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First-passage and first-arrival problems in continuous-time random walks:
Beyond the diffusion approximation
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Some exact solutions of the first-passage and first-arrival problems for the continuous-time random-walk
model are obtained. On the basis of these exact solutions, the following has been revealed. First, for some jump-
length distributions with a finite variance, the approximate solutions obtained in the diffusion approximation can
differ significantly from the exact solutions. Second, for some waiting time distributions with a finite mean, the
times of first passage and the times of first arrival can significantly depend on the ensemble under consideration.
In particular, the mean first-passage time corresponding to the stationary ensemble can be significantly greater
than the mean first-passage time corresponding to the nonaged ensemble. Third, for any continuous distribution
of jump lengths, the probability of first arrival is zero for a point-like target. This last result is contrary to
existing opinion, but it is consistent with the fact that a single point has a probability measure equal to zero in
the probability space defined by a continuous distribution of jump lengths.
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I. INTRODUCTION

The continuous-time random walk (CTRW) model devel-
oped by Montroll and Weiss [1] is one of the most popular
and frequently used means of describing anomalous diffusion
[2–10]. In the practical applications of this model, one usually
resorts to the diffusion approximation, which allows one to
pass from integral equations to differential equations, which
are much easier to solve [3,4,7,10]. In this article we consider
the question of the legitimacy of using the diffusion approxi-
mation when solving first-passage and first-arrival problems.

In the decoupled version of the CTRW model, the propa-
gator [coordinate probability density function corresponding
to the initial condition P(x, t = 0) = δ(x)] has the following
form in Fourier-Laplace space [4]:

P(k, s) = 1 − ψ (s)

s

1

1 − ψ (s)q(k)
. (1)

Here, ψ (s) is the Laplace transform of the waiting time dis-
tribution ψ (t ) [ψ (s) = ∫ ∞

0 exp(−st )ψ (t )dt] and q(k) is the
Fourier transform of the jump-length distribution q(x) [q(k) =∫ ∞
−∞ exp(−kix)q(x)dx].

At the initial stage of development of the theory of anoma-
lous diffusion, it was assumed that the nature of diffusion
observed in experiment is completely determined by the be-
havior of functions ψ (t ) and q(x) at large values of t and
x, which correspond to small values of s and k [4]. So,
the assumption that was previously applied to normal diffu-
sion and which is called the diffusion approximation [11,12]
was extended to anomalous diffusion. Under this assumption,
functions ψ (s) and q(k) in expression (1) can be replaced
by the leading terms of their expansions in the vicinity of
(k = 0, s = 0). If the mean waiting time ξ [ξ = ∫ ∞

0 tψ (t )dt]

and the jump-length variance σ 2 [σ 2 = ∫ ∞
−∞ x2q(x)dx] are

finite values then the leading terms of the expansions are

ψ (s) ≈ 1 − ξs, (2)

q(k) ≈ 1 − σ 2

2
k2. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives the Gaussian
propagator [4]

P(k, s) = 1

s + Dk2
, (4)

where D = σ 2/(2ξ ). As we see, in this approximation, CTRW
reduces to normal diffusion.

The diffusion approximation excludes anomalous diffusion
for finite ξ and σ 2. Within this approximation, anomalous
diffusion is possible only at infinite ξ or σ 2. However, fur-
ther research has shown that in many cases the assumption
on which the diffusion approximation is based is violated
[13–21]. In particular, the authors of Ref. [22] established
through numerical modeling that the CTRW model with finite
mean waiting time and finite jump-length variance meets all
the paradigmatic features that belong to the anomalous dif-
fusion as it is observed in living systems. It follows that in
many cases the diffusion approximation is inapplicable and
when solving specific problems it is necessary to use the exact
CTRW model.

The subject of this article is the solution of some first-
passage and first-arrival problems within the framework of the
CTRW model without involving the diffusion approximation.
A CTRW model with distinct waiting time distribution for the
first jump [23,24] is considered; this allowed us to study the
dependence of the results on the initial state of the system.

Previously, the integral equations of the CTRW model
were solved in Refs. [25] and [26]. In Ref. [25], the survival
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probability Ps of an immobile target surrounded by mobile
traps was calculated for one spatial dimension. For the case of
a jump-length distributions with a finite variance and a waiting
time distributions with a finite mean, the expression

Ps ≈ exp[−2ρ(
√

4Dt/π + K )] (5)

was obtained in the long-time limit, where ρ is the trap con-
centration, D is the diffusion coefficient, and K is a constant
depending on the features of the jump-length distribution. As
is known, in the diffusion approximation, the constant K is
equal to zero. The authors found a general expression for this
constant but did not explore what values it could take. One
of the results of this article is that the constant K can take
any value in the interval (−∞, 0). The authors of Ref. [26]
calculated the mean first-passage time for a CTRW with an ex-
ponential towards the boundary distribution of jump lengths.
They found that the diffusion approximation is violated if
the starting point is near the boundary. One of the results of
this article is that, for some distributions of jump lengths, the
diffusion approximation is violated even for a starting point
far from the boundary.

The article is organized as follows: In the second sec-
tion, equations are derived for the survival probability in the
CTRW model with the waiting time distribution of the first
jump different from the waiting time distribution of subse-
quent jumps. In sections from the third to the fifth, specific
problems for CTRW with the jump-length distribution in
the form of a sum of Laplace distributions (two-sided ex-
ponential distributions) are solved. In the third section, the
first-passage problem is solved for a semi-infinite interval. In
the fourth section, the first-passage problem is solved for a
bounded interval. In the fifth section, the first-arrival problem
is solved. In the sixth section, the case of the aged CTRW is
considered.

II. EQUATIONS FOR THE SURVIVAL PROBABILITY

Let D be an arbitrary set in Rn and D̄ its complement.
The particle performs random walks, starting from point x0,
belonging to D. When it ends up in region D̄, the particle dies.
We will be interested in the survival probability, which will
allow us to calculate the first-passage (first-arrival) times.

The equations of the continuous-time random walk model
in the case under consideration are written as [23]

F (x, t ) = φ(t )q(x − x0) +
∫ t

0

∫
D

ψ (t − τ )q(x − y)

× F (y, τ )dτdy, (6)

P(x, t ) = 
(t )δ(x − x0) +
∫ t

0
�(t − τ )F (x, τ )dτ. (7)

Here F (x, t ) is the probability density that the particle arrives
at the position x at time t, P(x, t ) is the probability density
of finding the particle at position x at time t, ψ (t ) is the
probability density to make a jump at time t after previous
jump, �(t ) = 1 − ∫ t

0 ψ (τ )dτ , φ(t ) is the probability density
of making the first jump at time t after the starting monitor-
ing the system, 
(t ) = 1 − ∫ t

0 φ(τ )dτ, q(x) is the probability
density of jump length, which in this article is assumed to
be continuous and symmetrical: q(x) = q(−x). It is assumed

that the particle crosses the boundary between the two regions
unhindered, so no additional conditions at the boundary are
required for equations (6) and (7).

In Laplace domain, equations (6) and (7) have the form

F (x, s) = φ(s)q(x − x0) + ψ (s)
∫

D
q(x − y)F (y, s)dy, (8)

P(x, s) = 
(s)δ(x − x0) + �(s)F (x, s). (9)

In the special case when the waiting time distribution of the
first jump φ, coincides with the waiting time distribution of
the second and subsequent jumps, ψ , these equations take the
form

F (x, s) = ψ (s)q(x − x0) + ψ (s)
∫

D
q(x − y)F (y, s)dy, (10)

P(x, s) = �(s)δ(x − x0) + �(s)F (x, s). (11)

A comparison of equations (8) and (10) shows that the solu-
tion of the first [we denote it by Fφ (x, s)] is expressed through
the solution of the second [designated F (x, s)] according to
the formula

Fφ (x, s) = (φ/ψ )F (x, s). (12)

From equation (11) it follows that

F (x, s) = P(x, s)/� − δ(x − x0). (13)

Substituting (13) into (12) and (12) into (9) gives the follow-
ing expression for the probability density corresponding to the
waiting time distribution of the first jump φ [we denote it by
Pφ (x, s)] through the probability density corresponding to the
waiting time distribution of the first jump ψ [designated as
P(x, s)]:

Pφ (x, s) = φ(s)

ψ (s)
P(x, s) + 1

s

(
1 − φ(s)

ψ (s)

)
δ(x − x0). (14)

Previously, this formula was obtained in Ref. [27] for an un-
bounded space, when the probability is conserved. Here it was
obtained for an arbitrary set D in the presence of absorption
in D̄. Integrating this formula over area D, we obtain the
relationship between the Laplace transforms of the survival
probabilities:

Qφ (x0, s) = φ(s)

ψ (s)
Q(x0, s) + 1

s

(
1 − φ(s)

ψ (s)

)
. (15)

The survival probability Qφ (x0, t ) is defined as the probability
that the particle starting from x0 in a process with a waiting-
time distribution φ(t ) different from ψ (t ) survives until time
t without being absorbed into D̄. The survival probability
Q(x0, t ) is defined similarly for a process with φ(t ) = ψ (t ).
Relationship (15) is the final result of the previous calcu-
lations. It shows that Qφ (x0, s) can be easily calculated if
Q(x0, s) is known.

It is straightforward to write down an equation for the
survival probability Q(x0, t ):

Q(x0, t ) = �(t ) +
∫ t

0

∫
D

ψ (τ )q(y − x0)Q(y, t − τ )dτdy.

(16)

Here we have divided the survival probability into two
contributions. The first term on the right-hand side (RHS)
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corresponds to trajectories in which there are no jump between
time (0, t ). The second term on the RHS takes into account
trajectories in which the particle made at least one jump. The
first renewal picture is used [28]. The expression ψ (τ )q(y −
x0)Q(y, t − τ ) inside the integral gives the probability of a
jump from x0 to (y, y + dy) between time (τ, τ + dτ ) and
the absence of absorption from τ to t . A special case of
equation (16) for set D, which is a semi-infinite interval, was
considered in Ref. [26]. In the Laplace domain, equation (16)
looks like

Q(x0, s) = 1 − ψ (s)

s
+ ψ (s)

∫
D

q(y − x0)Q(y, s)dy. (17)

Formula (15) and equation (16) are valid for any set in an
arbitrary space, but later in this article only problems for
different types of intervals on a line will be considered.

III. FIRST-PASSAGE PROBLEM FOR
A SEMI-INFINITE INTERVAL

Let us consider the case when the sets D and D̄
are semi-infinite intervals x � 0 and x < 0. For this case,
there is a general expression for the double Laplace trans-
form of the survival probability Q(p, s) = ∫ ∞

0

∫ ∞
0 exp(−px −

st )Q(x, t )dxdt (hereinafter the index 0 in x0 is omitted):

Q(p, s) =
√

1 − ψ (s)

ps

× exp

(
− p

π

∫ ∞

0

ln[1 − ψ (s)q̂(ω)]

p2 + ω2
dω

)
, (18)

where q̂(ω) = ∫ ∞
−∞ exp(iωx)q(x)dx is the Fourier transform

of the q(x). This expression is obtained from the Pollaczek-
Spitzer formula [29–33] using the formula connecting the
Laplace transform A(s) of a certain quantity for a process
with continuous time with the generating function B(u) of
the same quantity for a process with discrete time: A(s) =
1−ψ (s)

s B(ψ (s)) [25,34]. From formula (18), using the limit
theorem limp→∞ pQ(p, s) = Q(x = 0, s), the following ex-
pression is obtained for the survival probability at x = 0:

Q(x = 0, s) =
√

1 − ψ

s
. (19)

In the special case of exponential distribution of waiting time
ψ (t ) = exp(−κt ) we have

Q(x = 0, s) = 1√
s(κ + s)

. (20)

Inverting the Laplace transform gives a continuous-time ana-
log of the Sparre-Andersen theorem [30,35]

Q(x = 0, t ) = exp

(
−κt

2

)
I0

(
κt

2

)
, (21)

where I0(x) is the modified Bessel function of the first kind.
Since I0(x) � 1√

2πx
exp(x) at large x, we have

Q(x = 0, t ) � 1√
πκt

(22)

at large time. From formula (19) and the Tauberian theorem
it follows that this relation is also valid for any waiting-time

distribution with a mean waiting time equal to 1/κ . Formulas
(19) and (22) will be used below to control the correctness of
the results obtained.

Further in this article it will be assumed that the distribution
of jump lengths has the form of a weighted sum of Laplace
distributions:

q(x) = 1

2

N∑
i=1

αiνi exp (−νi|x|), (23)

with positive parameters νi and parameters αi satisfying
the condition

∑N
i=1 αi = 1. Parameters αi, in principle, can

be negative, but for simplicity they will be assumed to be
positive.

In the case considered in this section, equation (17) takes
the form

Q(x, s) = 1 − ψ

s
+ ψ

2

N∑
i=1

αiνi

×
∫ ∞

x
exp[−νi(ξ − x)]Q(ξ, s)dξ + ψ

2

N∑
i=1

αiνi

×
∫ x

0
exp[νi(ξ − x)]Q(ξ, s)dξ . (24)

We look for a solution to this equation in the form

Q(x, s) = β0 +
N∑

j=1

β j exp(−λ jx). (25)

Substituting expression (25) into equation (24) shows that this
equation will be satisfied if β0 = 1/s, the parameters λ j are N
different solutions of the equation

N∑
i=1

αiν
2
i

ν2
i − λ2

j

= 1

ψ
, (26)

and the parameters β j for j = 1, . . . , N are the components of
the vector that is the solution to the linear system of equations

N∑
j=1

β jνi

λ j − νi
= 1

s
, i = 1, 2, . . . , N. (27)

For N = 1 and N = 2, equations (26) and (27) can be easily
solved analytically.

A. N = 1

In this case, the positive solution to equation (26) is
λ1 = ν1

√
1 − ψ , and the solution to equation (27) is β1 =

(
√

1 − ψ − 1)/s. For the survival probability we have the
expression

Q(x, s) = 1

s

{
1 − (1 −

√
1 − ψ ) exp

(
−x

l

√
1 − ψ

)}
, (28)

where l = 1/ν1. At x = 0 we have Q(x = 0, s) =
(
√

1 − ψ )/s, as it should be.
Let us consider the behavior of the survival probability

at long times. Assuming that the mean waiting time is fi-
nite, we represent the Laplace transform of the waiting-time
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distribution at small s as ψ (s) � 1 − s/κ . As a result, we
obtain from (28)

Q(x, s) � 1

s

{
1 − exp

(
−x

l

√
s

κ

)}
+ 1√

sκ
exp

(
−x

l

√
s

κ

)
.

(29)

Inverting the Laplace transform, we obtain

Q(x, t ) � erf

{
x

l
√

4κt

}
+ 1√

πκt
exp

{
− x2

4l2κt

}
. (30)

A similar expression was previously obtained for a discrete
time in Ref. [29]. At x = 0 we have Q(x = 0, t ) = 1/

√
πκt ,

as it should be.
The first term on the right side of (30) represents the diffu-

sion approximation. Let us find a condition under which this
approximation is valid. For a fixed x and t tending to infinity,
erf{x/(l

√
4κt )} is approximately equal to x/(l

√
πκt ), and

exp{−x2/(4l2κt )} is close to unity. Consequently, the second
term on the right side of (30) will be negligible compared with
the first term under the condition x � l . The value l is approx-
imately equal to the mean length of the jump; therefore, in the
case under consideration, the diffusion approximation is valid
if the distance between the starting point and the boundary of
region D significantly exceeds the mean length of the jump.
In particular, for the error of the diffusion approximation to be
less than one percent, condition x > 100l must be satisfied.

B. N = 2

In this case, positive solutions to equation (26) are

λ1 = √
d − c (31)

and

λ2 = √
d + c, (32)

where

d = ν2
1 + ν2

2 − ψ
(
α1ν

2
1 + α2ν

2
2

)
2

, (33)

c =
√

d2 − (1 − ψ )ν2
1ν2

2 . (34)

The solutions to equation (27) are

β1 = −λ2(λ1 − ν1)(λ1 − ν2)

sν1ν2(λ2 − λ1)
, (35)

β2 = λ1(λ2 − ν1)(λ2 − ν2)

sν1ν2(λ2 − λ1)
. (36)

With these parameters β1 and β2, the survival probability (25)
at x = 0, Q(x = 0, s) = β0 + β1 + β2 is equal to

√
1 − ψ/s,

as it should be.
The leading terms of the expansions of parameters λ j and

β j as s tends to zero are

λ1 =
√

s

κ

ν2
1ν2

2

α1ν
2
2 + α2ν

2
1

, (37)

λ2 =
√

α1ν
2
2 + α2ν

2
1 , (38)

β1 = −1

s
+ λ1

s

{
1

ν1
+ 1

ν2
− 1

λ2

}
, (39)

β2 = λ1λ2

sν1ν2
− λ1

s

{
1

ν1
+ 1

ν2
− 1

λ2

}
. (40)

Thus, for small s we have the following expression for the
survival probability:

Q(x, s) � 1

s

[
1 − exp

{
−x

l̄

√
s

κ

}]
+ A√

sκ
exp

{
−x

l̄

√
s

κ

}

+ 1 − A√
sκ

exp

{
− l̄2

l1l2
x

}
. (41)

Here we introduce the notation l1 = 1/ν1, l2 = 1/ν2,

l̄ =
√

α1l2
1 + α2l2

2 , (42)

A = l1/l̄ + l2/l̄ − l1l2/l̄2. (43)

Inverting the Laplace transform, we obtain

Q(x, t ) � erf

{
x

l̄
√

4κt

}
+ A√

πκt
exp

{
− x2

4l̄2κt

}

+ 1 − A√
πκt

exp

{
− l̄2

l1l2
x

}
. (44)

At x = 0 we have Q(x = 0, t ) = 1/
√

πκt , as it should be.
This expression differs from (30) by the presence of the third
term on the right side and coefficient A in the second term.
The second term is negligible compared with the first term
under the condition x � Al̄ . The third term does not play a
significant role for large x. Therefore, in this case, for the error
of the diffusion approximation to be less than one percent,
condition x > 100Al̄ must be satisfied.

There are distributions of the form (23) such that, for a
fixed mean jump length, the parameter A will be arbitrarily
large. For example, let C be an arbitrary number greater than
one and let

l1 = Cl̄, (45)

l2 = l̄/C, (46)

α1 = 1 − 1/C2

C2 − 1/C2
, (47)

α2 = C2 − 1

C2 − 1/C2
, (48)

then the square of the mean jump length, α1l2
1 + α2l2

2 , is equal
to l̄2, and the constant A is equal to C + 1/C − 1. Since C can
be arbitrarily large, A can also be arbitrarily large, regardless
of l̄ .

From the previous considerations it is clear that there are
distributions of jump lengths for which the diffusion ap-
proximation will be violated even at very large x. These are
distributions with large values of parameter A. From formulas
(45)–(48) it follows that these are the distributions with large
l1 and small l2, with α1 close to zero and α2 close to one; that
is, the distributions with “heavy tails.” With this distribution,
the particle predominantly makes short jumps, but sometimes
also makes long jumps.

C. The many-particle problem

Consider the following problem, which was previously
considered in Ref. [25]. Particles are randomly distributed on
a line with density ρ. At the initial moment, they begin to
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move in accordance with the CTRW model. At point x = 0
there is a stationary particle that dies as soon as one of the
moving particles passes through x = 0. We need to find the
survival probability of the stationary particle as a function of
time. In Ref. [25] the following solution to this problem was
obtained:

Ps = exp [−2ρ f (t )], (49)

where

f (t ) =
∫ ∞

0
{1 − Q(x, t )}dx. (50)

Using the Pollacek-Spitzer formula, the authors found the fol-
lowing general expression for the function f (t ) at large times
in the case of finite mean waiting time we are considering:

f (t ) �
√

4κ l̄2t

π
+ K. (51)

The constant K is expressed through the jump-length distribu-
tion as

K = 1

π

∫ ∞

0
ln

{
1 − q̂(ω)

l̄2ω2

}
dω

ω2
. (52)

If we take (44) as the survival probability in formula (50),
then we obtain (51) with the constant K equal to −l̄A. There-
fore, in this case, the survival probability (49) can be written
as

Ps = exp(2ρ l̄A)Pdif
s , (53)

where Pdif
s = exp[−2ρ(4κ l̄2t/π )1/2] is the survival probabil-

ity calculated in the diffusion approximation. This shows that
for large A the true survival probability will be significantly
greater than the survival probability calculated in the diffusion
approximation. Note that if we substitute

q̂(ω) = α1

1 + l2
1 ω2

+ α2

1 + l2
2 ω2

(54)

into formula (52), we obtain the same value for the constant K :
−l̄A. This confirms the correctness of the calculations leading
to formula (44).

IV. FIRST-PASSAGE PROBLEM FOR
A BOUNDED INTERVAL

This section considers the case when the sets D and D̄ are
bounded interval [−L, L] and two semi-infinite intervals x <

−L and x > L. In this case, equation (17) takes the form (only
positive x are considered)

Q(x, s)= 1 − ψ

s
+ ψ

2

N∑
i=1

αiνi

∫ L

x
exp[−νi(ξ − x)]Q(ξ, s)dξ

+ ψ

2

N∑
i=1

αiνi

∫ x

−L
exp[νi(ξ − x)]Q(ξ, s)dξ . (55)

The solution to this equation must be a symmetric function of
x, so we look for it in the form

Q(x, s) = β0 +
N∑

j=1

β j{exp(−λ jx) + exp(λ jx)}. (56)

Substituting this expression into equation (55) shows that this
equation will be satisfied if β0 = 1/s, the parameters λ j are N
different solutions of the equation

N∑
i=1

αiν
2
i

ν2
i − λ2

j

= 1

ψ
, (57)

and the parameters β j for j = 1, . . . , N are the components of
the vector that is the solution to the linear system of equations

N∑
j=1

β j

{
νi exp(λ jL)

λ j − νi
− νi exp(−λ jL)

λ j + νi

}
= 1

s
,

i = 1, 2, . . . , N. (58)

A. N = 1

When N = 1 we find from equations (57) and (58)

λ1 = ν1

√
1 − ψ, (59)

β1 = − 1

2s

ψ

ch(λ1L) + √
1 − ψ )sh(λ1L)

. (60)

Hence,

Q(x, s) = 1

s

{
1− ψch

(
x
l

√
1 − ψ

)
ch

(
L
l

√
1 − ψ

) + √
1 − ψ )sh

(
L
l

√
1 − ψ

)
}

.

(61)

If instead of the variable x, counted from the middle of the
interval, we introduce the variable y = L − x, counted from
the boundary of the interval, and direct L to infinity, keeping
y constant, then this formula will turn into formula (28), as it
should be.

We use formula (61) to calculate the mean first-passage
time (MFPT) T (x). As known, T (x) = lims→0 Q(x, s). As-
suming ψ (s) ≈ 1 − s/κ and calculating the limit, we obtain

T (x) = 1

2κl2
(L2 − x2 + 2Ll + 2l2). (62)

In the diffusion approximation we have

T diff (x) = 1

2κl2
(L2 − x2). (63)

To evaluate the accuracy of the diffusion approximation, let
us move in (62) to the variable y = L − x, counted from the
boundary of the interval:

T (y) = 1

2κl2
(2Ly − y2 + 2Ll + 2l2). (64)

If both the mean length of the jump, l , and the distance from
the starting point to the boundary, y, are much smaller than the
length of the interval, 2L, then the condition for the validity
of the diffusion approximation will look like 2Ly � 2Ll; that
is, y � l . For the error to be less than one percent, condition
y > 100l must be met.

B. N = 2

When N > 1, the MFPT is easier to find by directly solving
the equation for T (x) instead of the equation for Q(x, s). The
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equation for T (x) is obtained from (55) in the limit s → 0:

T (x) = 1

κ
+ 1

2

N∑
i=1

αiνi

∫ L

x
exp[−νi(ξ − x)]T (ξ )dξ

+ 1

2

N∑
i=1

αiνi

∫ x

−L
exp[νi(ξ − x)]T (ξ )dξ . (65)

The solution is sought in the form

T (x) = β0 +
N−1∑
j=1

β j2ch(λ jx) + βN x2. (66)

Substituting this expression into equation (65) shows that this
equation will be satisfied if

βN = − 1

2κ l̄2
, (67)

the parameters λ j are N − 1 different nonzero positive solu-
tions to the equation

N∑
i=1

αiν
2
i

ν2
i − λ2

j

= 1, (68)

and the parameters β j for j = 0, . . . , N − 1 are the compo-
nents of the vector that is the solution to the linear system of
equations

N−1∑
j=1

β j

{
νi exp(λ jL)

λ j − νi
− νi exp(−λ jL)

λ j + νi

}

= β0 + βN

{
L2 + 2L

νi
+ 2

ν2
i

}
, i = 1, 2, . . . , N. (69)

For N = 2, solutions to equations (68) and (69) are

λ1 =
√

α1ν
2
2 + α2ν

2
1 , (70)

β0 = β2

{
d1t2 − d2t1

t1 − t2
− L2

}
, (71)

β1 = β2
d1 − d2

t1 − t2
, (72)

where

di = 2Lli + 2l2
i , (73)

ti = νi exp (λ1L)

λ1 − νi
− νi exp (−λ1L)

λ1 + νi
. (74)

If parameters li and αi are determined by formulas (45)–(48),
then instead of formulas (70), (73) and (74) we will have

λ1 = 1/l̄, (75)

d1 = 2Ll̄C + 2l̄2C2, (76)

d2 = 2Ll̄/C + 2l̄2/C2, (77)

t1 = exp(L/l̄ )

C − 1
− exp(−L/l̄ )

C + 1
, (78)

t2 = exp(L/l̄ )

1/C − 1
− exp(−L/l̄ )

1/C + 1
. (79)

From these formulas it follows that, if conditions C � 1 and
L � l̄ are satisfied, then the parameters β0 and β1 will be
approximately equal to −β2(L2 + d1) and β2d1 exp(−L/l̄ ),
respectively. From this we get the following expression for
MFPT:

T (x) � 1

2κ l̄2

{
L2 − x2 + d1 − 2d1

ch(x/l̄ )

exp(L/l̄ )

}
. (80)

This expression is valid when the third and fourth terms in
brackets do not cancel each other, in particular, at x � L,
when the fourth term is negligible. Since d1 can be arbitrarily
large, the result given by expression (80) can differ signifi-
cantly from the result of the diffusion approximation (63) even
at x = 0, that is, at the maximum distance of the starting point
from the boundary of the interval [−L, L].

V. FIRST-ARRIVAL PROBLEM

This section considers the case when the sets D and D̄ are
two semi-infinite intervals x < −L and x > L and bounded
interval [−L, L]. In this case, equation (17) takes the form
(only positive x are considered)

Q(x, s) = 1 − ψ

s
+ ψ

2

N∑
i=1

αiνi

∫ ∞

x
exp [−νi(ξ − x)]Q(ξ, s)dξ

+ ψ

2

N∑
i=1

αiνi

∫ x

L
exp [νi(ξ − x)]Q(ξ, s)dξ

+ ψ

2

N∑
i=1

αiνi

∫ −L

−∞
exp [νi(ξ − x)]Q(ξ, s)dξ .

(81)

The solution to this equation must be a symmetric function
bounded at infinity, so we look for it in the form

Q(x, s) = β0 +
N∑

j=1

β j exp(−λ j |x|). (82)

Substituting this expression into equation (81) shows that this
equation will be satisfied if β0 = 1/s, the parameters λ j are N
different solutions of the equation

N∑
i=1

αiν
2
i

ν2
i − λ2

j

= 1

ψ
, (83)

and the parameters β j for j = 1, . . . , N are the components of
the vector that is the solution to the linear system of equations

N∑
j=1

β j exp(−λ jL)

{
νi exp(−νiL)

νi + λ j
− νi exp(νiL)

νi − λ j

}

= exp(−νiL) − exp(νiL)

s
, i = 1, 2, . . . , N. (84)

When N = 1 we find from equations (83) and (84)

λ1 = ν1

√
1 − ψ, (85)

β1 = −ψ

s

sh(ν1L) exp (λ1L)

sh(ν1L) + √
1 − ψch(ν1L)

. (86)
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Hence,

Q(x, s) = 1

s

{
1 − ψsh(ν1L) exp (λ1(L − x))

sh(ν1L) + √
1 − ψ )ch(ν1L)

}
. (87)

If instead of the variable x we introduce the variable y = x −
L, equal to the distance from the starting point to the boundary,
and direct L to infinity, keeping y constant, then this formula
will turn into formula (28), as it should be.

Formula (87) shows that the marginal survival probabil-
ity Q(x, t → ∞) = lims→0[sQ(x, s)] is equal to zero for any
nonzero absorption interval [−L, L], but when L = 0, that
is, when the interval contracts to a single point x = 0, the
marginal probability is equal to one. This is explained by the
fact that the probability of a particle hitting any finite interval
as a result of a jump is different from zero, but the proba-
bility of hitting a single point is zero. To demonstrate this
more clearly, consider formula (87) for large s, corresponding
to small times. Suppose ψ (s) = κ/(κ + s), then ψ ≈ κ/s at
large s and the main terms of expansion (87) in powers of 1/s
have the form

Q(x, s) ≈ 1

s
− κ

s2

sh(ν1L) exp [ν1(L − x)]

sh(ν1L) + ch(ν1L)
+ · · · . (88)

Going to physical time gives

Q(x, t ) ≈ 1 − κt
sh(ν1L) exp [ν1(L − x)]

sh(ν1L) + ch(ν1L)
+ · · · . (89)

In the second term on the right side, the factor κt is equal
to the probability that the first jump is made during time t (at
t � 1/κ). The fraction behind this factor gives the probability
that the jump from point x falls into the interval [−L, L]:

sh(ν1L) exp [ν1(L − x)]

sh(ν1L) + ch(ν1L)
= 1

2

∫ L

−L
exp [ν1(ξ − x)]dξ . (90)

From here we see why the linear term in expansion (89) disap-
pears at L = 0. The reason is that the integral on the right side
of (90) is equal to zero; that is, that the probability of hitting
a single point is zero. Since the probability of hitting a single
point is also zero at the second, third, and so on jumps, all
subsequent terms of expansion (89) also disappear at L = 0.
The same reasoning is valid for any continuous distribution
q(x). If the particle is at point x, then the probability of it
falling into the interval [−L, L] as a result of a jump is equal to
the integral

∫ L
−L q(ξ − x)dξ . If the distribution is continuous,

then this integral tends to zero as L tends to zero.
As is known, in the diffusion approximation, the survival

probability in the first-arrival problem does not depend on
the width of the absorption interval and is equal to the sur-
vival probability in the first-passage problem [36]. This also
applies to an interval consisting of a single point. From the
above it follows that these diffusion approximation results
are completely inconsistent with the exact solutions of the
first-arrival problem in the CTRW model with a continuous
distribution of jump lengths. This is explained by the fact that
in the diffusion approximation the particle cannot jump over
intermediate points as happens in the CTRW model.

If the absorbing region D̄ is small, then the first-arrival
problem can be approximately solved by a method that is valid
in a space of any dimension and for any distribution q(x).
This method makes it possible to find not only the survival

probability, but also the coordinate PDF. The equation for the
coordinate PDF has the following form in Laplace domain:

P(x, s) = 1 − ψ

s
δ(x − x0) + ψ

∫
D

q(x − y)P(y, s)dy. (91)

In this equation, it is assumed that if a particle falls into
region D̄, then it disappears and is excluded from further
consideration. But we can, without distorting the function
P(x, s) in region D, assume that the particle disappears not
at the moment of arrival in D̄, but at the moment of the jump
following its arrival in this region. In this case, the equation for
P(x, s) will be written as

P(x, s) = 1 − ψ

s
δ(x − x0) + ψ

∫ ∞

−∞
q(x − y)P(y, s)dy

− ψ

∫
D̄

q(x − y)P(y, s)dy. (92)

It is obtained from (91) by adding and subtracting the term
ψ

∫
D̄ q(x − y)P(y, s)dy. This equation is valid for all x ∈

(−∞,∞). If the region D̄ is small, we can approximate
the last integral by some quadrature formula and solve this
equation using the Fourier transform method. The result
will be the expression P(x, s) = f (x, s, Pi ), containing as un-
known parameters the values Pi = P(xi, s) at some points xi

of the region D̄. By writing the self-consistency conditions
f (xi, s, Pi ) = Pi for all xi, we obtain linear equations for the
parameters Pi, solving which we uniquely determine the func-
tion f (x, s, Pi ). In this way the coordinate PDF will be found,
and therefore the survival probability can be found.

If the domain D̄ contracts to a point, then the integral
over this domain in equation (92) vanishes for any continuous
distribution of jump lengths in space of any dimension, so this
equation reduces to an equation that preserves probability. It
follows that the probability of hitting a point target is zero for
any distribution of jump lengths in space of any dimension.

Let us show that for L � 1/ν1 this method gives a solu-
tion that practically coincides with the exact solution (87).
We use the simplest approximation of the integral

∫ L
−L q(x −

y)P(y, s)dy by the expression 2Lq(x)P(0, s). Solving equa-
tion (92), we find

P(x, s) = P∞(x, s|x0) − 2LP(0, s)
(x, s|0), (93)

where P∞(x, s|x0) is the coordinate PDF for an infinite
line corresponding to the initial condition δ(x − x0) and

(x, s|x0) = s

1−ψ
P∞(x, s|x0) − δ(x − x0). Setting x equal to

zero in equation (93), solving this equation for P(0, s) and
substituting the resulting expression back into (93), we obtain

P(x, s) = P∞(x, s|x0) − 2L
(x, s|0)P∞(0, s|x0)

1 + 2L
(0, s|0)
. (94)

The survival probability is found using formula

Q(x0, s) =
∫ ∞

−∞
P(y, s)dy − 2LP(0, s), (95)

which gives

Q(x0, s) = 1

s

(
1 − 2L
(0, s|x0)

1 + 2L
(0, s|0)

)
. (96)
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This formula is valid for any continuous distribution q(x).
In the special case of q(x) = ν1

2 exp(−ν1|x|), the function

(x, s|x0) is expressed as


(x, s|x0) = ψν1

2
√

1 − ψ
exp (−λ1|x − x0|). (97)

Substituting this expression into (96), we obtain

Q(x0, s) = 1

s

(
1 − ψν1L exp (−λ1x0)

ψν1L + √
1 − ψ

)
. (98)

If in formula (87) we replace sh(ν1L) with ν1L, and
ch(ν1L) and exp(−λ1L) with units (these replacements are
valid for L � 1/ν1), then we get an expression that practically
coincides with (98). This means that formula (96) gives a
good approximation to the exact solution of the first-arrival
problem. The smaller the length of the interval [−L, L], the
better the accuracy of this approximation. In the limit when
the interval is contracted to one point, it gives the exact solu-
tion Q(x0, s) = 1/s.

From the above considerations it is clear that formulas sim-
ilar to formula (96) can be obtained for first-arrival problems
in spaces of any dimension. For example, in the case of two
dimensions, a similar formula, instead of the one-dimensional
density 
, will contain the corresponding two-dimensional
density and instead of the length of the interval [−L, L], it
will contain the area of the region D̄.

VI. AGED CONTINUOUS-TIME RANDOM WALK

In the three previous sections, equation (17) was solved,
which assumes that at the initial moment of time the system
is in such a state that the distribution of the waiting time for
the first jump coincides with the distribution of the waiting
time for the second and subsequent jumps. This section exam-
ines the question of how the solutions found in the previous
sections can change if the waiting-time distribution of the
first jump differs from the waiting-time distribution of the
subsequent jumps.

The correct choice of the waiting-time distribution of the
first jump depends on the initial condition. If the diffusion sys-
tem is created at the beginning of observation (at t = 0), then
the distribution φ(t ) coincides with ψ (t ) [23]. If observation
begins some time after the creation of the diffusion system,
then the system is said to have aged. If a time equal to ta has
passed before the start of observation, then φ as a function of
the variables t and ta is expressed in the Laplace domain as

φ(s, u) = ψ (s) − ψ (u)

[1 − ψ (u)](u − s)
, (99)

where u is the Laplace variable corresponding to ta [27,37–
39]. In this case, relation (15) is written as

Qφ (x, s, u) = φ(s, u)

ψ (s)
Q(x, s) + Pim(s, u), (100)

where

Pim(s, u) = 1

s

(
1

u
− φ(s, u)

ψ (s)

)
.

To move from Laplace images to physical domain, it is
convenient to transform expressions Pim(s, u) and �(s, u) ≡
φ(s,u)
ψ (s) to the following forms:

Pim = �(u)

u(u − s)

[(
1

�(s)
− 1

�∞

)
−

(
1

�(u)
− 1

�∞

)]
,

(101)

� = �(u)

u�∞
+ �(u)

u(u − s)

[
u

(
1

�(u)
− 1

�∞

)

− s

(
1

�(s)
− 1

�∞

)]
, (102)

where

�(s) = sψ (s)

1 − ψ (s)
(103)

is the Laplace image of the memory function [40] and �∞ =
lims→∞ �(s). It follows that, in physical domain, quantities
Pim and � look like

Pim(t, ta) =
∫ ta

0
f1(t ′) f2(t + ta − t ′)dt ′, (104)

�(t, ta) = f1(ta)

�∞
δ(t ) − d

dt
Pim(t, ta), (105)

where f1(ta) is the inverse Laplace transform of �(u)/u and
f2(t ) is the inverse Laplace transform of 1/�(s) − 1/�∞. The
survival probability (100) takes the form

Qφ (x, t, ta) = f1(ta)

�∞
Q(x, t ) −

∫ t

0

d

dt ′ Pim(t ′, ta)

× Q(x, t − t ′)dt ′ + Pim(t, ta). (106)

It is clear from this that in an aged system, at the initial
moment of time, a particle with probability f1(ta)/�∞ is in a
mobile state and with probability Pim(0, ta) = 1 − f1(ta)/�∞
is in an immobile state. If particle is in a mobile state, then
over time the probability of its survival changes in the same
way as in a nonaged system [such as Q(x, t )]. If it is in an
immobile state, then over time it passes at rate − d

dt Pim(t, ta)
into a mobile state and further the probability of its survival
changes in the same way as in a nonaged system.

In the simple case, when the waiting-time distribution has
the form of a weighted sum of two exponentials,

ψ (t ) = p
exp (−t/τ1)

τ1
+ (1 − p)

exp (−t/τ2)

τ2
, (107)

functions Pim(t, ta) and φ

ψ
(t, ta) are calculated explicitly. In

this case, function �(s) takes the form

�(s) = 1

ξ

1 + aγ s

1 + γ s
, (108)

and from formulas (104) and (105) the following expressions
follow:

Pim(t, ta) = a − 1

a
exp

(
− t

aγ

)[
1 − exp

(
− ta

γ

)]
, (109)

φ

ψ
(t, ta) =

[
1

a
+ a − 1

a
exp

(
− ta

γ

)]
δ(t )

+ a − 1

a2γ
exp

(
− t

aγ

)[
1 − exp

(
− ta

γ

)]
,

(110)
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where

ξ = pτ1 + (1 − p)τ2, (111)

γ = τ1τ2/ξ, (112)

a = ξ [p/τ1 + (1 − p)/τ2]. (113)

In Ref. [22] it is shown that the CTRW with waiting-time
distribution (107) is capable of describing the anomalous
diffusion observed in experiment. Therefore formulas (109)
and (110) can be used to describe real physical systems. One
important property of aged systems should be noted, which
follows from formula (109). Expression 1 − exp(−ta/γ ) in
this formula describes the transition of an ensemble of par-
ticles from a mobile state to an immobile state. The rate of
this transition is characterized by the constant 1/γ . The ex-
pression exp(−t/aγ ) describes the reverse transition from the
immobile state to the mobile state. The rate of this transition
is characterized by the constant 1/aγ . Since the parameter a
is always greater than one [41,42], the reverse transition is
always slower than the forward transition. At large values of
parameter a, the time of the reverse transition will be signifi-
cantly longer than the time of the forward transition.

We now compare the survival probabilities for the aged and
nonaged systems. As an aged system, we take a stationary sys-
tem, i.e., system corresponding to an infinite delay time ta →
∞. Stationary systems deserves special attention because the
first-passage time often needs to be known just for the sta-
tionary (or equilibrium) state. In particular, the rate constant
of a diffusion-controlled bimolecular reaction (Smoluchowski
problem) is calculated for the steady state [43] and the mean
escape time from the potential well (Kramers problem) is
calculated for the equilibrium state [44]. Formula (15) in the
stationary case looks like

Qφ (x, s) = �0

�(s)
Q(x, s) + 1

s

(
1 − �0

�(s)

)
, (114)

where �0/�(s) = limu→0 φ(s, u)/ψ (s). Next, we take for-
mula (28) as a specific expression for Q(x, s) and compare the
behavior of Q(x, t ) and Qφ (x, t ) defined by expression (114)
at small and large times.

First, let us find the behavior of Q(x, t ) at small t . To do
this, let us represent ψ as �/(s + �) in formula (28) and
expand Q(x, s) in powers of 1/s as s tends to infinity:

Q(x, s) = 1

s
− �∞

2s2
exp

(
−x

l

)
+ · · · . (115)

Inverting the Laplace transform gives

Q(x, t ) = 1 − �∞t
1

2
exp

(
−x

l

)
+ · · · . (116)

Here, in the second term on the right, the factor �∞t is
the probability that the first jump is made in time t . Factor
exp[−(x/l )]/2 is the probability that a jump from point x
brings the particle to region x < 0.

Now let us find Qφ (x, t ) at small times. Substituting (28)
into (114), we obtain

Qφ (x, s) = 1

s

{
1 − �0

�(s)

(
1 −

√
s

s + �(s)

)

× exp

(
−x

l

√
s

s + �(s)

)}
. (117)

Expanding this expression in powers of 1/s as s tends to
infinity gives

Qφ (x, s) = 1

s
− �0

2s2
exp

(
−x

l

)
+ · · · . (118)

Hence

Qφ (x, t ) = 1 − �0t
1

2
exp

(
−x

l

)
+ · · · . (119)

This expression differs from (116) in that �∞ is replaced
by �0. �∞ is the frequency of jumps in the newly created
ensemble in which each particle is at the beginning of the
waiting period. �0 is the frequency of jumps in a stationary
ensemble. The ratio �∞/�0 is equal to the ratio of the diffu-
sion coefficients D0/D∞, where D0 and D∞ are the diffusion
coefficients found from the dependence of the mean-square
displacement on time [45]. D0 is the diffusion coefficient at t
equal to zero, and D∞ is the diffusion coefficient at t tending
to infinity. In real physical systems, the ratio D0/D∞ can be
very large [9], therefore, at short times, Q(x, t ) can decrease
much faster than Qφ (x, t ).

The behavior of Q(x, t ) given by (28) at large times was
discussed above; as t tends to infinity, it tends to zero accord-
ing to the law (here κ is equal to 1/ξ )

Q(x, t ) ≈ x/l + 1√
πκt

. (120)

Let us show that, at times when Q(x, t ) is close to zero,
Qφ (x, t ) can remain close to one. To do this, let us take (107)
as the distribution of the waiting time. Then the second term
in (114) takes the form

(a − 1)γ

1 + aγ s
(121)

and for Qφ (x, t ) we have inequalities

1 > Qφ (x, t ) >
a − 1

a
exp

(
− t

aγ

)
. (122)

Parameters a and γ can be arbitrarily large [41,42], so the
right side of the second inequality can be close to one for
any t . In addition, these parameters do not depend on the
parameters included in formula (120). Consequently, Qφ (x, t )
can be close to unity even at times at which Q(x, t ) is close to
zero.

The physical meaning of parameters a and γ is as follows:
Parameter a is equal to the ratio of diffusion coefficients
D0/D∞, that is, it characterizes the degree of diffusion slow-
down. Parameter γ characterizes the length of the time
interval during which the slowdown occurs. Large values of
these parameters are present in the case of pronounced tran-
sient anomalous diffusion. Consequently, a strong dependence
of the survival probability on the initial state of the system

024139-9



V. P. SHKILEV PHYSICAL REVIEW E 110, 024139 (2024)

in the first-passage and first-arrival problems will occur for
systems with pronounced anomalous diffusion.

It is clear that if the survival probability depends strongly
on the initial state of the system, then the first-passage time
will also depend strongly. Let us demonstrate this using the
example of a system described by the memory function (108).

In the case of a stationary initial state, the MFPT is found
from formula (114) as s tends to zero:

Tφ (x) = T (x) + d

ds
ln [�(s)]

∣∣∣∣
s=0

. (123)

When �(s) is defined by formula (108) the second term on
the right is equal to (a − 1)γ . Since a and γ can be arbitrarily
large, MFPT for a stationary initial state can be significantly
larger than MFPT for a nonstationary initial state.

VII. DISCUSSION

When solving specific problems within the framework
of the CTRW model, the diffusion approximation is usu-
ally used. This article examines the question of the legality
of using this approximation when solving first-passage and
first-arrival problems. Exact solutions obtained under the as-
sumption that the distribution of jump lengths has the form of
a weighted sum of Laplace distributions are compared with
approximate solutions obtained in the diffusion approxima-
tion. In particular, in the case of the first-passage problem a
two-term distribution was considered, the Fourier image of
which has the form

q(k) = 1

C2 − 1/C2

(
1 − 1/C2

1 + C2 l̄2k2
+ C2 − 1

1 + l̄2k2/C2

)
. (124)

It is shown that at large C the diffusion approximation gives
satisfactory results only in cases where the starting point is
located sufficiently far from the boundary of the absorbing
region. If C tends to infinity, then for the diffusion approxi-
mation to remain valid, the distance from the starting point to
the boundary must tend to infinity. This fact is explained as
follows: The series expansion of distribution (124) at small k
has the form

q(k) = 1 − l̄2k2 + C4 − C2 − 1/C4 + 1/C2

C2 − 1/C2
l̄4k4 + · · · .

(125)

In order for the diffusion approximation to be valid, it is
necessary that the third term of this expansion be significantly
less than the second term, i.e., that the following condition
must be met:

k2 � C2 − 1/C2

l̄2(C4 − C2 − 1/C4 + 1/C2)
. (126)

From this it can be seen that, as C increases, the range of
values of k for which the diffusion approximation is valid
narrows. Accordingly, the range of x values narrows. But since
small k corresponds to large x, the range of values of x does
not shrink to zero but shifts towards infinity.

The above reasoning were applied to distributions with
finite variance, but they can also be applied to distributions
with infinite variance. For example, if we take the weighted

sum of two Lévy distributions,

q(k) = (1 − 1/C) exp(−Cl̄αkα )

C − 1/C
+ (C − 1) exp(−l̄αkα/C)

C − 1/C
,

(127)

the expansion of which into a series in small k has the form

q(k) = 1 − l̄αkα + C2 − C − 1/C2 + 1/C

2(C − 1/C)
l̄2αk2α + · · · ,

(128)

then we can see that as C increases, the range of values of
k in which the third term is negligible compared with the
second one narrows. Accordingly, the range of x values nar-
rows. Thus, although for any C the approximate expression
for the distribution of jump lengths, q(k) ≈ 1 − l̄αkα , remains
the same, its range of validity narrows with increasing C.
Consequently, the range of validity of the equation with a
fractional derivative with respect to a spatial variable, which
is a consequence of this approximation [4], also narrows.

This paper shows that for any continuous distribution of
jump lengths, the probability of first arrival is zero for a
point-like target. This seems to contradict the results of works
that obtained nonzero distribution of the first-arrival time to
a point-like target for Lévy flights [46–48]. The apparent
contradiction is explained by the fact that in Refs. [46–48] the
diffusion approximation was used. If we abandon the diffusion
approximation, then the method of finding the distribution of
the first-passage time used in Refs. [46–48] will give the result
obtained in this article. In Refs. [46–48], the distribution of the
first-passage time was found using the well-known formula

ρ f p(s) = W (0, s|x0)

W (0, s|0)
, (129)

where

W (0, s|x0) =
∫ ∞

−∞
exp (ikx0)P(k, s)dk, (130)

and P(k, s) is the propagator given by formula (1). The au-
thors of Refs. [46–48] used an equation with the fractional
derivative with respect to the spatial variable which leads
to the following expression for the propagator: P(k, s) =
1/(s + Kα|k|α ). As a result, they obtained a nonzero density
ρ f p(s) for 1 < α � 2. However, if we take the exact expres-
sion for the Lévy flights propagator [P(k, s) = 1/[s + κ (1 −
exp(l̄α|k|α )]], then in the denominator of formula (129) we
get infinity and the density ρ f p(s) will be equal to zero for
any α. It is clear from this that using an equation with a
fractional derivative with respect to a spatial variable to solve
the first-arrival problem is unlawful.

This paper considers only distributions with two terms
in sum (23) that can be analyzed analytically. However, the
resulting equations for parameters αi and νi are valid for any
number of terms. Therefore, the method used here can be ap-
plied to solve problems with real distributions of jump lengths
encountered in practice, including truncated Lévy flights. This
is possible since any continuous distribution can be approx-
imated with any accuracy by the sum of exponentials (23)
[49,50]. The effectiveness of this approach is confirmed by its
use in solving similar problems in other branches of science
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[51,52]. This approach also works in cases where the distribu-
tion of q(x) is asymmetrical and when among the parameters
αi there are negative ones [51,52].

The main conclusion of this article is the following: When
solving a specific practical problem of the first passage or
first arrival within the framework of the CTRW model, it is
necessary to know the exact form of the distributions ψ (t )
and q(x) and solve not the diffusion equation or equation with

the fractional derivative with respect to the spatial variable
but the original integral equation. In addition, it is necessary
to take into account the dependence of the solutions on the
aging. If the problem is solved in the diffusion approximation
without taking aging into account, then in each case it is
necessary to confirm the compliance of the obtained solu-
tions with the characteristics of the physical system under
consideration.
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