α−3β . Now, working for
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α > 4 (the reason will be explained below) we make the
simplest hypothesis that β is a linear function of α, namely
β = aα + b, where a and b have to be determined. Asking
for the growth exponent of L(t ) to match continuously with
the value 1/2 at α = 5 we get a = (1 − b)/5. In order to
determine the value of b we resort to numerical simulations.
Inspection of Fig. 2 shows that the value b = 0, namely

L(t ) ∝ t
5

2α , (52)

is very well consistent with the numerical data for all the
values of α in the range considered in the figure (i.e., α =
4, 4.25, 4.5, 4.75, 5). Let us notice that the choice b = 0 is
somehow natural, since it means that β → 1 as α → 5−,
meaning that the usual relation V ∝ L3 is recovered when the
short-range behavior (i.e., α → 5−) is approached.

On the basis of what we know in D = 1 and D = 2, we
expect the growth law (52) to break down at D = 4. Indeed,
it is a common feature in D = 1, 2 that the growth exponent
increases on decreasing α but only down to a certain value
of αsat of α given by αsat = D + 1. For smaller values of α

(but still for α > D, because there is not a real coarsening
stage for α < D, see Sec. VI) the growth exponent remains
saturated to the value reached at αsat. Our numerical data sug-
gest that something similar occurs also in the present D = 3
case. Indeed, an exponent larger than 5/8, namely the one
predicted by Eq. (52) for α = 4, is never observed. In addition,
the exponent 5/8 is consistent with the behavior of the curves
in the coarsening stage. Defining the growth exponent 1/z as
L(t ) ∝ t1/z (in the coarsening stage), this fact promotes its
saturation to a maximum value(

1

z

)
max

= 4D − 2

7D − 5
(53)

to a general feature which is presumably true in any dimen-
sion.

The behavior of the growth exponent 1/z is displayed
schematically in the inset of Fig. 2. This plot summarizes the
behaviors found in D = 1, 2, 3 and is presumably true for any
D. The exponent attains its NN value 1/2 for α � D + 2, it
grows linearly up to its maximum value (53) as α decreases
between D + 2 and D + 1 and remains fixed at this value
down to α = D. For α < D there is no coarsening stage (see
next section).

VI. CASE 0 � α � 3

We will show below that the following stationary solution:

Cstat (r) ∝ r−α, for r > 1 (54)

holds in the small α regime, i.e., for α � 3.
This can be appreciated in Fig. 5, where the evolution of

C(r, t ), computed numerically by solving Eq. (4) on the PL
for α = 5/2, is shown. In this case, the form of C is the
one of Eq. (54) at any time; there is only a time-dependent
vertical shift stopping at stationarity. Notice that, for such
small values of α, strong lattice effects are present also in
the PL, making C rather wiggly (see inset). For this reason in
the main part of the figure we plot a smoothed version of the
data obtained by performing a running average over a window
containing five points. This makes data easier to be visually

101 102
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C
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,t)

r-5/2

t=10-2

t=2x10-2
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t=5x10-1
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101 102r
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FIG. 5. C(r, t ), computed on the PL for α = 5/2, is plotted
against r on a double logarithmic scale, for different times (see
legend). In the main panel curves have been smoothed, for better
representation, performing a moving average over 5 points. The
original curve (for the largest time only) is shown in the inset. The
curves for the last two times are perfectly superimposed. System size
is N = 10003. The green-dashed line is the analytical expression (54)
in the stationary state.

interpreted without changing significantly the main features,
besides lowering the bouncing. Notice also that the use of the
PL allows us to reach sizes as large as 10003.

To assess analytically the validity of Eq. (54) we proceed
similarly to what was done in Sec. V, using the interpolating
form

Cstat (r) 	 (1 + κr)−α. (55)

Putting such expression in the integral in Eq. (21), one has

Z Cstat (r) 	
∫ L

1
d�

∫
d��2−α[1 + κ d (r, �, θ, φ)]−α,

where we used Eq. (7). The integrand has a peak around
θ = φ = π/2, � = r. The integral is dominated by that region,
where we can take d (r, �, θ, φ) ≈ r|π − 2φ|. Then, we find

Z Cstat (r) ∝ L3−α r−α

3 − α
, (56)

which is consistent with the ansatz (21) [recall that Z 	
4π L3−α

(3−α) , see Eq. (2)].
Let us emphasize that the approximations used to evaluate

the integrals in deriving Eq. (56) [as well as Eq. (47)] and
the ones adopted above to evaluate the sum (51) are intended
only as estimations to verify the consistency of the solutions.
However, the solutions themselves are expected to be exact
for t � 1.

Comparing the D = 1 [4], D = 2 [5] and the present D = 3
case, we can try to guess some properties of the stationary
states without consensus for general space dimension D. We
have already mentioned that a value αSR exists such that, for
α > αSR = D + 2, the behavior of the model is akin to the
NN case (as we have seen, this is true both in the aging states
and at stationarity). Going back to partially ordered station-
ary states, they exist for any value of α (including α → ∞,
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i.e., NN interactions) only for D � 3. Then, for D � 3 and
α > αSR stationary states are described by Cstat (r) ∝ r2−D

[33] [see Eq. (44) for the D = 3 case studied here], as in
the NN case. For α � αSR stationarity without consensus
starts to be observed also for D < 3. More precisely, they
appear for α � 4 in D = 2 and for α � 2 in D = 1. The form
of Cstat in this case varies depending on αLR < α � αSR or
0 � α � αLR, where αLR = D is the characteristic value of
α below which P(r) is nonsummable. For αLR < α � αSR,
the form Cstat ∝ r−(2D−α) is found in D = 1, 2, 3 [4,5] [see
Eq. (44) for D = 3], so we argue it might be valid for generic
D. Finally, for α � αLR one has Cstat (r) ∝ r−α in D = 1, 2, 3
[4,5] [see Eq. (54) for the present D = 3 case], which we
also guess to be correct for generic D. Notice that the various
forms of Cstat written above and the values of αSR, αLR make
Cstat a decreasing nonsummable function in any case. Because
the decay exponent Cstat (r) ∼ r−γ is related to the fractal
dimension of the structure in Ref. [54] D f = D − γ

2 we find
that D f = D

2 + 1, or D f = α
2 , or D f = D − α

2 in the three
cases considered above, namely α > αSR (only for D � 3),
αLR < α � αSR, and 0 � α � αLR, respectively.

Returning to the case D = 3, using the definition (8),
the correlation length in the stationary state diverges, for
large-N , as

Lstat = α − 3

α − 4
L ∝ α − 3

α − 4
N

1
3 . (57)

Notice that for α = 3 we have a logarithmic correction Lstat =
L/ lnL ∝ N1/3/ ln N .

As in the previous sections, in this case, there exists a
macroscopic correlation length at stationarity, indicating that
some initial coarsening must characterize the kinetics, as also
depicted in Fig. 2. However, the time interval over which L(t )
increases does not scale with N , thus preventing this phe-
nomenon from being observable on a macroscopic scale. This
is due to the fact that, as discussed in the following section,
L(t ) exhibits a dependence on N (for fixed t) when α < 3.
As shown in Eq. (60), indeed, L(t ) is of the order of N1/3 at
fixed t , implying that L(t ) approaches Lstat in a time of order
one, hence microscopic. For this reason, we do not attempt
to determine the growth law for α < 3. Nevertheless, it is
reasonable to expect that the growth exponent remains equal
to its maximum value (1/z)max = 5/8 obtained at α = 4+,
even for α � 4, as suggested by Fig. 2. The limited duration
of the power-law behavior, however, prevents us from drawing
precise conclusions.

VII. SIZE DEPENDENCE OF THE COARSENING
DOMAINS

We have seen in the previous sections that a scaling form
C(r, t ) = f (x) = (ax)−α applies for any value of α, at least at
large distances r, in the coarsening stage. Using the definition
(8), employing the continuum approximation, one has

∫ L
L

1
L

dx x3 f (x)∫ L
2L

1
L

dx2 x f (x)
= 1. (58)

In the thermodynamic limit what really matters is the form of
the integrands for large x. Then one finds that, for α 
= 4 and
α 
= 3

L(t ) = (α − 3)
(
Lα − L4

)
(α − 4)(Lα − L3)

. (59)

In the limiting case α = 4, one has L ∝ lnL, while for α = 3,
one gets L ∝ √

L/ lnL. Summarizing

L(t ) ∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α−3
α−4 L0 ∝ N0, for α > 4,

lnL ∝ ln N, for α = 4,

α−3
4−α

L4−α ∝ N
4−α

3 , for 3 < α < 4,

L/ lnL ∝ N
1
3 / ln N, for α = 3,

α−3
α−4 L ∝ N

1
3 , for α < 3.

(60)
Comparing the cases D = 1 [4], D = 2 [5] with the present

D = 3 case, one can argue that in general

L(t ) ∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α−D
α−D−1 L0 for α > D + 1,

lnL for α = D + 1,
α−D

D+1−α
LD+1−α for D < α < D + 1,

L/ lnL for α = D,
α−D

α−D−1 L for α < D.

(61)

VIII. CONSENSUS TIME

We now briefly discuss the time needed by a finite system
to reach the fully ordered absorbing state—the consensus time
T (N ). This time is composed by the sum of the time Tcoars

needed to reach the stationary state by means of the coarsen-
ing dynamics, and the time to escape it Tesc, T = Tcoars + Tesc.
The latter time is Tesc ∝ N both with short-range interactions
[56], i.e., for α = ∞, and in mean field [57], i.e., for α = 0.
Then we argue Tesc ∝ N,∀α. Regarding Tcoars, we can assume
that coarsening ends when L(t ) 	 Lstat. Recalling the coars-
ening laws (32), (52), the N dependence (60), and the forms
(24), (48), and (57) for Lstat, we get

Tcoars(N ) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N
2
3 , for α > 5,

N
2α
15 for 4 < α � 5,

N
8(α−3)

15 , for 3 < α < 4,

N0, for α < 3,

(62)

with logarithmic corrections at the boundary values of α. Then
Tcoars is negligible with respect to Tesc, for any α, and one has

T (N ) ∝ N, ∀α. (63)

This is expected also for any D � 3.

IX. CONCLUSIONS

In this paper, we conducted an analytical study of the
ordering kinetics of the D = 3 voter model with long-range
interactions, where agents at a distance r agree with a prob-
ability distribution P(r) ∝ r−α . The evolution approaches a
nontrivial stationary state with a slow algebraically decaying
correlation and a fractal geometry for any value of α. Such
state is escaped in a time of order N , whereafter the absorbing
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state with full spin alignment is reached. Stationarity, there-
fore, becomes stable in the thermodynamic limit. Both the
form of the stationary state and the kinetics leading to it are
contingent on the value of α. For α > 5 both the stationary
state and the coarsening dynamics preceding it mirror the
behavior observed in the nearest-neighbor case with the only
difference of a different scaling behavior at large distances,
for x > x∗ [see discussion starting below Eq. (35)], slowly
disappearing as time elapses.

Instead, for 3 < α � 5, the stationary state and the kinetic
properties differ markedly from the NN case and become α

dependent. In particular, the presence of a a nontrivial maxi-
mum growth exponent 1

z = 5/8 is found for α � 4.
Finally, for α � 3, where P(r) is nonintegrable, the station-

ary state is approached in a microscopic time, as in mean field
(α = 0).

This paper is the last of a series [4,5] where the behavior
of the model has been studied in the three physically relevant
dimensions D = 1, 2, 3. With some differences, notably the
presence of stationary states in different ranges of α, many
properties are found to be reproduced similarly for all the
considered values of D. This allowed us to do simple extrapo-
lation conjecture for generic D.

The voter model is interesting under many respects. First,
on the theoretical side, it is perhaps the only model with
a nontrivial ordering kinetics whose solution can be written
in closed form [e.g., Eq. (4) in the case considered in this
paper] and can therefore be studied in a fully analytical and,
in principle, exact way. Second, it is a prototypical model
underlying many quantitative approaches in many diverse

field of knowledge [20,21,32,34–51], ranging from biology,
to social sciences and others. Indeed, models frequently used
in these contexts can be often considered as variants of the
voter one or, at least, regarded as being informed by it. Third,
it can be regarded as a proxy to more complicated physical
systems as, for instance, magnetic materials as described, for
instance, by the Ising or related models. Although the voter
model belongs to a different universality class, some of the
features enlightened in this and the previous papers [4,5] have
a clear counterpart in ferromagnetic models. Let us mention
here, for instance, the presence of the critical values αSR and
αLR separating different regimes where the system falls into
the short-range universality class (α > αSR) or where a fully
α-dependent dynamics is observed (αLR < α � αSR), or when
some mean-field features appear (α � αLR). Similar features
are observed in ferromagnetic models [10–19]. On the ba-
sis of these considerations, we hope our results contribute
to elucidate the ordering kinetics of magnetic systems with
long-range interactions, besides adding a piece of knowledge
on the voter model itself.

Another perspective for future research would be, for in-
stance, the study of percolation properties of the model, as
it has already been done in the Ising and the voter model
with NN interactions [58,59] and in the Ising model with
long-range interactions [14].
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