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Multitemperature atomic ensemble: Nonequilibrium evolution after ultrafast electronic excitation
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Ultrafast laser radiation or beams of fast charged particles primarily excite the electronic system of a solid
driving the target transiently out of thermal equilibrium. Apart from the nonequilibrium between the electrons
and atoms, each subsystem may be far from equilibrium. From first principles, we derive the definition of various
atomic temperatures applicable to electronically excited ensembles. It is shown that the definition of the kinetic
temperature of atoms in the momentum subspace is unaffected by the excitation of the electronic system. When
the electronic temperature differs from the atomic one, an expression for the configurational atomic temperature
is proposed, applicable to the electronic-temperature-dependent interatomic potentials (such as ab initio molec-
ular dynamics simulations). We study how the configurational temperature behaves during nonthermal phase
transition, triggered by the evolution of the interatomic potential due to the electronic excitation. It is revealed
that upon the ultrafast irradiation, the atomic system of a solid exists temporarily in a multitemperature state:
separate equilibria in the momentum and configurational subspaces. Complete equilibration between the various
atomic temperatures takes place at longer timescales, forming the energy equipartition. Based on these results,
we propose a formulation of multitemperature heat transport equations.
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I. INTRODUCTION

Systems under intensive energy flows often exhibit highly
nonequilibrium and unusual processes. In particular, they oc-
cur during irradiation of matter with ultrafast laser pulses
or beams of swift charged particles. In such scenarios, the
energy is absorbed by target electrons, leading to the tran-
siently strongly out-of-equilibrium material state, in which the
electronic system is highly excited whereas the atoms initially
are still in the cold state [1–4].

After the energy deposition, electrons redistribute their
energy, thermalizing to an equilibrium distribution with a
temperature high above the atomic one [1,3,5]. The atoms
then respond to both a change in the interatomic potential
due to the electronic excitation (because electrons participate
in the formation of the interatomic potential in matter), and
the energy transfer due to scattering of the hot electrons [6].
The atomic ensemble, responding to the effects caused by
the electronic excitation, may also depart from its equilibrium
state. For example, various collective atomic modes (phonon
oscillations) may not be in equilibrium among themselves
during and after irradiation [7,8]. Subsequent coevolution of
the highly nonequilibrium atomic and electronic ensembles
leads to material equilibration at longer timescales.

The standard simulation methods of the irradiation prob-
lem include molecular dynamics (MD), often combined
with the two-temperature model to account for the effect
of the electronic excitation followed by energy transport
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and exchange between electrons and atoms [1,5]. Inter-
atomic potentials for such simulations include pair potentials,
many-body potentials, or ab initio based simulations such
as tight-binding or density-functional-theory MD [9–12]. To
model ultrafast laser or ion beam irradiation problems, inter-
atomic potentials that depend on the electronic temperature
have been actively developed in the past decade [13–17].

In MD simulations, whether with classical or ab initio
based potentials, there is still an open problem of how to
assess the degree of disequilibrium of an atomic ensemble
[18]. Generally speaking, the equilibrium state assumes the
maximization of the coarse-grained entropy in the system of
simulated ensembles of particles [19,20]. However, in prac-
tice, it is hard to access such a quantity in MD simulations
taking into account the contribution of the distribution of
atoms by the potential energy (although approximate methods
exist [21,22]).

To evaluate the equilibration in atomistic simulations,
several methods were developed relying on the concept of
nonequilibrium temperatures, such as Rugh’s temperature or
configurational temperature [18,23–26]. The approach intro-
duces a few partial temperatures related to different dynamical
and configuration modes of the ensemble being investigated
and compares their values during the ensemble evolution. It
is assumed that the equilibrium is achieved when these tem-
peratures start to coincide forming the unique thermodynamic
temperature.

So far, this method has not been extensively developed for
practical use in simulations and has not found its deserved
widespread application. A part of the reason for this is that
it is difficult in practice to calculate the configurational or
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Rugh’s temperatures for realistic MD potentials. Only pair
potentials have been tested thus far [18]. Another reason is
that there was no systematic study and demonstration of the
importance of various temperature definitions in physically
relevant nonequilibrium scenarios, such as the modeling of
ultrafast laser irradiation of materials. The influence of elec-
trons on the equilibration in the atomic ensemble has also not
been studied before.

We demonstrate that the standard definitions of the
configurational temperature are only applicable in static (in-
dependent of the electronic state) interatomic potentials used
in standard MD simulations. The presented generalization of
the definition of the various atomic configurational tempera-
tures includes the dependence on the electronic temperature.
Applying this definition, we simulate the ultrafast laser ir-
radiation of materials, demonstrating different equilibration
processes taking place at different timescales. We discuss
the transient multitemperature state forming in the nonequi-
librium electronic-atomic system, which paves the way to a
plausible formulation of nonequilibrium thermodynamics of
the relaxation process.

II. THEORY

A. Preliminary considerations of the generalized temperature

Following a few pioneering works, it was realized that a
temperature may be defined in a very general way via an
arbitrary vector field in the phase space { �R, �P} [18,24,26].
Illustrating this idea, let us consider a single-particle phase
space and Gibbs distribution. From the definition of an ensem-
ble average, the following holds for an arbitrary vector field
B( �R, �P) with very general constraints (|〈B( �R, �P)〉| < ∞ and
0 < |〈∇B( �R, �P)〉| < ∞; for a detailed and rigorous deriva-
tion, see Ref. [26]):∫

�

∇
[

B( �R, �P)exp

(
−H

T

)]
d �Rd �P

= 0 =
∫

�

[∇ · B( �R, �P)]exp

(
−H

T

)
d �Rd �P

+
∫

�

B( �R, �P) ·
[
∇exp

(
−H

T

)]
d �Rd �P

= 〈∇ · B( �R, �P)〉

− 1

T
〈B( �R, �P) · ∇H〉 = 0, (1)

where H is the Hamiltonian of the ensemble of particles, T is
the temperature—the parameter of the corresponding Gibbs
distribution (here and further, the Boltzmann constant is set
kB = 1; i.e., all the temperatures are in energy units); the
integration is carried over the entire phase space �; the nabla
operator is for differentiation over phase variables; and the
angle brackets denote an ensemble average.

Equation (1) can be used to define the generalized tem-
perature in a one-component system corresponding to the
field B( �R, �P) and an arbitrary (nonequilibrium) distribution as
follows:

T = 〈B( �R, �P) · ∇H〉
〈∇ · B( �R, �P)〉 . (2)

Applying different B( �R, �P) in the definition (2), one finds
various generalized temperatures in the arbitrary, nonequi-
librium ensemble [18]. In the thermodynamic equilibrium
(Gibbs distribution), all the temperatures defined for any field
B( �R, �P) reduce to the unique thermodynamic temperature.

Generally speaking, there are three classes of single-
particle vector fields B( �R, �P): those over only the momentum
space B( �P), those over only the configurational (coordinate)
space B( �R), and those depending on both phase variables
(such as Rugh’s temperature, for instance [18,23]). The real-
space and the momentum-space fields are very convenient
for simulations and applications, because they allow for a
straightforward interpretation as particle distributions in the
momentum and configurational subspaces, correspondingly.
Below, we will consider these classes in more detail.

However, the definition in Eq. (2) is only applicable to
a one-component system, such as an atomic ensemble inter-
acting through a classical potential dependent only on the
parameters of the atoms in the ensemble. When electrons
are considered, the definition of the generalized temperatures
must be modified.

B. Generalized temperature in a two-temperature state

If we consider an ultrafast irradiation scenario, the irra-
diated matter may transiently be in a two-temperature state:
the electronic temperature is different from the atomic one
[1,2]. In this case, the definition of the generalized atomic
temperature may be derived following the same recipe as in
Eq. (1), but taking into account that the distribution function
of the entire system (ensemble of strongly interacting ions and
electrons) is transiently factorized into atomic and electronic
equilibrium terms forming a two-temperature state:

f = A f eq
i f eq

e

= A exp

(
−Ki + Ui + 1

2Vei

Ti

)
exp

(
−Ke + Ue + 1

2Vei

Te

)
.

(3)

Here, the total energy (Hamiltonian) of the system is de-
composed into the ionic and electronic contributions:

Htot = Ki + Ke + Ui + Ue + Vei, (4)

with Ki,e being the kinetic energy of ions or electrons indi-
cated by the index; Ui,e is the potential energy of interaction
within the ionic or the electronic subsystem; Vei is the potential
energy of interaction between two subsystems—the ionic and
electronic ensembles—correspondingly split in half between
them (as suggested in Ref. [27] and discussed below); Ti,e are
the temperatures in the ionic and electronic ensembles; and
f eq
e,i are their partial equilibrium distribution functions (with A

being the normalization constant).
Since we are seeking to define the atomic temperatures,

we consider an arbitrary vector field B( �R, �P) dependent on
the ionic coordinates and momenta only, not the electronic
system parameters. Applying to it the nabla operator with the
distribution function from (3), analogously to Eqs. (1) and
(2), we obtain the following equality linking the generalized
electronic and ionic temperatures for arbitrary distribution
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functions of the ionic and electronic ensembles fi and fe:∫
�

B ( �R, �P) ·
[

∇(
Ki + Ui + 1

2Vei
)

Ti
+ ∇(

Ke + Ue + 1
2Vei

)
Te

]

× fi fed �Rd �Pd�rd �p = 〈∇ · B( �R, �P)〉, (5)

where the capital letters �R and �P are used to denote the
ionic coordinates and momenta, and small �r and �p are for the
electronic ones.

Now we may choose to use the nabla operator in the mo-
mentum or the configurational space of the atomic ensemble.
For the atomic momentum space, ∇ �P, expression (5) reduces
to

〈B( �R, �P) · ∇ �PKi〉
Ti

= 〈∇ �P · B( �R, �P)〉, (6)

assuming that all the interaction potentials are independent
of the momenta (e.g., no magnetic force considered). Thus
the generalized atomic temperatures in the momentum space
may be defined in the two-temperature state via the standard
expression:

Ti = 〈B( �R, �P) · ∇ �PHtot〉
〈∇ �P · B( �R, �P)〉 . (7)

For the atomic temperatures in the configurational space,
the situation is different because the electron-ion interaction
depends on both the atomic (ionic) and electronic parameters:〈

B( �R, �P) · ∇ �R
[
Ui + 1

2Vei
]〉

Ti
+

〈
B( �R, �P) · ∇ �R

[
1
2Vei

]〉
Te

= 〈∇ �R · B( �R, �P)〉. (8)

As is typical for ab initio MD simulations, or electronic-
temperature-dependent interatomic potentials, the electronic
temperature is an external quantity for the atomic potential,
and may be considered as a known parameter [28]. It thus
follows from Eq. (8) that the configurational-space atomic
temperatures in a two-temperature system may be expressed
as follows:

Ti =
〈
B( �R, �P) · ∇ �R

[
Ui + 1

2Vei
]〉

〈∇ �R · B( �R, �P)〉 − 1
2Te

〈B( �R, �P) · ∇ �RVei〉
. (9)

This expression can be used in two-temperature simula-
tions to evaluate atomic configurational-space temperatures.

As a consistency check, we may set Te ≡ Ti which then
reduces Eq. (8) to〈

B( �R, �P) · ∇ �R
[
Ui + 1

2Vei + 1
2Vei

]〉
Ti

= 〈∇ �R · B( �R, �P)〉, (10)

and the ionic temperature restores the one-component limit:

T (1)
i = 〈B( �R, �P) · ∇ �RHtot〉

〈∇ �R · B( �R, �P)〉 . (11)

Let us emphasize that, strictly speaking, the condition
Te ≡ Ti is not equivalent to the electron-ion equilibrium in
a realistic simulation, because even if average values of the
temperatures are equal, they still may fluctuate in different
ways. Thus the definition (9) must be used even in equilibrium
two-temperature simulations instead of (11). Equation (11) is

only valid if the electronic temperature is identically equal to
the ionic one at each simulation time step.

We may also note that Eq. (9) has a divergency at Te → 0.
In this case, one must consider in Eq. (8) that the electronic
distribution function, entering the averaging brackets, is a
Heaviside step function in the energy space at Te → 0. Thus
the spatial derivative can be expressed as

∇ �R fe = δ(Ee − E f )
dEe

d �R = δ(Ee − E f )∇ �RVei(E f ),

where E f is the Fermi energy of the electrons and Ee is
single-electron energy. Albeit the quantity ∇ �RVei(E f ) may
be nontrivial to obtain, it allows us to formally get rid of
the divergence in the definition of the atomic configurational
temperature in the limit of cold electrons (Te → 0):

Ti =
〈
B( �R, �P) · ∇ �R

[
Ui + 1

2Vei
]〉

〈∇ �R · B( �R, �P)〉 − 〈B( �R, �P) · ∇ �RVei(E f )δ(E − E f )〉 .
(12)

In this work, we are interested in an electronic system
highly excited by irradiation and will not encounter situations
in which this limiting case would be needed.

C. Atomic temperatures in the momentum space

Temperatures, defined for the vector fields in the momen-
tum space only, are the most familiar ones. For example,
setting B( �P) = �P, the nabla operator in Eq. (7) is the one
over the momentum space, and we obtain the definition of the
temperature via the average kinetic energy of particles in the
ensemble (assuming no center-of-mass motion) [26]:

Tkin = 2
3 〈Ekin〉. (13)

Such a definition of temperature is referred to as the kinetic
temperature [18]. The same equation may also be used to
define projections of the kinetic temperature on various axes,
e.g., Cartesian coordinates: Tkin,β = 〈mv2

β〉, with m being the
mass of a particle, and vβ are the projections of its velocity on
β = X , Y, or Z.

One may also use, e.g., the field B( �P) = P2 �P, in which
case the definition (7) produces

T = 2

5

〈
E2

kin

〉
〈Ekin〉 .

Using Eq. (13), it may conveniently be rewritten as follows:

Tfluc =
√

2/3
√〈

E2
kin

〉 − 〈Ekin〉2 =
√

2/3δEkin. (14)

The fluctuation in the kinetic energies is defined as δEkin =√
〈E2

kin〉 − 〈Ekin〉2. Thus this definition (14) will be referred to
as the fluctuational temperature.

Note that the same definitions may be obtained via the
direct evaluation of the first and second moments of the kinetic
energies with the Maxwellian distribution [29]. However,
Eq. (7) allows one to use an arbitrary vector field, therefore
being a more general and powerful method than the method
of moments.

The kinetic and fluctuational temperatures are equal to
the thermodynamic temperature if the distribution in the
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momentum space is an equilibrium one, that is, for the
Maxwell-Boltzmann distribution. Out of equilibrium, the two
do not coincide and thus may be used as a criterion to assess
thermalization in the momentum subspace in simulations that
have access to kinetic energies of individual particles (such
as molecular dynamics [9]) or the distribution in the momen-
tum or kinetic-energy space (such as the Boltzmann equation
[1,30]).

D. Atomic temperatures in configurational space

One may define various temperatures solely in the one-
particle configurational space of the atomic ensemble. A
standard vector field used for the definition of the temper-
ature entirely in the configurational space is B( �R) = ∇ �RHtot

[18,24,26]. Equation (9) produces the following atomic con-
figurational temperature in the two-temperature state:

Tconfig =
〈∇ �RHtot · ∇ �R

[
Ui + 1

2Vei
]〉

〈∇2
�RHtot

〉 − 1
2Te

〈∇ �RHtot · ∇ �RVei〉

= −
〈 �F · [ �Fi + 1

2
�Fie

]〉
〈∇ �R · �F 〉 + 1

2Te
〈 �F · �Fie〉

, (15)

where �Fi is the ion-ion contribution to the force acting on an
ion (atom), �Fie is the electronic contribution to the force, and
�F = �Fi + �Fie is the total force acting on the atom.

In the case of Te ≡ Ti, Eq. (15) reduces to the standard def-
inition of the configurational temperature of a one-component
system [18,26]:

T (1)
config = 〈(∇ �RH )2〉〈∇2

�RH
〉 . (16)

A second definition of the atomic configurational tem-
perature is needed if we want to trace thermalization in the
configurational subspace. Analogously to the fluctuational
temperature in the momentum space, we may introduce the
field B( �R) = F 2 �F . This field does not produce an expression
connected to fluctuations, but nonetheless, Eq. (10) gives a
different definition of the temperature in the atomic configu-
rational space:

Thyperconf = −
〈
(F 2 �F ) · [ �Fi + 1

2
�Fie

]〉
〈∇ �R · (F 2 �F )〉 + 1

2Te
〈(F 2 �F ) · �Fie〉

, (17)

where

〈∇ �R · (F 2 �F )〉

= (
3F 2

x + F 2
y + F 2

z

)∂Fx

∂x
+ (

F 2
x + 3F 2

y + F 2
z

)∂Fy

∂y

+ (
F 2

x + F 2
y + 3F 2

z

)∂Fz

∂z
.

A definition of the temperature based on the field |B( �R)| ∼
F s (for an arbitrary degree s) was referred to as hyperconfig-
urational temperature in Refs. [18,31]. Hyperconfigurational
temperature, Eq. (17), may be compared to the configurational
temperature from Eq. (15) to assess thermalization in the
configurational subspace.

Note that, despite a rather cumbersome expression,
Eq. (17) contains the same components as Eq. (15)—once

calculated in a simulation, the partial forces and the force
derivatives may be reused to easily construct the hypercon-
figurational temperature.

In the case of Te ≡ Ti, Eq. (17) reduces to the hypervirial-
like expression from [18]

T (1)
hyperconf = − 〈F 4〉

〈∇ �R · (F 2 �F )〉 .

As an aside, we may consider another vector field, B( �R) =
�R [26]. Then the temperature definition (9) produces the fol-
lowing expression for the two-component virial temperature:

Tvir = −
〈 �R · [ �Fi + 1

2
�Fie

]〉
3 + 1

2Te
〈 �R · �Fie〉

. (18)

Equation (18) for Te ≡ Ti reduces to the standard one-
component virial expression [26]:

T (1)
vir = − 1

3 〈 �R · �F 〉. (19)

As was pointed out in Ref. [26], such a definition (19) [as
well as the two-temperature definition (18)] is not periodic,
and cannot be used in practice in common molecular dynam-
ics simulations of solids or liquids with periodic boundary
conditions. However, in the case of Te ≡ Ti, this issue can
be circumvented noticing that Eq. (19) functionally coincides
with the definition of configurational pressure [32,33],

Pconf = 1

3V
〈 �R · �F 〉,

where V is the volume of the simulation box.
There are well-known methods of evaluation of the con-

figurational pressure in systems with periodic boundary
conditions which are often readily available, e.g., [34,35].
Thus the one-component virial temperature, recast in terms
of the configurational pressure, may use the same methods of
evaluation:

T (1)
vir = −PconfV. (20)

A comparison between the momentum-space and the
configurational-space atomic temperatures will enable us to
evaluate complete thermalization in the system [18]. For ex-
ample, note that the coincidence of the kinetic temperature
[Eq. (13)] with the virial temperature [Eq. (19)] is the equipar-
tition theorem valid only in thermal equilibrium [18,26].

III. SIMULATIONS

To study various thermalization processes in the nonequi-
librium atomic system initiated by the ultrafast excitation
of the electronic system of a solid by laser irradiation, we
employ the XTANT-3 simulation toolkit [36,37]. It is a hybrid
model consisting of the combined transport Monte Carlo (for
fast electrons) and Boltzmann collision integrals (for slow
electrons) to trace the nonequilibrium evolution of the elec-
tronic system and the tight-binding molecular dynamics to
follow atomic trajectories on the changing potential-energy
surface. All the details of the simulation tool may be found
in Ref. [37]; here we will only briefly recall the main points
of the hybrid approach relevant to the current study.
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The irradiation with an ultrafast laser pulse first drives the
electronic system out of equilibrium [1,38]. Electrons absorb
photons from the laser pulse, promoting them to higher-
energy states of a solid. In XTANT-3, electrons with energies
above a chosen cutoff are simulated with the transport Monte
Carlo (MC) method, tracing secondary electron cascades with
event-by-event simulation technique, together with decays of
core-shell holes (if any are excited by the photons or electron
impact ionization) [37,38]. The inelastic scattering of elec-
trons is traced with the linear response theory, applying the
Ritchie-Howie model for the scattering cross section [39,40].
The elastic scattering on target atoms is modeled with the
screened Rutherford scattering cross section with the modified
Molière screening parameter [40].

The evolution of the distribution function, fe(εi, t ), of the
electrons populating the valence and the conduction band
of the material below the MC cutoff is calculated with the
Boltzmann collision integral (BCI), including the electron-
ion energy exchange (Ie−i), and electron-electron scattering
resulting in the local thermalization in the electronic system
(Ie−e) [28,37]:

d fe(εi, t )

dt
= Ie−e + Ie−i + IMC,

Ie−e = − fe(εi, t ) − feq(εi, μ, Te, t )

τe−e
. (21)

Here the distribution function describes fractional elec-
tronic populations on the energy levels εi = 〈i|HT B|i〉, which
are the eigenfunctions of the Hamiltonian at the current MD
time step; IMC is the source term describing the change of the
distribution function due to photoabsorption, Auger decays
involving valence or conduction bands, high-energy electrons
scattering, and influx calculated with the MC module; τe−e

is the characteristic electron-electron relaxation time defin-
ing the electron-electron thermalization; feq(εi, μ, Te, t ) is the
equivalent equilibrium Fermi-Dirac distribution with the same
total number of (low-energy) electrons and energy content as
in the transient nonequilibrium distribution [28]. The electron-
ion coupling matrix element entering Ie−i is evaluated from the
tight-binding Hamiltonian [41]. The effects of the electronic
nonequilibrium were studied elsewhere [28]; here the main in-
terest of the work is in the equilibration in the atomic system.
Thus we assume an instantaneous thermalization (τe−e → 0)
which results in electrons adhering to the Fermi-Dirac distri-
bution at all times, but with a temperature different from the
atomic ones, defined by the energy transiently stored in the
electronic system.

The atomic system is followed with the help of the
molecular dynamics (MD) simulation in a box with periodic
boundary conditions. Martyna and Tuckerman’s fourth-order
algorithm is used to propagate atomic trajectories [42]. Forces
acting on atoms are evaluated with the help of the transferrable
tight-binding (TB) method [43–45]. For modeling of carbon-
based materials, the TB parametrization from Ref. [43] is
used; for silicon, the one from Ref. [44]. We use the MD time
step of 0.1 fs.

The transferable tight-binding formalism provides the
core-core repulsive terms for the ionic contribution to the
force, �Fi = −∇ �RErep, and the band energy for the electron-ion

contribution to the force �Fie = −∑
fe〈i|∇ �RHT B|i〉 [46], to be

applied in Eqs. (15) and (17).
The TBMD method involves the calculation of the transient

electronic energy levels (band structure, eigenstates of the
transient electronic Hamiltonian) evolving in time, dependent
on the positions of all the atoms in the simulation box and the
transient electronic distribution function [45]. Thus exciting
the electronic system affects the interatomic potential and may
lead to phase transitions—even without significant atomic
heating, merely due to changes in the atomic interaction. This
effect is known as nonthermal melting [47,48].

Energy, transferred to atoms at each time step via electron
scattering on atoms (both elastic scattering in the MC fraction
or electrons, and electron-ion coupling in the BCI fraction),
is delivered to atoms using the velocity scaling method [41].
This effect is known as the nonadiabatic electron-ion coupling
or electron-phonon coupling [2].

In contrast to the standard two-temperature molecular dy-
namics (see, e.g., [5,49]), XTANT-3 relies on the tight-binding
formalism to calculate the collective atomic potential-energy
surface dependent on the transient state of the electronic
ensemble. It includes the evolution of the electronic energy
levels (density of states). The electron-ion (electron-phonon)
coupling is calculated on the fly depending on the state of
the electronic and atomic systems. The formalism is capable
of describing electronic nonequilibrium if required in a sim-
ulation of irradiation. The combined approach developed in
XTANT-3 allows us to trace all the essential effects of irradia-
tion on the matter, in reasonable agreement with experiments
(see, e.g., [38,50–52]). Most importantly for this work, it en-
ables tracing nonequilibrium processes in the system. Various
definitions of temperatures (listed in Sec. II) were imple-
mented in XTANT-3 to trace the behavior of the nonequilibrium
temperatures induced by the irradiation, including thermal and
nonthermal effects under various conditions.

A. Thermalization

We start with the test case of assessing the thermal-
ization of the atomic system in a simulation box without
additional external perturbances. For this illustration, we use
diamond with 216 atoms in the supercell. The simulation
box is set in the minimum of the potential energy via the
steepest descent method [9,37]. Then all the atoms are given
equal velocities v0 = √

2T/M, corresponding to the value
of room temperature (T = 300 K), with directions randomly
uniformly distributed in the solid angle.

Obviously, such a distribution of atomic velocities does not
correspond to the Maxwellian distribution in the momentum
space, and thus the initial nonequilibrium may be expected to
be observable in the simulation. Indeed, Fig. 1 shows that the
fluctuational temperature at the beginning of the simulation
is near zero, whereas the kinetic temperature is defined by
v0 (double the room temperature). However, very quickly the
kinetic and fluctuational temperature merge by the time of
∼30 fs; see inset in Fig. 1. It demonstrates that the equili-
bration in the momentum space occurs after just a few atomic
oscillations, within the characteristic time of optical phonon
vibrations.
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FIG. 1. Kinetic (solid line), fluctuational (dash-dotted), configu-
rational (dash-dot-dotted), and hyperconfigurational (dashed) atomic
temperatures in diamond, 216 atoms in the simulation box with
periodic boundary conditions, simulated with XTANT-3 (inset zooms
on the first 50 fs, emphasizing equilibration of the kinetic and fluctu-
ational temperatures).

In the configurational space, the configurational and hyper-
configurational atomic temperatures are very close from the
very beginning of the simulation, apart from different heights
of the peaks in Tconfig. By the time of ∼40–50 fs, the two
temperatures in the configurational space are nearly indis-
tinguishable. It indicates that, at least in the relatively small
simulation box considered here, the system is equilibrated in
the real space.

The momentum-space (both Tkin and Tfluc) and the
configurational-space (Tconfig and Thyperconf ) temperatures os-
cillate around the room temperature after ∼150 fs, indicating
the realization of the equipartition of energy and, thus,
complete thermalization in the system. By that time, the oscil-
lations in all temperatures become less regular, demonstrating
the loss of artificial coherence introduced by the initial con-
ditions. We emphasize that the equilibration in each subspace
of the phase space—the momentum and the configurational—
takes shorter times than the equilibration between the two.

The results validate the derivation of various atomic tem-
peratures in the two-temperature state based on the factorized
Gibbs distribution, Eq. (3). Such definitions are consistent,
and lead to complete thermalization in the atomic ensemble.

B. Laser irradiation

Let us now proceed to the simulation of the response of
diamond and silicon to laser irradiation. We start with the
simulation of nonthermal graphitization of diamond irradiated
with a 10 fs [full width at half maximum (FWHM)] laser
pulse with the deposited dose of 1.5 eV/atom. At such con-
ditions, diamond undergoes a phase transition to an overdense
graphitelike state (a mix of sp2 and sp3 carbon) within ∼100–
200 fs; see the atomic snapshots in the Appendix and details
in Refs. [53–55]. Let us enlarge a small section of diamond,
consisting of 64 atoms in a simulation box, which undergoes
a complete transition to graphite (in a larger simulation box,

FIG. 2. (Top panel) Kinetic (solid line), fluctuational (thin dash-
dotted), configurational (dash-dot-dotted), and hyperconfigurational
(thin dashed) atomic temperatures in diamond irradiated with the
10 fs FWHM laser pulse centered around 0 fs, absorbed dose of
1.5 eV/atom, simulated with XTANT-3. (Middle panel) Electronic and
kinetic atomic temperatures. (Bottom panel) Band gap in the same
simulation.

a few nucleation centers usually form, each of them creating
its own graphitelike structure [50,56], which will only obscure
the presentation of the results here). In the transition from the
cubic diamond structure to the highly anisotropic structure
of the parallel graphitic planes, the temperatures behave as
follows; see Fig. 2.

During the ultrafast phase transition, both of the
momentum-space temperatures—kinetic and fluctuational—
stay close, except for the short period between 20 and 50 fs,
when the phase transition occurs. As was studied in detail
before [53–55], the nonthermal graphitization of diamond is
triggered by the band gap collapse, which can be seen in
Fig. 2 (bottom panel). When the band gap collapses, indicat-
ing a coherent transition to a semimetallic graphitelike state
(see Appendix), the atomic system disequilibrates transiently.
Then the equilibrium in the momentum subspace takes place
by the time of ∼50 fs. After that, the two momentum-space
temperatures stay close, oscillating around the same value.

In contrast, configurational and hyperconfigurational tem-
peratures depart from the momentum-space ones. First, both
configurational-space temperatures drop down slightly during
the laser pulse (around 0 fs), while the momentum-space
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temperatures rise. This drop takes place due to modifica-
tion of the interatomic potential induced by the excitation
of electrons. The electrons define the interatomic potential;
thus changes in the electronic distribution function (excitation
by the laser pulse) directly affect the potential energy and
interatomic forces [38,53,57]. At the same time, there is a
slight divergence between the configurational and hypercon-
figurational temperatures, which quickly equilibrate again.

Except for this short period around ∼0 fs (during the
laser pulse excitation of the electronic system), the atomic
system is in equilibrium in the configurational subspace dur-
ing the entire simulation. However, the difference between
the momentum-space and configurational-space temperatures
persists from the laser pulse arrival up to the completion of
the nonthermal phase transition (by the time of ∼100–150 fs).
The equilibration between the electronic temperature and the
atomic (kinetic) one also takes place within the same time
window (middle panel in Fig. 2).

Note that the second drop in the configurational-space
temperatures takes place around the time of the onset of the
phase transition, ∼20 fs. Interestingly, the configurational-
space temperatures during and after the electronic excitation
with the laser pulse transiently turn negative (the minimum
around ∼40 fs). Despite the ongoing debate on the possibility
of negative absolute temperatures [58–60], we emphasize that
our system is out of equilibrium: atomic momentum-space
temperatures are positive, and only the configurational-space
temperatures are negative during the ongoing phase transition.
As can be seen in Sec. II, negative configurational-space tem-
peratures are allowed by definition, as they are connected with
the forces (or microscopic stresses) in the system.

The negative configuration-space temperatures appear due
to modifications of the interatomic potential because of the
excitation of the electronic system (note the extremely high
electronic temperatures reached during this time, Fig. 2). Ex-
cited electronic higher-energy states are typically antibonding
[61]. Thus the character of the atomic potential transiently
changes upon ultrafast electronic excitation: the potential-
energy minimum shifts to larger values, forming positive
microscopic pressures attempting to expand the material.
Changes in the force’s sign, from attractive to repulsive, pro-
duce negative configurational temperatures lasting only until
the atoms move to their new positions corresponding to the
new potential minimum.

Next, we simulate silicon irradiated with a 10 fs (FWHM)
laser pulse and the deposited dose of 1.2 eV/atom. This dose
is above the nonthermal melting leading to the high-density
liquid silicon (the threshold is ∼0.9 eV/atom [62]). Various
temperatures for silicon in this simulation are shown in Fig. 3.

In silicon, the nonthermal phase transition is not as fast
as in diamond, onsetting at the time of ∼150–200 fs (see
Appendix), and taking place up to some 500–700 fs [38,62].
During the entire simulation time, the momentum-space tem-
peratures stay close to each other. The two configurational-
space temperatures are also close to each other, but different
from the momentum ones.

Similarly to the diamond case above, the configurational-
space temperatures in silicon start to deviate from the
momentum-space ones during the laser pulse excitation of the
electrons (see the rise of the electronic temperature, middle

FIG. 3. (Top panel) Kinetic (solid line), fluctuational (thin dash-
dotted), configurational (dash-dot-dotted), and hyperconfigurational
(thin dashed) atomic temperatures in silicon irradiated with the
10 fs FWHM laser pulse centered around 0 fs, absorbed dose of
1.2 eV/atom, simulated with XTANT-3. (Middle panel) Electronic and
kinetic atomic temperatures. (Bottom panel) Band gap in the same
simulation.

panel in Fig. 3), but the deviation is barely noticeable until the
onset of the phase transition. The drop of the configurational-
space temperatures related to changes in the interatomic
potential is much smaller, which is consistent with the slower
phase transition in silicon than in diamond [38].

The onset of the atomic disorder can be seen by the col-
lapse of the band gap (bottom panel in Fig. 3, showing a
transition into a liquid metallic state; see [38,62] for details).
After that time of ∼200 fs, the configurational-space tempera-
tures remain below the momentum-space ones until the end of
the simulation. This indicates that the phase transition in Si is
a nonequilibrium process, indicated by nonmatching various
atomic temperatures.

We note again that during the entire simulation—including
the laser-irradiation stage, electron-ion nonequilibrium, and
the phase transition itself—the kinetic and the fluctuational
atomic temperatures stay close, with only minor deviations,
showing that the system remains equilibrated in the mo-
mentum subspace. The configurational-space temperatures
are also close to one another but are different from the
momentum-space ones. It shows that the complete thermal
equilibrium is not achieved until much later times after the
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phase transition, related to mechanical relaxation (relaxation
of pressure or stresses). That means that the transient bitem-
perature state forms in the atomic system of irradiated material
after ultrafast material excitation: partial equilibrium in the
momentum subspace, and partial equilibrium in the config-
urational subspace with its own temperature (apart from the
third, different electronic temperature).

IV. DISCUSSION

Our results suggest that in many cases (apart from a short-
lived initial state), the nonequilibrium atomic system of a
target under external perturbation, such as laser or swift heavy
ion irradiation, may be described with only two parameters:
for example, the kinetic temperature and the configurational
temperature, describing the separate Gibbs distributions in
the atomic momentum and configurational subspaces, respec-
tively. Such a multitemperature state is much simpler than
fully nonequilibrium distribution, and further development of
theory and simulations may use this fact to their advantage.

As an example, let us consider a multitemperature state in
which each term in the Hamiltonian (4) corresponds to its own
temperature. In this rather general case, the factorized Gibbs
distribution function can be written as

f (r, p) = Ae−Ke/T K
e e−Ue/T U

e e−Ki/T K
i e−Ui/T U

i e−Vei/Tei , (22)

where the upper indices mark the subspace the temperature
belongs to. K is for the momentum space (according to the
kinetic energy) and U is for the configurational space (related
to the potential energy); the lower indices mark the ensemble:
electrons (e) or ions (i); and a separate electron-ion interaction
term (ei) related to their interaction Vei and the corresponding
temperature Tei.

For simplicity, we are referring here to all the momentum-
space temperatures as the kinetic temperature; and all the
configurational-space temperatures are referred to as the
configurational temperature. The momentum-space partial
distributions are the Maxwell-Boltzmann distribution func-
tions but with their own temperatures, different from the
configurational-space partial distributions for each ensemble,
and possibly from the interaction temperature.

Using the standard technique of deriving the transport
equations for an arbitrary time-independent quantity, ϕ (see,
e.g., Refs. [33,63]), we multiply the Liouville equation with
each energy term separately, and integrate it over the local
phase space (allowing for global spatial gradients to trace
global energy flows):

∫
�

df

dt
ϕd� +

∫
�

ν∑
γ=1

Nγ∑
k=1

{
�vγ k

∂ f

∂�rγ k
ϕ − ∂Htot

∂�rγ k

∂ f

∂ �pγ k
ϕ

}
d�

= 0, (23)

where the index k indicates summation over various sorts of
particles γ in the ensemble of Nγ particles; ν stands for the
number of different sorts, integrated over the phase space �.
Here we assume no external forces, and no hydrodynamical
motion (no center-of-mass motion in each local volume).

In our case, we consider two different sorts of particles—
electrons and ions—resulting in the general equation:∫

�

df

dt
ϕd� +

∫
�

{[
�ve

∂ f

∂�re
ϕ − ∂Htot

∂�re

∂ f

∂ �pe
ϕ

]

+
[
�vi

∂ f

∂�ri
ϕ − ∂Htot

∂�ri

∂ f

∂ �pi
ϕ

]}
d� = 0. (24)

Now we use Eq. (24) to derive the equations of transport of
the five energies (temperatures) from Eq. (21).

For example, using the kinetic energy of electrons, ϕ = Ke,
the time derivative produces∫

�

df

dt
Ked� = ∂

∂t
〈Ke〉 −

〈
∂Ke

∂t

〉

=∂〈Ke〉
∂T K

e

∂T K
e

∂t
+ ∂〈Ke〉

∂T K
i

∂T K
i

∂t

+ ∂〈Ke〉
∂T U

e

∂T U
e

∂t
+ ∂〈Ke〉

∂T U
i

∂T U
i

∂t
+ ∂〈Ke〉

∂Tei

∂Tei

∂t

= ∂〈Ke〉
∂T K

e

∂T K
e

∂t
, (25)

where only one term is left, while all the other terms vanish
because the electronic kinetic energy does not depend on other
temperatures, as per definition (22).

The spatial derivative term, integrated by parts and apply-
ing the Leibniz integral rule, is∫

�

{
�ve

∂ f

∂�re
Ke + �vi

∂ f

∂�ri
Ke

}
d�

= ∂

∂�re
〈�veKe〉 −

〈
∂

∂�re
(�veKe)

〉

+ ∂

∂�ri
〈�viKe〉 −

〈
∂

∂�ri
(�viKe)

〉
= ∂

∂�re
�qK

e , (26)

where we defined the electron kinetic-energy current as �qK
e =

〈�veKe〉, and took into account that the electronic kinetic energy
is independent of the coordinates, the electronic energies and
ionic velocities are uncorrelated 〈�viKe〉 = 0, and the system
has no center-of-mass flow in our consideration here.

The momentum derivative term is∫
�

{
∂Htot

∂�re

∂ f

∂ �pe
Ke + ∂Htot

∂�ri

∂ f

∂ �pi
Ke

}
d�

= −
〈
∂Htot

∂�re

∂Ke

∂ �pe

〉
−

〈
∂Htot

∂�ri

∂Ke

∂ �pi

〉
= 〈 �Fee�ve〉 + 〈 �Fei�ve〉,

(27)

because the electronic kinetic energy is independent of the
ionic momenta ∂Ke

∂ �pi
= 0, global momentum divergence van-

ishes [64], and the ion-ion interaction is independent of the
electronic coordinate.

Analogously, we can evaluate the corresponding terms
for the other four energies from Eq. (22). Combining them
together, we obtain the system of equations for the five
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temperatures considered,

∂〈Ke〉
∂T K

e

∂T K
e

∂t
= − ∂

∂�re
�qK

e + 〈 �Fee�ve〉 + 〈 �Fei�ve〉

∂〈Ue〉
∂T U

e

∂T U
e

∂t
= − ∂

∂�re
�qU

e − 〈 �Fee�ve〉

∂〈Ki〉
∂T K

i

∂T K
i

∂t
= − ∂

∂�ri
�qK

i + 〈 �Fii�vi〉 − 〈 �Fei�vi〉 (28)

∂〈Ui〉
∂T U

i

∂T U
i

∂t
= − ∂

∂ri
�qU

i − 〈 �Fii�vi〉

∂〈Vei〉
∂Tei

∂Tei

∂t
= − ∂

∂�r �qU
ei − 〈 �Fei�ve〉 + 〈 �Fei�vi〉,

where the energy currents are defined for all terms: for the
kinetic energy of ions �qK

i = 〈�viKi〉, for the potential energy
of electrons �qU

e = 〈�veUe〉, the potential energy of ions �qU
i =

〈�viUi〉, and the potential energy of electron-ion interaction
with the total spatial derivative used: ∂

∂�r qU
ei = ∂

∂�re
〈�veVei〉 +

∂
∂�ri

〈�viVei〉. The force-velocity correlators define the couplings

between the various temperatures: 〈 �Fee�ve〉 is responsible for
equilibration between the kinetic and configuration tempera-

tures in the electronic system, 〈 �Fii�vi〉 equilibrates the kinetic
and configuration temperatures in the ionic system, 〈 �Fei�ve〉 is
responsible for energy exchange between the electrons and the
interaction term, and 〈 �Fei�vi〉 is the energy exchange between
the ions and the interaction term (taking into account that
�Fei = − �Fie).

Now let us consider how this system (28) is simplified
in the case of four temperatures: when the interaction is not
considered as a separate subsystem but only coupled electrons
and ions are included. In this case, the electron-ion interaction
term depends on the configurational electronic and ionic tem-
peratures:

∂〈Vei〉
∂Tei

∂Tei

∂t
= ∂〈Vei〉

∂T U
e

∂T U
e

∂t
+ ∂〈Vei〉

∂T U
i

∂T U
i

∂t

= − ∂

∂�r �qU
ei − 〈 �Fei�ve〉 + 〈 �Fei�vi〉. (29)

The last equation in the system (28) is thus excluded and
instead, Eq. (29) multiplied with the factor of 1/2 is added
to the equations for the electronic and ionic configurations
temperatures, resulting in

∂〈Ke〉
∂T K

e

∂T K
e

∂t
= −∇ �qK

e + 〈 �Fee�ve〉 + 〈 �Fei�ve〉

∂〈Ue + Vei/2〉
∂T U

e

∂T U
e

∂t
+ ∂〈Ue + Vei/2〉

∂T U
i

∂T U
i

∂t
= −∇

(
�qU

e + 1

2
�qU

ei

)
− 〈 �Fee�ve〉 − 1

2
〈 �Fei�ve〉 + 1

2
〈 �Fei�vi〉

∂〈Ki〉
∂T K

i

∂T K
i

∂t
= −∇ �qK

i + 〈 �Fii�vi〉 − 〈 �Fei�vi〉

∂〈Ui + Vei/2〉
∂T U

e

∂T U
e

∂t
+ ∂〈Ui + Vei/2〉

∂T U
i

∂T U
i

∂t
= −∇

(
�qU

i + 1

2
�qU

ei

)
− 〈 �Fii�vi〉 − 1

2
〈 �Fei�ve〉 + 1

2
〈 �Fei�vi〉. (30)

In this four-temperature model, the coupling is directly
between the electrons and ions, not via a separate equation
for the interaction terms.

As a consistency check, we now consider the two-
temperature case, which assumes that each ensemble is locally
thermalized: T K

e = T U
e = Te and T K

i = T U
i = Ti, each with

its own thermodynamic temperature. In this case, the system
(30) summed pairwise for electrons and ions reduces to the
following:

∂〈Ee〉
∂Te

∂Te

∂t
+ ∂〈Ee〉

∂Ti

∂Ti

∂t
= −∇ �qe +

〈
�Fei

�ve + �vi

2

〉
∂〈Ei〉
∂Te

∂Te

∂t
+ ∂〈Ei〉

∂Ti

∂Ti

∂t
= −∇ �qi −

〈
�Fei

�ve + �vi

2

〉
. (31)

with the total energies in each system marked as Ee,i =
Ke,i + Ue,i + Vei/2, and the total heat flows �qe,i = �qK

e,i + �qU
e,i +

1/2�qU
ei . Note that the coupling term, defined via equal splitting

of the electron-ion interaction potential between the subsys-
tems [cf. Eq. (3)], ensures that the energy loss by electrons is
equal to the energy gain by ions (and vice versa).

Equation (31) is analogous to the two-temperature model
for the case of strongly coupled electrons and ions derived in
Ref. [27], with the difference that here we assumed classical
particles for both systems and thus arrived at the classical
coupling term expressed as a velocity-force correlator Zei =
〈 �Fei(�ve + �vi )/2〉, whereas Ref. [27] considered a quantum
case.

This system of equations reduces to the well-known
weakly coupled limit of the two-temperature model (see, e.g.,
Refs. [1,65,66]) if ∂〈Ee〉

∂Ti
= ∂〈Ei〉

∂Te
= 0,

Ce
∂Te

∂t
= −∇ �qe + Zei

Ci
∂Ti

∂t
= −∇ �qi − Zei, (32)

where the electronic and ionic heat capacities are Ce = ∂〈Ee〉
∂Te

and Ci = ∂〈Ei〉
∂Ti

.
Note that Eq. (31) accounts for the dependences of the

ionic energy on the electronic temperature and vice versa, and
thus, in principle, is capable of modeling nonthermal effects
associated with the changes of interatomic potential due to
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FIG. 4. (a) Diamond irradiated with 1 eV/atom. (b) Silicon irradiation with 1.2 eV/atoms.

electronic excitation, while the weakly coupled limit, Eq. (32),
is not.

One may analogously derive all the multitemperature ther-
modynamic equations including pressures, external forces,
and hydrodynamic motion (following the methodology from
Refs. [33,63] and using the five- or four-temperature dis-
tribution). It should also be possible to derive the quantum
version of the equations following the recipe from Ref. [27]
[which should replace the classical correlators in Eq. (31) with
appropriate quantum terms]. Both tasks are, however, beyond
the scope of the present work and are left for future dedicated
research.

Last but not least, the question arises of how various atomic
temperatures may be observed experimentally. Each temper-
ature is associated with certain phase-space variables. As we
discussed, the kinetic temperature of atoms is associated with
the atomic momenta or velocities and thus may be measured
with the methods having access to atomic momenta, such
as, e.g., velocity-resolved pump-probe spectroscopy [67]. The
configurational temperature, on the other hand, is defined by
the potential energy of the atoms, and thus, we may assume,
it can be accessed via methods sensitive to the interatomic po-
tential and atomic distribution in real space, such as ultrafast
x-ray or electron diffraction [68].

V. CONCLUSIONS

Matter driven far out of equilibrium, for example via ul-
trafast laser irradiation, demonstrates unusual kinetics and
properties. We studied here various atomic temperatures de-
fined in the momentum and the configurational subspaces
of the phase space in a “two-temperature state”—with an
excited electronic system. Two definitions in each subspace
were presented: kinetic and fluctuational temperatures in the
momentum space of atoms, and configurational and hyper-
configurational temperatures in the real space. A coincidence
within each pair of them indicates partial equilibration in the
corresponding subspace; a coincidence between the different

subspaces indicates complete thermalization of the atomic
system.

We showed that the thermalization of the atomic system
in the momentum space (establishment of the kinetic tem-
perature) takes place extremely fast, within a few atomic
oscillations (typically, a few tens of femtoseconds). Its lo-
cal thermalization in the configurational space also occurs
quickly but toward its own configurational temperature dif-
ferent from the kinetic one (both different from the third,
electronic temperature in an irradiated system). The complete
thermalization between the kinetic- and the configurational-
space atomic temperatures requires longer times.

We discussed that this multitemperature thermodynamic
state of atoms allows us to write the factorized form of
the atomic distribution function and a corresponding set
of the energy balance equations, describing the atomic
system not with a single parameter—the thermodynamic
temperature—but with two: kinetic and configurational tem-
peratures (while electrons are described with their own one
or two temperatures). Allowing for the construction of a
nonequilibrium thermodynamic description, this special case
of nonequilibrium is significantly simpler than a completely
nonequilibrium kinetic theory.

The code XTANT-3 used to produce the data is available
from [36].
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APPENDIX

Examples of the atomic snapshots in irradiated diamond
and silicon, undergoing ultrafast nonthermal phase transitions
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are shown in Fig. 4. Diamond forms a graphitelike (sp2-
bonded) structure within the time window of ∼150–200 fs,
as was supported by experiments [50]. Silicon turns into
high-density metallic liquid on the timescale of ∼200–300 fs
at the considered radiation dose [62]. Both phase transi-
tions are triggered by changes in the interatomic potential,

induced by the excitation of electrons which modifies inter-
atomic forces, not due to atomic heating via electron-phonon
coupling—nonthermal phase transitions (see details, e.g., in
[38]). The nonthermal phase transitions are associated with
the electronic band gap collapse, as discussed in the main
text.
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