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The ubiquitous telegrapher’s equation is presented in the context of a non-local-in-time master equation on the
lattice. From the exact solution of this transport equation, for different hopping models, the second moment in
the infinite lattice and the time evolution of the probability in the ring have been analyzed as a function of the two
characteristic timescales appearing in the memory kernel of the finite-velocity approach: the rate of energy loss
and the timescale characterizing the jumping process in the lattice. We have demonstrated how these timescales
characterize the constraint to find positive solutions, the time variation of entropy and therefore the approach to
the disordered stationary state on the ring. This lattice model provides an analytic treatment. Thus, this result is
relevant in the study of Shannon entropy, transport of information, and waves in lattices and sheds light on the
functional role of the loss of energy in the finite-velocity diffusion dynamics.
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I. INTRODUCTION

The telegrapher’s equation (TE) was originally introduced
by Thomson (Lord Kelvin) in 1854 [1], when he was study-
ing the dissipation of electromagnetic fields in waveguides
[2–5]. Nearly one century later, in order to overcome the
issue of infinitely fast propagation in a diffusion process,
Cattaneo in 1948 proposed to modify the Fourier-Fick law,
which led to the TE as well [6,7]. In an early discussion, in
the context of relativistic heat transport, Van Kampen used a
microscopic model consisting of an ensemble of particles that
exchange electromagnetic radiation to derive a memory-like
equation from which the TE was an approximation [8]. On
the other hand, a pioneering work on hyperbolic diffusion
from a discrete point of view was introduced by Goldstein
in 1951 [9], from which many generalizations in the context
of persistent random walk [10–12] were later implemented.
In particular, Kac proved in 1974 that the solution of the TE
can be written as a path integral [13]. Therefore, his formula
was a direct counterpart of the Feynman-Kac formula for the
solution of the ordinary diffusion equation.

Let us point out that, since the inception of these pioneering
papers and over many decades, the TE in continuous media:
[∂2

t + 1
τ
∂t − v2∂2

x ]P(x, t ) = 0 has found application in numer-
ous contexts with diverse initial conditions [14]. We first note
that the TE has two parameters: the rate of absorption of
energy τ−1 and the velocity of propagation v. Both parameters
can be related to physical constants [2–4,8,15].

For the transport of electromagnetic waves, the TE pro-
vides the correct description considering the Joule effect
through continuous media. For the transport at finite velocity

*Contact author: caceres@cab.cnea.gov.ar

of heat, photon migration in continuous media, and other sim-
ilar phenomena, the TE is an improvement over the diffusion
limitations. Here we mention a few notable applications:

(i) transmission of electrical signals [2,4,5,16,17],
(ii) hyperbolic diffusion in random media and the persis-

tent random walk [11,12,15,18–20],
(iii) heat transport, Bénard convection and propagation of

waves [7,12,21–25],
(iv) high-energy ion collision experiments [26],
(v) waves, dissipation and penetration [27–30],
(vi) relativistic Brownian motion and cosmic microwave

background radiation [8,31–35],
(vii) turbulent diffusion and geophysics [36–39],
(viii) surface gravity waves on a random bottom [40,41],
(ix) neutron diffusion and engineering problems [42–46],
(x) Boltzmann-Lorentz random collision models [47–50],
(xi) biophysics and neuroscience [51–55],
(xii) information theory in continuous hyperbolic diffu-

sion [56,57],
(xiii) fractal hyperbolic diffusion [58,59].
It is interesting to note that the solution of the one-

dimensional TE can be written as a sum over stochastic
trajectories x(t ) of the Poisson-Kac flights [13]. Notably,
these realizations x(t ) are random trajectories of a particle
moving with constant velocity but changing direction ±v

due to collisions at random times characterized by a Poisson
statistics with mean τ . Generalizations to these path integral
approaches have also recently been presented [51,60].

In this work, we extend the hyperbolic diffusion approach
to the context of a non-local-in-time master equation on the
lattice to study transport on the ring. In this manner, we
obtain an exact polynomial solution. The applications of these
results are circumscribed to finite systems as occurs in solid-
state physics [61,62] and biophysics [38,53,55,63]. We utilize
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generic transition matrices to describe various jumps on the
lattice. Subsequently, we compute the Shannon entropy and
investigate the transition to the uniform distribution as a func-
tion of the problem’s timescales and the parameters that define
the hopping on the lattice. The velocity of Shannon entropy
shows the crossover from ballistic to diffusive motion.

The organization of the paper is as follows: In Sec. II, we
present the finite-velocity transport approach in the lattice as
a non-local-in-time difference equation for a generic wave-
diffusion-like process. In Sec. III we calculate analytically
the second moment for the finite-velocity transport on an
infinite lattice. In Sec. IV, we apply this approach to study the
finite-velocity transport process on a ring. In Sec. V, we study
the Shannon entropy to characterize the loss of information
for different hopping models on the ring. These results are
obtained analytically for a lattice TE. Finally, in Sec. VI, we
discuss the conclusions of the present approach, as well as
its future extensions and applications. Appendix A is used
to present the memory kernel from the renewal theory to
characterize the constraint for the timescale parameters of
the memory kernel to obtain positive solutions. Appendix B
is dedicated to presenting the nonhomogeneous TE in the
continuous limit.

II. THE FINITE-VELOCITY FORMALISM IN A LATTICE
TRANSPORT EQUATION

A. The approach to non-local-in-time transport

Consider a specific form of non-local-in-time master equa-
tion (ME) [8,50,64,65]:

∂t Ps(t ) = α2
∫ t

0
e−(t−t ′ )/τ

∑
s′∈Ds

Hss′Ps′ (t ′) dt ′, (1)

here Ps(t ) ≡ Ps(t |s0, 0) is the conditional probability at time
t0 = 0 (site s0 ∈ Ds the lattice domain). We note that (1)
is the standart equation of the well-familiar continuous-time
random-walk (CTRW) model with the exponential memory
kernel [64]. The initial condition ∂t Ps(t )|t=0 = 0 is implied by
the ME itself.

The occurrence of a memory like the one appearing in
(1) can be found coming from the eliminations of variables
using projector operator techniques [12,66,67]. Therefore, the
IC ∂t Ps(t )|t=0 is related to the mesoscopic preparation of the
system before the elimination of variables [8]. We remark that
the vector Ps(t ), the matrix elements Hss′ , and the lattice space
s are dimensionless quantities. Here, Hss′ is the lattice transi-
tion matrix which can be written in terms of a generic Markov
matrix Tss′ (with Tss′ � 0,

∑
s Tss′ = 1), and the identity I in

the form:

H = T − I. (2)

Thus, the matrix H characterizes the gain-loss form of the ME
and fulfils the fundamental conditions:

Hss′ � 0 if s �= s′ and
∑
s∈Ds

Hss′ = 0,∀s′ ∈ Ds, (3)

where Ds is the domain of interest.
Now we denote the memory kernel in (1) as:

�(t ) = α2e−t/τ with α ∈ R, τ > 0, (4)

where α−1 and τ are timescales that will be characterized in
the next sections.

We note that the solution of (1) can be associated with
probability theory only if the kernel �(t ) fulfills the condition:

2ατ < 1. (5)

By construction, the Markov matrix T generates a positive
solution Tn for discrete times n. Thus, using renewal theory
[68], it is possible to introduce the continuous-time repre-
sentation: Tn → W(t ). The important point is that to do this
continuous-time prolongation the parameters (α, τ ) must ful-
fill the condition (5). In Appendix A, we deduce this bound
and the connection of the kernel with the waiting-time den-
sity function ψ (t ) of the renewal theory in a diffusion-like
approach [61,69].

B. The generalized finite-velocity lattice transport approach

From the non-local-in-time ME (1), we can get a gener-
alized finite-velocity diffusion equation. By taking the time
derivative on (1) we obtain:

∂2
t Ps(t ) = α2

∑
s′∈Ds

Hss′Ps′ (t ′)

− α2

τ

∫ t

0
e−(t−t ′ )/τ

∑
s′∈Ds

Hss′Ps′ (t ′) dt ′. (6)

Therefore, arriving at the generalized lattice TE as shown in
Ref. [64],

∂2
t Ps(t ) + 1

τ
∂t Ps(t ) = α2

∑
s′∈Ds

Hss′Ps′ (t ). (7)

This second-order in time equation contains both ingredients
that lead to wave and diffusion transport. In fact the compe-
tition between the timescales τ, α−1, and the time process t
gives rise to the crossover ballistic-diffusion in the analysis
of the behavior of the conditional probability Ps(t ) under the
restriction (5). That is, the fine-velocity diffusion approach.
In the lattice framework, this equation can be extended to
arbitrary dimensions by considering a spatial vector s. This
situation is different when deducing, in the “fluid limit,” the
continuous TE from the persistent random walk in higher
dimensions. This problem under the isotropic and uniform
restriction has been solved using a multistate random walk
defined on a continuous set of angular values [70].

Specific models for the transition matrix H characterize
different evolutions on the lattice. In particular, two extreme
limits will be presented in the context of pure wave evolution,
as well as pure diffusion transport in the lattice. In general, in
the Fourier and Laplace representations, the solution of (7) on
the lattice can be found due to the space translational invari-
ance. Therefore, the competition between the finite-velocity
behavior and different jump models could be studied in this
context. In addition, from this equation we will show that the
timescale τ is related to relaxation, while the timescale α−1 is
related to the transport of information in the process. This will
be presented in subsection D and in Appendix A for the two
different limits: wavelike and diffusion-like cases.
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If the space is continuous, then H can be an integral or a
differential operator, as shown below. In this case, a natural
dimension of length appears.

1. Generic solution of (7)

By introducing discrete Fourier and Laplace transforms:

Pk (u) ≡
∞∑

s=−∞
eiks

∫ ∞

0
e−ut Ps(t )dt, (8)

into (7) we obtain

u2Pk (u) − uPk (t )|t=0 − ∂t Pk (t )|t=0 + τ−1[uPk (u)−Pk (t )|t=0]

= α2(T (k) − 1)Pk (u), (9)

where T (k) is the Fourier transform of the transition probabil-
ity, Tss′ , from site s′ to s, that is:

T (k) =
∞∑

s=−∞
eik(s−s′ )Tss′ ,

and its Fourier inverse:

Tss′ ≡ 1

2π

∫ 2π

0
dk e−ik(s−s′ )T (k). (10)

Introducing short notation for the IC

Pk (t )|t=0 ≡ Pk (0) and ∂t Pk (t )|t=0 ≡ Ṗk (0), (11)

and solving for Pk (u), we obtain:

Pk (u) = (u + τ−1)Pk (0)

u(u + τ−1) + α2(1 − T (k))
. (12)

From this formula we readily see that all the information
rest on the Fourier representation T (k) of the probability
transition matrix T.

Finding the poles of (12)

u± ≡ u±(k) = 1

2τ
[−1 ±

√
1 − (2τα)2(1 − T (k))]. (13)

The Laplace inversion of the solution (12)

Pk (t ) = 1

2π i

∫ c+i∞

c−i∞
du eut Pk (u), (14)

gives

Pk (t ) = Pk (0)

[
1

τ

(
etu+ − etu−

u+ − u−

)
+
(

u+etu+ − u−etu−

u+ − u−

)]
,

(15)

where we have used the intrinsic IC ∂t Pk (t )|t=0 = 0 appearing
in (1). In order to remove this initial condition, it is necessary
to modify the non-local-in-time ME (1) to allow for an arbi-
trary IC ∂t Pk (t )|t=0 �= 0. This can be done, but the resulting
differential equation will have a nonhomogeneous term. In
Appendix B we present this discussion for the continuous
case and compare the solution with the one from the ordinary
(homogeneous) TE.

C. Two extreme limits

1. Wave limit

Starting from the non-local-in-time transport equation (1),
two extreme limits can easily be found. First, by taking the
limit τ → ∞ in (1), we arrive at the following equation:

∂t Ps(t ) = α2
∫ t

0

∑
s′∈Ds

Hss′Ps′ (t ′) dt ′. (16)

From (16) and taking the time derivative, we obtain a lattice
wavelike equation:

∂2
t Ps(t ) = α2

∑
s′∈Ds

Hss′Ps′ (t ),

the evolution of this equation will be dominated by the tran-
sition matrix H = T − 1. The solution of this equation can be
found by taking the limit τ → ∞ in (12). Thus, the inversion
in Laplace gives the result

Pk (t ) = Pk (0) cos[α
√

1 − T (k)t], (17)

where we have used Ṗk (0) = 0. Unfortunately, obtaining an-
alytical solutions in the s space is not possible because the
Fourier inversion cannot be performed analytically, even for
the simplest model of the nearest-neighbor transition structure
T (k).

Lattice wave localization in the presence of disorder and
a plethora of experimental investigations involving time and
length scales can be studied from this approach. The space-
continuous limit can be seen in Ref. [29]. We note that the
limit τ → ∞ does not fulfill (A1), so a waiting-time proba-
bility density ψ (t ) does not exist for this wave-limit case. In
Appendix A, we define the function ψ (t ) in the renewal con-
text for a continuous-time representation of a Markov chain,
which is a diffusion-like process [by construction a positive
solution Ps(t )].

2. Diffusion limit

In the opposite case, by taking τ → 0 and α → ∞ such
that α2τ → λ in (1), we recover the usual lattice diffusion
transport:

∂t Ps(t ) = λ

∫ t

0
δ(t − t ′)

∑
s′∈Ds

Hss′Ps′ (t ′) dt ′

= λ
∑

s′∈Ds

Hss′Ps′ (t ). (18)

This is a lattice diffusion equation characterized by the tran-
sition matrix H. The solution to this equation can be found
by taking the limit τ → 0 and α → ∞ such that α2τ → λ in
(12). Thus, the inversion in Laplace gives the familiar result
[12,62],

Pk (t ) = Pk (0) exp (−λ(1 − T (k))t ). (19)

To our knowledge, Fourier inversion can only be done analyti-
cally for the simplest model of the nearest-neighbor transition
structure T (k) [12].
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D. Wavy perturbation solution

To understand the meaning of the parameters {α, τ } ap-
pearing in (7), we introduce a perturbation analysis in the
wavelike limit. First, we rewrite the Fourier representation of
(7) in the form

H(k)Pk (t ) = 1

α2

(
∂2

t Pk (t ) + 1

τ
∂t Pk (t )

)
. (20)

Now we propose a solution of the form

Pk (t ) = e−t/2τ f (k, t ). (21)

Substitution of this ansatz in (20) leads to a function f
satisfying

H(k) f (k, t ) = 1

α2

(
∂2

t f (k, t ) −
(

1

2τ

)2

f (k, t )

)
. (22)

Because (1/τ ) is a small quantity, (22) can be approximated
by a lattice wave equation to order O(τ−2), so (21) is the
perturbative solution of (20). Here e−t/2τ is an attenuation
factor. Thus, τ is the timescale related to the dissipation and
the timescale α−1 is related to the velocity in the wave motion
(solution f (k, t )).

In addition to the result (21), let us introduce a perturba-
tion in the small parameter τ−1 from the exact solution (15).
Considering the behavior of the poles (13) up to O(τ−2), we
obtain the final expression to O(τ−1):

Pk (t )

Pk (0)
=
{

1 − t

2τ

}
cos(α

√
1 − T (k)t )

+ sin(α
√

1 − T (k)t )√
1 − T (k)

1

2ατ
+ O(τ−2). (23)

From this result, important conclusions can be drawn. The
first contribution in the right-hand side of (23) corresponds
to the expansion of (21) and is in accordance with the pure
wave solution (17). The second contribution depends on the
group of parameters 2ατ , and its time dependence is purely
oscillatory. It is interesting to note that from this characteristic
function, it is difficult to apply Bochner’s theorem [12,62,68]
to prove the positivity of the inverse Fourier transform: Ps(t ).
We have checked numerically that for certain jump structures
T (k) and values of the group 2ατ > 1, the inverse Fourier
transform Ps(t ) is not positive for some values of time t . This
phenomenon will be illustrated in Figs. 1 and 2 of Sec. IV B.

The analysis to interpret the parameters {α, τ } in a
diffusion-like case (positive Ps(t )) is presented in Appendix A
and leads to the condition 2ατ < 1.

E. On the transition matrices T and H

1. n-step discrete models

The ME operator H = T − I entirely characterizes the
transition process. This ME operator can be written in terms of
the probability matrix T. A general transition (n-step) matrix
T can be written in terms of step operators E±. These opera-
tors are defined by their action on any vector fs, producing a
translation of the form:

E±n fs = fs±n. (24)

Then, a symmetric n-step jump model can be written in the
generic form:

T = C
N∑

n=1

pn(E+n + E−n), (25)

where C is a normalization constant, N characterizes a partic-
ular n-step model, and pn is the probability of occurrence of
an n-step jump on the lattice. Other models can be worked out
in a similar way, as we show below.

2. Continuous models

We can work out a series for the translational operator:

E± ≡ e±∂s = 1 ± ∂s + 1

2!
∂2

s ± 1

3!
∂3

s + · · · . (26)

Introducing a lattice parameter, denoted by ε, and using the
change of variables x = εs from (26), we arrive at the series
expansion

E± ≡ e±ε∂x = 1 ± ε∂x + ε2

2!
∂2

x ± ε3

3!
∂3

x + · · · .

Thus, for the symmetric case, when the lattice parameter goes
to zero, we get the continuous limit for the ME operator H:

lim
ε→0

∑
s′∈Ds

Hss′ fs′ → ε2 p1∂
2
x f (x) + O(ε4). (27)

Here fs is any vector on Ds and f (x) is its continuous prolon-
gation. In particular, if the model for H has only transitions to
the first-neighboring sites, then we take p1 = 1

2 .
Asymmetric models can be adjusted by considering dif-

ferent probabilities for the jump to the left and right in the
form: pnE+n + qnE−n. Models like these will produce a bias
in a privileged direction, leading in the continuous limit to a
dominant term of the form proportional to ε∂x f (x), etc.

Other, more complex space jump models can also be in-
troduced in a similar way. For example, in the context of a
continuous space model, using the integral operator [63]:∑

s′∈Ds

Hss′ fs′ → const

π
sin (πμ/2)�(μ + 1)

×
∫ +∞

−∞
dx′ f (x′)

|x − x′|μ+1 , (28)

with 0 < μ < 2. It is possible to prove that this ME op-
erator is the continuous version of the Weierstrass model,
see below. An expansion of the transition operator (28) in a
Kramers-Moyal series leads to derivative terms of all orders.
Nevertheless, this series cannot be truncated at any order.
Other finite-velocity transport equations can also be obtained
using different models for the ME operator H in (1); these will
be presented in the next sections.

3. Transition with the next-nearest-neighbor jump model

From (25), the simplest case corresponds to a model with
transitions only to first neighbors:

T = 1
2 (E+ + E−), (29)
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FIG. 1. Probability Ps(t |s0 = 1, 0) for fixed α = 1 and different values of s (s = 1, 3, 6) as a function of time t . The plots are for different
jump models Tss′ in a ring with N = 10 sites. The full blue line corresponds to τ = 0.1 (case τ < 1/2α), the red dashed line corresponds
to τ = 0.5 (case τ = 1/2α), and the green dotted line corresponds to τ = 5.0 (case τ > 1/2α), where positivity cannot be assured; see
Appendix A for this constraint. The rest of the parameters are γ = 0.5 (for the geometric jump model) and θ = 0.5 (for the Poisson jump
model).

therefore the Fourier transform of Tss′ gives T (k) =∑∞
s=−∞ eiks Tss′ = cos(k), and so the solution is (15) with the

poles:

u± = 1

2τ
[−1 ±

√
1 − (2τα)2(1 − cos (k))]. (30)

4. Transition with a geometrical jump model

In this long-range case, the elements of the transition ma-
trix T are as follows:

Tss′ = 1 − γ

2γ
(γ |s−s′ | − δss′ ), 0 < γ < 1, (31)
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FIG. 2. Probability Ps(t |s0 = 1, 0) for different values of s (s = 1, 3, 6) and fixed α = 1, as a function of time t for the Weierstrass jump
model in a ring with N = 10 sites. The red dashed line corresponds to s = 3, the full blue line corresponds to s = 1, and the green dotted
line corresponds to s = 6. The blue line represents s at the IC. The first and the second column correspond to τ � 1/2α. The third column
corresponds to τ > 1/2α where positivity cannot be assured. The third row corresponds to a case b2/a 
 1 for the Weierstrass jump model.
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and thus its Fourier transform is

T (k) = 1 − γ

γ

(
1 − γ cos k

1 − 2γ cos k + γ 2
− 1

)
. (32)

The solution of the lattice TE with geometrical jump transitions is given by (15) with the poles:

u± = 1

2τ

⎡
⎣−1 ±

√
1 − (2τα)2

(
1 − 1 − γ

γ

(
1 − γ cos k

1 − 2γ cos k + γ 2
− 1

))⎤⎦. (33)

5. Transition with a Poisson jump model

In this case the elements of the transition matrix T are as follows:

Tss′ = e−θ

2(1 − e−θ )

(
θ |s−s′ |
|s−s′ |!

− δss′

)
, θ > 0, (34)

and thus its Fourier transform is

T (k) = e−θ

2(1 − e−θ )
(exp(θeik ) + exp(θe−ik ) − 2), (35)

and so the solution of the lattice TE with Poisson step transitions is given by (15) with the poles:

u± = 1

2τ

⎡
⎣−1 ±

√
1 − (2τα)2

(
1 − e−θ

2(1 − e−θ )
(exp (θeik ) + exp (θe−ik ) − 2)

)⎤⎦. (36)

6. Transition with a Weierstrass jump model

In this model, there are subclusters within embedded clus-
ters. Then, the elements of the transition matrix T are

Tss′ = a − 1

2a

∞∑
n=0

1

an
(δs−s′,bn + δs−s′,−bn ), a > 1, b � 1,

(37)

thus its Fourier transform is

T (k) = a − 1

a

∞∑
n=0

1

an
cos (bnk). (38)

Here 1/an is the probability of making a jump of length
bn. The limit b → 1 corresponds to the usual random-walk
model. Futhermore, it can be proved that if b2/a > 1, then
all moments of the transition probability will diverge [12].
In particular a fractal dimension can be associated with the
quantity μ = ln a/ ln b, [63,71].

The solution of the lattice TE with Weierstrass step transi-
tions is given by (15) with the poles:

u± = 1

2τ

⎡
⎢⎣−1±

√√√√1−(2τα)2

(
1−a − 1

a

∞∑
n=0

1

an
cos (bnk)

)⎤⎥⎦.

(39)

Remark. Jump models (29), (31), and (34) have in com-
mon that all m moments for the transitions are finite:

〈(s − s′)m〉 =
∞∑

s=−∞
(s − s′)m Tss′ =

[
dmT (k)

d (ik)m

]
k=0

< ∞.

However, the Weierstrass jump model has finite moments
only if b2/a < 1. Therefore, it is important to study the

competition of the finite-velocity transport parameters: α, τ

[due to the memory kernel in (1)] with the jump parameters. In
the limit t 
 τ , the propagator will have a wavelike motion,
while in the opposite case, t 
 τ , the propagator will have
a diffusive-like motion. However, the crossover and the dy-
namic coefficients will strongly depend on the structure T (k).

III. SECOND MOMENT ON THE INFINITE LATTICE

We can now calculate the dispersion of the finite-velocity
transport for the different jump structures in the free 1D lat-
tice. To perform this evaluation we use the generic solution
(15) for different models of jumps in the lattice.

Let us start with the next-nearest-neighbor jump model
(29). In this case, T (k) = cos k, therefore introducing the
expansion T (k) � 1 − 1

2 k2 + O(k4) in the poles (13), and
taking the second derivative, we get the second moment for
the generalized transport in the infinite lattice. Starting from
s0 at t0 = 0 we use

〈(s(t ) − s0)2〉 = −
[

d2

dk2
Pk (t )

]
k=0

. (40)

From this expression we can analyze the short- and long-time
regime to obtain the results:

lim
t→0

〈(s(t ) − s0)2〉 → α2

2
t2 + · · · , (41)

lim
t→∞〈(s(t ) − s0)2〉 → α2τ t + α2τ 2(e−t/τ − 1) + · · · . (42)

These results show the wave and diffusive regimes.
Our second example, is the geometric jump structure (31).

In this case, T (k) is given by (32), and we have T (k) �
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1 − 1
2 [(1 + γ )/(γ − 1)2]k2 + O(k4). From this expression,

we obtain:

lim
t→0

〈(s(t ) − s0)2〉 → α2(1 + γ )

2(γ − 1)2 t2 + · · ·, (43)

lim
t→∞〈(s(t ) − s0)2〉

→ α2τ (1 + γ )

(γ − 1)2 t − α2τ 2(1 − e−t/τ )(1 + γ )

(γ − 1)2 + · · · .

(44)

The third example would be the Poisson jump struc-
ture (34). In this case, T (k) is given by (35), and T (k) �
1 − 1

2 [θeθ (1 + θ )/(eθ − 1)]k2 + O(k4). Therefore, introduc-
ing T (k) in the poles (13) and taking the second derivative we
get the second moment. As before, we get for the short and
long time:

lim
t→0

〈(s(t ) − s0)2〉 → α2θeθ (1 + θ )

2(eθ − 1)
t2 + · · ·, (45)

lim
t→∞〈(s(t ) − s0)2〉 → α2τeθ θ (1 + θ )

(eθ − 1)
t

− α2τ 2(1 − e−t/τ )eθ θ (1 + θ )

(eθ − 1)
· · · .

(46)

All of these expressions are for the infinite lattice and
show how the crossover from ballistic to linear behavior is
dominated by the jumping structure T (k). The effective ve-
locity and the diffusion coefficient depend on the jumping
parameters.

A. Effective dynamic coefficients

From the time-dependent second moment it is possible to
deduce the behavior of the effective dynamic coefficients. In
fact, from (41), (43), and (45) we see that the velocity v is
characterized by

v2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2

2 for next-neighbor transitions

α2(1+γ )
2(γ−1)2 for geometric jump transitions

α2θeθ (1+θ )
2(eθ −1) for Poisson jump transitions

. (47)

We observe that the larger the jumping probability, the greater
the velocity will be.

From the long-time behavior of the second moment, it is
also possible to deduce the diffusion coefficient. In fact from
(42), (44), and (46) we see that the diffusion coefficient D is
characterized by

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2τ for next-neighbor transitions

α2τ (1+γ )
(γ−1)2 for geometric jump transitions

α2τθeθ (1+θ )
(eθ−1) for Poisson jump transitions

. (48)

As before, the larger the jumping probability is, the larger the
diffusion coefficient will be. Another expected result related
to the lattice finite-velocity transport approach is that the ef-
fective velocity only depends on the timescale α−1, while the

diffusion coefficient depends on the group α2τ . The jumping
model affects both coefficients in the same way.

Since the pioneering work of Montroll and Weiss [61], the
solution of the random walk in the n-dimensional torus has
been introduced to achieve an analytical solution. Addition-
ally, the physical behavior of finite systems is important in
experimental situations [62]. Therefore, to study the transport
of information towards the completely disordered state, we
will now calculate the Shannon entropy. The present lattice
approach allows for an exact calculation (a polynomial for-
mula) of the entropy in a ring, which differs from the Shannon
entropy in the space-continuous TE [57].

IV. THE FINITE-VELOCITY TRANSPORT APPROACH
ON THE RING

A. Generic solution

The ring is a particularly interesting topological domain for
studying the properties of finite-velocity transport. A ring with
N sites is a model that considers the characteristics of a finite
domain in a simple way.

The solution in a ring can be constructed using the method
of images [12,62]. Let P0(k, t ) be the solution (in the Fourier
representation) on the free 1D domain. Noting that in the ring
the conditional probability fulfills Ps(t |s0, t0) = Ps+N (t |s0, t0),
we can write [12]

Ps( t |s0, t0) = 1

N

N∑
ν=1

exp

(
−i

2πν

N
s

)
P0

(
k = 2πν

N
, t − t0

)
.

(49)

In a finite domain, the Fourier number is quantized. This
formula is generic and valid for any transition probability Tss′ .
Taking t0 = 0 and Pk (0) = eiks0 , from (15) and the poles (13),
we get

Ps( t |s0, 0) = 1

N

N∑
ν=1

e−i 2πν
N (s−s0 )

×
[

1

τ

(
etu+−etu−

u+ − u−

)
+
(

u+etu+−u−etu−

u+ − u−

)]
k= 2πν

N

.

(50)

The conditioned q moments in the ring can be calculated
as (q = 1, 2, 3, . . .):

〈s(t )q〉s0
=

N∑
s=1

sqPs( t |s0, 0)

=
{

N∑
ν=1

eiks0

N

[
1

τ

(
etu+ − etu−

u+ − u−

)

+
(

u+etu+ − u−etu−

u+ − u−

)] N∑
s=1

sqe−iks

}
k= 2πν

N

. (51)

These expressions complete the solution for the finite-
velocity transport approach on the ring, for any jump structure
T (k) appearing in the poles (13). In the stationary state, these
moments 〈sq〉 can be readily calculated, so what is interesting
is the transient behavior from the IC (we will take s0 = 1).
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B. Probability on the ring for different jump models

Here we present the solution Ps(t |s0, 0), as described in
(50) within a ring for different jump models Tss′ . It is im-
portant to note that through explicit construction detailed
in Appendix A, we have proved that in order to ensure a
well-posed continuous-time representation of a Markov chain
Tn → W(t ), it is necessary to fulfill the constraint τ < 1/2α

to assure the application of the renewal theory.
As posited by Bochner’s theorem, in order to assure the

positivity of the solution, we should prove the concavity
of the characteristic function Pk (t ) from (15), which is a
formidable task for arbitrary structure function T (k). How-
ever, we have proved in Appendix A for arbitrary T (k) that
if τ < 1/2α, then the solution will be positive. The inverse is
more complicated: If τ > 1/2α, then we have shown numeri-
cally that a negative value Ps(t |s0, 0) for some instant of time
t can appear. The appropriate value of τ depends on the jump
structure T (k). This behavior will be illustrated in Fig. 1 for
some cases.

First, let us start by analyzing the regular next-nearest-
neighbor jump model. In this case, the poles are characterized
by the structure (30). The geometrical and Poisson jump
models can readily be written using the poles given by (32)
and (35), respectively. In Fig. 1, we have shown Ps(t |s0 =
1, t = 0) for different sites s = {1, 3, 6} in a ring with N = 10
sites, for fixed α = 1 and different timescales τ . For cases: (a)
regular next-nearest-neighbor, (b) geometrical, and (c) Pois-
son jump model. Therefore, the following timescale regimes
can be appreciated: τ < 1/2α, 2ατ = 1, and τ > 1/2α. We
remind that the critical value τ = 1/2α characterizes the tran-
sition to the wavelike behavior. The probability to be at sites
s > s0 clearly depends on time, and the convergence to the
stationary state [fully disordered state: Ps(t → ∞|s0, 0) →
1/N] is monotonous in time for τ < 1/2α, and is faster for
jump models with long-range transition probabilities, as in
the geometrical jump model. As commented before, for each
T (k), different behavior occurs for 2ατ > 1, where a wavy-
like regime can be seen for τ = 5.0 with α = 1. In the same
figure we noted that for a fixed α and large-enough τ , the wavy
solution Ps(t |s0, 0) can become negative for some t . Depend-
ing on T (k), the value of time t when Ps(t |s0, 0) < 0 can be
observed, even for the next-nearest-neighbor jump model.

Now we will show the solution Ps(t |s0, 0) using the Weier-
strass jump model characterized by the poles (39). As pointed
out before, this model becomes particularly anomalous if
b2/a > 1, since in this scenario, within an infinite lattice, all
jump moments would diverge. In Fig. 2, we can compare the
solution Ps(t |s0, 0) for different sites s in a ring with N = 10
for fixed α = 1 as a function of time t and for different values
of τ . A particularly notable result from the Weierstrass jump
model is that if b2/a 
 1, then sites that are far away from the
initial condition are populated faster than the nearest-neighbor
sites from s0.

V. SHANNON ENTROPY FOR THE LATTICE TE
ON THE RING

The Shannon entropy is a number assigned to a partition
set, S = −〈ln P〉. This is simple if the random variable is of
the discrete type. In the present work, we are interested in

the time-dependent evolution of the probability assigned to
each site s in a ring with N sites. This evolution has been
characterized by a generalized finite-velocity ME transport.
Therefore, the partition set will be associated with the time-
dependent probability assigned to each site in the ring from a
given initial condition Ps(t → 0|s0, 0) → δs,s0 . We have found
the solution for a generic transition probability Tss′ in the ring,
and it is characterized by the poles (13). Thus, we can write
the time-dependent Shannon’s entropy:

S(t ) = −
N∑

s=1

Ps( t |s0, 0) ln Ps( t |s0, 0), (52)

where Ps(t |s0, 0) is written, in (50), in terms of any structure
jump model T(k).

Due to the fact that the stationary solution in the ring
is equally distributed in the partition set, we obtain Ps(t →
∞|s0, 0) → 1/N. Then the entropy will reach its maxi-
mum value S(t → ∞) → ln N . Thus, it is important for the
characterization of the transport of information to study the re-
laxation to this stationary value as a function of the timescales
{τ, α−1}, and the parameters of the jump model T (k). As can
be seen from (50), as t → ∞ the approach to the entropic
disordered state is controlled by the behavior of the poles
u±(k).

Interestingly, the transport of information in the process
can be better studied from the time variation of the Shannon
entropy. Therefore, we will be interested in the time derivative
of Shannon’s entropy,

dS(t )

dt
= − d

dt

N∑
s=1

Ps( t |s0, 0) ln Ps( t |s0, 0)

= −
N∑

s=1

Ṗs( t |s0, 0) ln Ps( t |s0, 0), (53)

where Ṗs(t |s0, 0) can readily be obtained by taking the time
derivative in (50).

Let us now analyze the time variation dS(t )/dt ≡ Ṡ(t ) in
the regime 2ατ < 1. From this analysis, it can be appreci-
ated that the entropy variation has a maximum that depends
in a nontrivial way on the jump parameters and timescales
{τ, α−1} [in this case, the velocity Ṡ(t ) is always positive].
If 2ατ > 1, then it is possible that Ṡ(t ) can decrease even
more and turn to be negative, so at a certain time t , the
entropy S(t ) (not for the case τ = 1.0 in Fig. 3) is not defined
because Ps(t |s0, 0) becomes negative (as occurs in some cases
in Figs. 1 and 2). This situation strongly depends on the model
of the jump Tss′ under the necessary condition 2ατ > 1.

In Fig. 3, we have plotted the entropy velocity Ṡ(t ) as a
function of time t for fixed α = 1, for two values of τ and
different jump structures T (k), in all cases the IC is s0 = 1.
For τ = 0.1 (corresponding to τ < 1/2α) in all cases (next-
nearest-neighbor, geometrical, Poisson, and Weierstrass jump
models), Ṡ(t ) is a single-peak function with a monotonically
decreasing behavior as a function of time t . For τ = 1.0
and 0.8 (corresponding to τ > 1/2α) Ṡ(t ) shows a nonmono-
tonic behavior as a function of time t . Nevertheless, these
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FIG. 3. The entropy velocity dS(t )/dt for fixed α = 1 is shown as a function of time t for the regular next-nearest-neighbor, geometrical,
Poisson, and Weierstrass jump models in a ring with N = 10 sites. The entropy is always well defined (positive) if τ < 1/2α. Nevertheless,
here we show in a red dashed line cases corresponding to τ = 1.0 (0.8 for the geometric case) corresponding to τ > 1/2α. The full blue
line corresponds to dS(t )/dt for τ = 0.1 (corresponding to τ < 1/2α). The red dashed line represents dS(t )/dt for a value of τ > 1/2α, but
the parameters were chosen such that wavylike motion always fulfills Ps(t |s0, 0) > 0. The first moment associated with the Weierstrass jump
model with τ = 1.0 and τ = 0.1 are shown in green dotted lines and full lines, respectively, for the different values of the rate b2/a to compare
with the behavior of dS(t )/dt .

parameters have been chosen to correspond to a (positive)
wavylike transport motion.

In the Weierstrass jump model, Ṡ(t ) is shown in the same
figure for different values of the rate b2/a (≶ 1 and 
 1).
We remind that due to the finite domain of the ring, the
moments of Ps(t |s0, 0), which can readily be obtained from
(51), are finite. This is a difference from the calculation in
an infinite lattice (40). For the Weierstrass jump model the
behavior of the first moment, 〈s(t )〉s0 , is shown in the figure for
different τ and rate b2/a. There the asymptotic value can be
checked as 〈s(t → ∞)〉s0 → (1 + N )/2. We note that in the
limit as b approaches 1, for any value of a, the Weierstrass
jump model converges to the next-nearest-neighbor model. In
Fig. 4 we show the comparison of Ṡ(t ) against the second
moment 〈s2(t )〉s0 , the main peak in the entropy velocity shows
the transition from ballistic to diffusive behavior. The second
moment associated with the cases τ > 1/2α show a wavy
behavior, but in any case, the asymptotic value is 〈s2(t →
∞)〉 → (1 + 3N + 2N2)/6.

Alternatively, using the equation P̈s(t |s0, 0) +
Ṗs(t |s0, 0)/τ = α2 ∑

s Hss′Ps′ (t |s0, 0), we can express the
time variation with respect to the ordinary diffusive case

as:

�Ṡ(t ) = τ

N∑
s=1

P̈s( t |s0, 0) ln Ps( t |s0, 0), (54)

with Ps(t |s0, 0) given by (50) and P̈s(t |s0, 0) by the expression:

P̈s( t |s0, 0) = 1

N

N∑
ν=1

e−i 2πν
N (s−s0 )

[
1

τ

(
u2

+etu+ − u2
−etu−

u+ − u−

)

+
(

u3
+etu+ − u3

−etu−

u+ − u−

)]
k= 2πν

N

, (55)

where u± ≡ u±(k) are given by (13) for any jumping model
characterized by T (k). From (54), we see that in the limit τ →
0 with α → ∞ such that τα2 → λ, we arrive at �Ṡ(t ) = 0.

VI. CONCLUSIONS

Starting with a non-local-in-time master equation, we have
studied a generic finite-velocity transport approach on the
lattice and specifically solved the generalized telegrapher’s
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FIG. 4. The entropy velocity 10 × dS(t )/dt (full lines) for fixed α = 1 is shown as a function of time t for the regular next-nearest-
neighbor, geometrical, Poisson, and Weierstrass jump models in a ring with N = 10 sites. Dashed lines correspond to the second moment
〈s2(t )〉 for different values of τ to be compared with the change in the behavior of dS(t )/dt . The blue line corresponds to τ < 1/2α, the red
line corresponds to τ > 1/2α, but the parameters were chosen such that wavylike motion is always positive. The black dotted line represents
the point reached by 〈s2(t )〉 after a long time.

equation on the ring. Several transition matrices have been
used to characterize different jump structures Tss′ on the lat-
tice. Specifically, we have solved the probability distribution
with (a) regular next-nearest-neighbor jump, (b) geometrical
jump, (c) Poisson jump, and (d) Weierstrass jump, all these
cases for timescales τ � 1/2α and τ > 1/2α. By construc-
tion, we have proved that if τ < 1/2α, then the solution
W(t ) is positive because a waiting-time function from re-
newal theory exists. In the reverse case τ > 1/2α, the kernel
is not completely monotonous; therefore, following Feller’s
theorem, the existence of a positive waiting-time density ψ (t )
cannot be assured, see Appendix A. A different task is to
prove from the characteristic function (15) the positivity of
the inverse; in this case, Bochner’s theorem should be used,
but this is out of the scope of the present paper.

The second moment on the infinite lattice has been cal-
culated analytically for different jumping structures T (k);
therefore effective transport coefficients have been defined,
see (47) and (48). In addition, we have calculated analyti-
cally the solution of the time-dependent probability for the
finite-velocity transport approach on a ring with N sites.
The Shannon entropy is also calculated analytically as a

polynomial, which is an advantage when compared with the
continuous model that does not have an analytical expression
[57]. The transition to its maximum value S(t → ∞) → ln N
in the (fully disordered) stationary state has been studied as a
function of the timescales α−1 and τ , as well as a function of
the parameters characterizing different hopping models Tss′ .
The entropy velocity Ṡ(t ) has been plotted as a function of the
physical parameter. It is concluded that there is a maximum
for this velocity that depends on the timescales α−1, τ , and
the parameters of the jump structure, see (31), (34), and (37).
This maximum shows the ballistic to diffusive transition. The
higher the probability for long-range hopping, the faster the
information is moved to sites far away from the initial con-
dition. This is particularly notable when observing how the
population far apart from site s0 is anticipated with respect to
sites s � s0 for the Weierstrass jump model when b2/a 
 1,
as shown in Fig. 2. The time behavior of Ṡ(t ) has also been
compared with the behavior of the first and second moments in
the ring conditioned to the IC Ps(t → 0|s0, 0) → δss0 , show-
ing that the transport of information can be associated with
Ṡ(t ) (see Figs. 3 and 4). The study of Shannon entropy in
a ring is an interesting objective, and its relevance lies in
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addressing the transport of information in finite systems with
applications in solid-state physics and biophysics [62,63].

In this work, we have been interested in the case when
τ < 1/2α. However, we have shown that for τ > 1/2α, the
solution Ps(t |s0, 0) can become negative at some time t de-
pending on the structure T (k). Of particular interest is the
study of dissipative waves in disordered lattices; this is the
case to be analyzed in future contributions.

In Appendix B, we have presented the nonhomogeneous
TE in the continuous limit. New interesting results concerning
the initial condition Ṗs(0) �= 0 on the non-local-in-time ME
(1) can be worked out in the context of a nonhomogeneous
lattice TE. This subject is in progress.

APPENDIX A: ON THE MEMORY KERNEL �(t ) AND THE
RENEWAL APPROACH

To interpret the parameters {α, τ } from a diffusive-like
point of view, we propose the following analysis. We have
noted before that �(t ) can be associated with a renewal prob-
ability theory [69], in fact, this is so only if the parameters of
the kernel fulfill the condition:

τ <
1

2α
. (A1)

This restriction can be interpreted by defining a waiting-time
probability density function ψ (t ) applied to the Markov chain:

T(m + m′) = T(m) · T(m′), {m, m′} ∈ 0, 1, 2, · · · , (A2)

with m, m′ positive discrete time indices.
The continuous-time representation of a discrete-time

Markov chain can be incorporated by using the renewal
approach [61]. We consider a 1D lattice with translational
invariance; thus, let ϕ(t ) be the probability of remaining at
any site s without jumping during the interval of time [0, t]

ϕ(t ) = 1 −
∫ t

0
ψ (t ′)dt ′. (A3)

This equation defines the waiting-time function ψ (t ) between
successive jumps in the Markov chain. Therefore, the mean
waiting time is

〈t〉 =
∫ ∞

0
tψ (t )dt .

Introducing the notation for the Laplace transform:

ϕ(u) ≡ L[ϕ(t )] =
∫ ∞

0
ϕ(t )e−ut dt, ψ (u) ≡ L[ψ (t )], etc.,

and using the Green function of (1), we can prove the relation
(see below):

�(u) = uψ (u)

1 − ψ (u)
. (A4)

From this equation, it is simple to see that only if the waiting
time ψ (t ) is an exponential function, then the kernel �(t ) will
be a Dirac-delta function, restoring a Markovian character in
the continuous-time representation of T(m).

Conversely, equation (A4) can be used to solve ψ (u) in the
form

ψ (u) = �(u)

u + �(u)
. (A5)

Then, from the exponential memory kernel (4), in the Laplace
representation we obtain:

ψ (u) = α2

α2 + u(u + 1/τ )
,

thus 〈t〉 = − dψ (u)

du

∣∣∣∣
u=0

= 1

α2τ
. (A6)

In addition, from the inverse Laplace transform of ψ (u),
we arrive at the waiting-time probability density in real-time
representation:

ψ (t ) = 2τα2e−t/2τ√
1 − (2ατ )2

sinh

(
t

2τ

√
1 − (2ατ )2

)
,

∫ ∞

0
ψ (t )dt = 1. (A7)

In order to obtain a positively normalized density ψ (t ), we
need to satisfy condition (A1). Therefore, the diffusion-like
restriction (A1), can be interpreted as the condition that the
flight time α−1 is smaller than the mean waiting time 〈t〉 =
(α2τ )−1.

In summary, by construction for any T (k) and using re-
newal theory, the positivity of the continuous-time solution is
assured if (A1) is fulfilled. For the case τ > 1/2α, the positiv-
ity depends on the specific hopping structure function T (k),
and its proof depends on the concavity of the characteristic
function (15); that is, to fulfill Bochner’s theorem.

1. Proof of (A4)

Consider the discrete-time Markov chain (A2) where T(m)
is the evolution of the Markov chain at discrete time m with T
as a generic transition matrix with elements that fulfill:

Tss′ � 0,∀{s, s′} ∈ Ds and
∑
s∈Ds

Tss′ = 1,∀s′ ∈ Ds.

(A8)

The solution of (A2) is as follows:

T(n) = T · Tn−1. (A9)

Using the renewal approach, the continuous-time represen-
tation can be written in the form [61]:

W(t ) =
∞∑

n=1

Pn(t )Tn +
(

1 −
∫ t

0
ψ (t ′)dt ′

)
T(0), (A10)

where T(0) = 1 (identity), and we have assumed synchroniza-
tion for the first waiting-time function [68]; that is, ψ1(t ) =
ψ (t ). For a stationary renewal process, Pn(t ) is the probability
of having n events in the time interval [0, t], which can be
written, in the Laplace representation, as:

Pn(u) =
∫ ∞

0
e−utPn(t )dt = 1 − ψ (u)

u
ψ (u)n. (A11)
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Here ψ (t ) is a generic waiting-time probability density
function characterizing the renewal process. A general pre-
sentation considering ψ1(t ) �= ψ (t ) can be seen in Ref. [72].

The continuous-time version of the chain evolution (A9) at
discrete time n is represented by (A10) as an infinite sum of
possible ways to arrive at a particular site s at continuous time
t , considering all waiting times in previous sites s′ coming
from the initial condition s0; that is, the conditional probability
(matrix elements) W(t )s,s0 . This is what is now called, in mod-
ern jargon, the CTRW approach to characterize non-Markov
random-walk processes [62].

In the Laplace representation, the solution of (A10) is as
follows:

W(u) = 1 − ψ (u)

u
(1 − ψ (u)T)−1. (A12)

Thus, the evolution equation of the continuous-time probabil-
ity matrix W(u) can be written in the Laplace representation
as:

uW(u) − 1 = u
1 − ψ (u)

u(1 − ψ (u)T)
− 1 = ψ (u)(−1 + T)

(1 − ψ (u)T)

= uψ (u)

(1 − ψ (u))
(T − 1)W(u). (A13)

In this formula we have used the initial condition for the Green
function W(0) = 1. Therefore, Eq. (A13) can be compared
with the Green function of (1). In fact, this equation can be
written in the real-time representation as a non-local-in-time
ME:

∂t W(t ) =
∫ t

0
�(t − t ′)(T − 1)W(t ′)dt ′,

where the kernel �(u) is the one presented in (A4). That
is, any positive and normalized waiting-time function ψ (t )
characterizes a particular kernel �(t ).

We note that the reverse is not true; there can be a kernel
that is not associated with a positive and normalized waiting
time. This is the case of the kernel (4) when (A1) is not ful-
filled, because in this case �(u) is not a completely monotone
function. See Feller’s theorem 1 (p. 439) in Ref. [68].

APPENDIX B: THE CONTINUOUS TE

1. The ordinary TE

In the continuous limit, the ME operator transforms into
a second-order space derivative (27). Then, in the limit ε →
0, α → ∞ such that 1

2 (εα)2 → v2, we can define a velocity.
Using (1) we arrive at

∂t P(x, t ) = v2
∫ t

0
e−(t−t ′ )/τ ∂2

x P(x, t ′) dt ′. (B1)

The initial condition ∂t P(x, t )|t=0 = 0 is implicit in (B1). Tak-
ing the time derivative of this equation, we get the ordinary TE
(hyperbolic diffusion equation):[

∂2
t + 1

τ
∂t − v2∂2

x

]
P(x, t ) = 0. (B2)

2. The nonhomogeneous TE

Nevertheless, if we do not want to keep the zero initial
condition, ∂t Ps(t )|t=0 = 0 appearing in (B1), then we have to
work out a non-local-in-time ME of the form:

∂t Ps(t ) = α2
∫ t

0
e−(t−t ′ )/τ

∑
s′∈Ds

Hss′Ps′ (t ′) dt ′ + Ṗs(0), (B3)

where the initial condition appearing in the right-hand side of
(B3), Ṗs(0), must be consistent with the IC of the process be-
fore the elimination of variables producing the memory kernel
in (B3). Then, passing to the continuous limit, we obtain:

∂t P(x, t ) = v2
∫ t

0
e−(t−t ′ )/τ ∂2

x P(x, t ′) dt ′ + Ṗ(x, 0). (B4)

As before, taking the time derivative in (B4) we obtain:[
∂2

t + 1

τ
∂t − v2∂2

x

]
P(x, t ) = Ṗ(x, 0)

τ
. (B5)

This nonhomogeneous equation has a flux term Ṗ(x, 0)/τ
when compared with the ordinary TE (B2). This equation is
useful when we are interested in working with a “bullet” initial
condition. For example, in the form:

P(x, t )|t=0 = δ(x − vt )|t=0,

∂t P(x, t )|t=0 = −vδ′(x − vt )|t=0. (B6)

In the context of finite-velocity diffusion problems, this IC
is quite useful to describe transport with an incoming flux in
the domain of interest. The general solution of this nonho-
mogeneous hyperbolic diffusion equation can be obtained by
introducing the Fourier-Laplace transform.

a. Solution of the nonhomogeneous TE (B5)

To solve (B5) we introduce the continuous Fourier and
Laplace transforms:

P(k, u) =
∫ ∞

−∞
dx eikx

∫ ∞

0
dt e−ut P(x, t ) (B7)

in (B5), using the IC:

P(k, t )|t=0 ≡ P(k, 0) and ∂t P(k, t )|t=0 ≡ Ṗ(k, 0).

Then, we obtain

P(k, u) = P(k, 0) + τ Ṗ(k, 0)[1 + (τu)−1]/(τu + 1)

u + τv2k2/(τu + 1)
. (B8)

It can be seen that the nonhomogeneous term in (B4) leads
to an extra contribution proportional to Ṗ(k, 0) in the RHD of
(B8). That is, the term τ Ṗ(k, 0)(τu)−1/(τu + 1), which has a
profound difference when compared with the solution of the
ordinary TE.

From the solution (B8) we can study both limits τu 
 1
(wave motion at short times) and τu 
 1 (diffusion at long
times).
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b. Short times

Taking the limit τu 
 1 in (B8) we arrive to

P(k, u) = P(k, 0) + τ Ṗ(k, 0)[1 + (τu)−1]/(τu + 1)

u + τv2k2/(τu + 1)

∼ P(k, 0) + τ Ṗ(k, 0)/τu

u + τv2k2/τu
= uP(k, 0) + Ṗ(k, 0)

u2 + v2k2
.

(B9)

This solution provides a generic wavelike motion at short
times.

c. Long times

Taking the limit τu 
 1 in (B8) we arrive to

P(k, u) = P(k, 0) + τ Ṗ(k, 0)[1 + (τu)−1]/(τu + 1)

u + τv2k2/(τu + 1)

∼ P(k, 0) + τ Ṗ(k, 0)(τu)−1

u + τv2k2

= P(k, 0) + Ṗ(k, 0)/u

u + τv2k2
. (B10)

This solution provides diffusion-like motion at long times,
with an incoming flux.
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