
PHYSICAL REVIEW E 110, 024138 (2024)

Thermally activated particle motion in biased correlated Gaussian disorder potentials
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Thermally activated particle motion in disorder potentials is controlled by the large-�V tail of the distribution
of height �V of the potential barriers created by the disorder. We employ the optimal fluctuation method to
evaluate this tail for correlated quenched Gaussian potentials in one dimension in the presence of a small bias
of the potential. We focus on the mean escape time (MET) of overdamped particles averaged over the disorder.
We show that the bias leads to a strong (exponential) reduction of the MET in the direction along the bias.
The reduction depends both on the bias and on detailed properties of the covariance of the disorder, such as its
derivatives and asymptotic behavior at large distances. We verify our theoretical predictions for the large-�V
tail of the barrier height distribution, as well as earlier predictions of this tail for zero bias, by performing large-
deviation simulations of the potential disorder. The simulations employ correlated random potential sampling
based on the circulant embedding method and the Wang-Landau algorithm, which enable us to probe probability
densities smaller than 10−1200.
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I. INTRODUCTION

Slow thermally activated motion of overdamped particles
in a quenched disorder potential is an important research
paradigm which is relevant in many applications such as su-
percooled liquids and glassy matrices [1–4], the motion of
particles in disordered metals or semiconductors [5,6], the
motion of macromolecules in DNA [7–9], etc. Direct exper-
iments with this system have recently become available in the
form of laser-produced quenched random potentials in col-
loids [10–14]. Since the pioneering works of De Gennes [15]
and Zwanzig [16], there have been many theoretical studies in
this direction [12,17–22].

When the thermal noise is small, the mean escape time
(MET) of particles from a local potential well of the dis-
ordered potential is determined by the large-�V tail of the
probability distribution P (�V ) of the potential barriers �V
created by the disorder. This tail can be efficiently evaluated
by using the optimal fluctuation method (OFM) [17,22,23].
In particular, Ref. [22] found that this tail strongly (expo-
nentially) depends on whether the covariance of the disorder
decreases monotonically with the distance or not. These find-
ings, however, were limited to the unbiased case, that is, when
the ensemble average of the random potential V (x) at any x
is zero. In experimental situations there can be a systematic
external potential bias, and it is interesting to investigate its
role. Here we show that the bias can strongly affect the large-
�V tail of the distribution P (�V ) and, as a result, can lead to
an exponentially strong reduction of the MET in the direction
along the bias. This reduction depends both on the bias and
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on detailed properties of the covariance of the disorder, such
as its derivatives and asymptotic behavior at large distances.
The OFM calculations are based on the determination of
the optimal—that is, the most likely—configuration of the
random potential V (x) which dominates the large-�V tail of
P (�V ) [17,22].

To verify our theoretical predictions for the large-�V
tail of the barrier height distribution, as well as the earlier
predictions of this tail for zero bias [17,22], we perform
large-deviation simulations of the potential disorder. The sim-
ulations employ correlated random potential sampling based
on the circulant embedding method and the Wang-Landau
algorithm, which enable us to probe probability densities
smaller than 10−1200. As we will show, the simulation results
strongly support the theory.

Let us introduce the basic model that we consider in this
work. Overdamped particle motion in a quenched disorder
potential V (x) can be described by the Langevin equation

ẋ = −μ
dV (x)

dx
+

√
2Dξ (t ), (1)

where μ is the mobility, D is the diffusion coefficient of the
particle in the absence of the potential, and ξ (t ) is a delta-
correlated Gaussian noise with zero mean. In the following
we set μ = 1 (which renders somewhat unusual units of the
potential, [V ] = length2/time).

We suppose that the quenched random potential V (x) is
statistically homogeneous in space and normally distributed.
The potential barrier �V is formally defined as �V = V (x =
L) − V (x = −L), where we assume, without limiting the gen-
erality, that x = −L is a minimum point of V (x), x = L is a
maximum point, and V ′(x) > 0 for all |x| < L. In this case
the activated escape proceeds from left to right.

For a fixed realization of the potential V (x), the MET
over this barrier, averaged over the realizations of the thermal
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noise, is described by the classical Kramer’s formula [24]:

T ∼ exp

(
�V

D

)
, (2)

where we have omitted the preexponential factor which we are
not interested in. As in previous works [17,22], we will focus
on the MET additionally averaged over different realizations
of the disorder potential V (x). We will denote it by 〈T 〉. In
the limit of D → 0, 〈T 〉 is controlled by the large-�V tail
of the barrier distribution P (�V ) [17,22]. This tail can be
represented as

P (�V → ∞) ∼ exp [−S(�V )], (3)

where S(�V ) is a large-deviation function that will be the
focus of our attention. Therefore,

〈T 〉 ∼
∫ ∞

0
exp

[
�V

D
− S(�V )

]
d (�V ). (4)

Since D → 0, this integral can be evaluated via Laplace’s
method. The saddle point �V∗ is the maximum point of the
function

φ(�V ) = �V

D
− S(�V ). (5)

As a result, the MET averaged over the realizations of disorder
can be evaluated as

〈T 〉 ∼ exp

[
�V∗
D

− S(�V∗)

]
. (6)

To implement the evaluation outlined in Eqs. (5) and (6), we
first need to determine the large-deviation function S(�V ).
These calculations are presented in Sec. II. The simulation
algorithm is briefly described in Sec. III A, and Sec. III B
presents the simulations results. A brief summary, discussion,
and possible extensions of our results are given in Sec. IV.

II. OPTIMAL FLUCTUATION METHOD

A statistically homogeneous random Gaussian potential
V (x) is fully determined by its mean (which describes the bias
if there is one; see below) and the covariance,

κ (x − x′) = 〈V (x)V (x′)〉 − 〈V (x)〉〈V (x′)〉. (7)

We will assume that κ (z) has its absolute maximum at z = 0
and is at least twice differentiable. κ (z) can be either a mono-
tonically decreasing function of z or nonmonotonic [25]. The
variance of V (x) is equal to κ (0).

In the absence of bias, the statistical weight of a realization
of the Gaussian disorder potential V (x) is determined by the
action functional [26]

S[V (x)] = 1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′K (x − x′)V (x)V (x′), (8)

where K (x − x′) is the inverse kernel, defined by the equation∫ ∞

−∞
dx′′K (x − x′′)κ (x′ − x′′) = δ(x − x′). (9)

In the presence of a uniform bias field, E = const, we have
〈V (x)〉 = −Ex, and the potential V (x) can be represented as

V (x) = v(x) − Ex, (10)

where v(x) is a normally distributed random field with zero
mean and the covariance κ (z).

The large-�V tail of P (�V ) describes atypically large
barriers, which are dominated by the optimal configura-
tion of the potential V (x) conditioned on the specified �V
[17,22]. The optimal configuration minimizes, subject to ad-
ditional conditions that we will specify shortly, the action
functional [26]:

S (v, E ) = 1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′K (x − x′)v(x)v(x′)

= 1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′K (x − x′)

× [V (x) + Ex][V (x′) + Ex′]. (11)

Assuming that the optimal configuration of V (x) is smooth,
we can write down the conditions specifying the potential
barrier �V on an interval |x| < L of an a priori unknown
length 2L [27]:

V (x = L) − V (x = −L) = �V, (12)

dV

dx
(x = −L) = dV

dx
(x = L) = 0, (13)

d2V

dx2
(x = −L) > 0,

d2V

dx2
(x = L) < 0, (14)

dV

dx
> 0, |x| < L, (15)

where the inequality (15) guarantees that there are no other
extrema of V (x) on the interval |x| < L.

Accommodating the constraint (12) via a Lagrange multi-
plier λ and two delta functions, we obtain a modified action
functional to be minimized:

sλ[V (x)] = 1

2

∫ ∞

−∞
dx

{ ∫ ∞

−∞
dx′K (x − x′)

× [V (x) + Ex][V (x′) + Ex′]

− λ

2
V (x)[δ(x − L) − δ(x + L)]

}
. (16)

An explicit account of the constraints (13)–(15) in the action
minimization procedure is quite difficult. Therefore, we will
proceed without accounting for these constraints and make
sure a posteriori that they are obeyed by the solution.

The linear variation of the action functional (16) must
vanish, so that

δsλ[V (x)] = 1

2

∫ ∞

−∞
dx δV (x)

{ ∫ ∞

−∞
dx′K (x − x′)

× [V (x′) + Ex′] − λ

2
[δ(x − L) − δ(x + L)]

}

= 0, (17)

leading to the linear integral equation∫ ∞

−∞
K (x − x′)[V (x′) + Ex′]dx′ = λ

2
[δ(x − L) − δ(x + L)].

(18)
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Comparing this equation with Eq. (9), one can easily guess the
solution:

V (x) = λ

2
[κ (x − L) − κ (x + L)] − Ex. (19)

Then, using Eqs. (12) and (13), we determine the Lagrange
multiplier λ,

λ = �V + 2EL

κ (0) − κ (2L)
, (20)

and obtain an (in general, transcendental) equation for the
optimal value of L:

κ ′(2L) = −2E [κ (0) − κ (2L)]

�V + 2EL
, (21)

where κ ′(· · · ) is the derivative of the covariance with respect
to its argument.

Therefore, the optimal, i.e., the least improbable, configu-
ration of the disorder potential V (x), conditioned on the large
potential barrier �V , is the following:

V (x)= �V + 2EL

2[κ (0) − κ (2L)]
[κ (x − L)−κ (x + L)]−Ex. (22)

We have already imposed the conditions (12) and (13). Taking
the second derivative of both sides of Eq. (22), we see that,
for E > 0 (which we should require in any case; see below),
the conditions (14) are also satisfied. The fulfillment of the
monotonicity condition (15) depends on the specific form of
covariance, and we will discuss it shortly. Meanwhile, using
Eqs. (8) and (22), we can calculate the action:

S(�V, L) = (�V + 2EL)2

4[κ (0) − κ (2L)]
, (23)

where L is the solution of Eq. (21). In the following subsec-
tions of this section we will consider several cases depending
on the form of the covariance and on the sign and magnitude
of the external bias.

A. Zero bias

Let us first briefly review the zero-bias case, E = 0, pre-
viously considered in Refs. [17,22] and highlight the crucial
difference between monotonically decreasing (MD) and non-
monotonic (NM) covariances, uncovered in Ref. [22]. Where
necessary, we will also distinguish between nonmonotonic
covariances that become negative at some distances, non-
monotonic negative (NMN) for brevity, and covariances that
are nonmonotonic but positive everywhere (NMP). In the ab-
sence of bias, Eq. (22) for the optimal configuration of the
potential gives [22]

V (x) = �V

2[κ (0) − κ (2L)]
[κ (x − L) − κ (x + L)], (24)

and the action (23) becomes [22]

S(�V ) = (�V )2

4[κ (0) − κ (2L)]
. (25)

For the MD covariance κ (z) the action (25) is a mono-
tonically decreasing function of L. As a result, the minimum
action is achieved in the limit of L → ∞. That is, the optimal
configuration of V (x) in this case has the form of an isolated

pair of a spike and an antispike, whose shape is determined by
the shape of the covariance κ (z) [17,22].

For the NM covariance the situation is different. Let us
denote by �∗ > 0 the closest-to-zero position of the local
minimum of κ (z). To minimize the action (25) (at least locally)
and satisfy the conditions (13)–(15), we can set L = �∗/2. The
optimal configuration of the disorder potential in this case is
localized [22]. Under these assumptions and using Eq. (3), we
obtain the following predictions for the large-�V tail of the
potential barrier distribution P (�V → ∞) in the two cases
[17,22]:

− lnP (�V ) 

⎧⎨
⎩

(�V )2

4κ (0) for MD covariance,

(�V )2

4[κ (0)−κ (�∗ )] for NM covariance.
(26)

In its turn, the saddle-point evaluation, outlined in Eqs. (3)–(6)
yields the MET averaged over disorder:

ln 〈T 〉 

{

κ (0)
D2 for MD covariance,
κ (0)−κ (�∗ )

D2 for NM covariance.
(27)

Because of the very large 1/D2 factor in Eq. (27), the MET
averaged over the disorder is extremely long [17,22]. A simi-
lar exponential suppression observed in the long-time particle
diffusion in disordered potentials has been known for a long
time [15,16].

Another striking effect described by Eq. (27) is specific
to the averaged-over-disorder MET 〈T 〉. It describes a very
strong (exponential) dependence of 〈T 〉 on whether the co-
variance κ (z) is monotonic or not [22]. In systems with
nonmonotonic covariances, described by the second line of
Eq. (27), the MET is exponentially longer [for κ (�∗) < 0] or
exponentially shorter [for κ (�∗) > 0] than the MET for MD
covariances with the same variance, as described by the first
line of Eq. (27).

Independent support for the predictions (26) comes from
the bivariate normal distribution of V (x). The joint distribu-
tion of our potential V (x) taking some values V1 and V2 at two
spatial points, separated by distance 2L, is given by [28]

P(V1,V2) = 1

2π
√

κ2(0) − κ2(2L)
exp

[
− κ (0)z

2[κ2(0) − κ2(2L)]

]
,

(28)

where

z = V 2
1 + V 2

2 − 2
κ (2L)

κ (0)
V1V2. (29)

In particular, for the configuration where V1 = −�V/2 and
V2 = �V/2 [29], Eqs. (28) and (29) yield

P(�V ) = 1

2π
√

κ2(0) − κ2(2L)
exp

[
− �V 2

4[κ (0) − κ (2L)]

]

(30)

for arbitrary �V and L. Clearly, Eq. (30) provides an up-
per bound on the �V � 1 tail of P(�V )—the tail that we
are interested in. This is because this equation accounts for
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FIG. 1. Black line: an almost zero-action configuration of the
disorder potential V (x), conditioned on the potential barrier �V , for
E < 0 and L = �V/2|E |. The straight magenta line shows V (x) =
|E |x. The potential stays arbitrarily close to the straight line, except
for infinitesimally small variations to accommodate the extremum
points.

all possible configurations of V (x) obeying the conditions
V (x = −L) = −�V/2 and V (x = L) = �V/2, regardless of
whether they meet the additional conditions (13)–(15) or not.
Still, somewhat surprisingly, the exponential factor in Eq. (30)
perfectly coincides with the OFM action (25) (where one
should set E = 0), leading to Eq. (26) for the MD and NM
covariances.

B. Nonzero bias

A nonzero bias breaks the left-right symmetry of the
system. For concreteness, we continue to assume that the
direction of escape is from left to right. There is a major
difference between the negative (E < 0) and positive (E > 0)
biases. For a negative bias the minimum of the action func-
tional (11) can be made arbitrary small. To achieve this, the
optimal configuration of the random component of the poten-
tial v(x) should stay very close to zero and, via infinitesimally
small variations near x = −L and x = L, should create a local
minimum and a maximum, respectively. In its turn, L has
to be chosen to be close to �V/2|E | to provide the desired
potential barrier �V (see Fig. 1). As a result, the probability
of finding high barriers against the bias is quite high and
certainly beyond the applicability of the OFM. Therefore, here
we will deal with only a positive bias, which corresponds to
the particle escape along the bias.

1. Monotonically decreasing covariance

Let us first examine how the presence of a small bias affects
the optimal value of L = L(E ) as described by Eq. (21). One
can see from Eq. (21) that, as E goes to zero, κ ′(2L) also goes
to zero, so that the optimal barrier width 2L goes to infinity
[17,22]. However, as one can check a posteriori, it does so
slower than 1/E , that is, limE→0+ EL(E ) = 0, and we will
rely on this property.

When E is sufficiently small, we can solve Eq. (21) for L
perturbatively by using the z � 1 asymptotic of κ ′(z). Also,
for expected large L we can neglect the term κ (2L) compared
with κ (0). As a result, in the leading order at small E , the

optimal barrier width is

2L(E ) 
 (|κ ′|)−1

[
2Eκ (0)

�V

]
, (31)

where (|κ ′|)−1 is the inverse function of the z � 1 asymptotic
of |κ ′|.

As a simple and useful example, let us suppose that the
covariance decays as a power law, κ (z → ∞) 
 B z−α , where
α > 0. Then Eq. (31) yields

2L(E ) 

[

αB�V

2Eκ (0)

] 1
α+1

. (32)

As one can see, limE→0 EL(E ) indeed vanishes, as we as-
sumed. In general, the faster the covariance goes to zero at
large distances, the slower L will tend to infinity when E → 0.

In the leading order in the bias E , the action (23) becomes

S(�V ) 
 (�V )2

4κ (0)

[
1 +

(
2 + B

κ (0)

)(
αB

2κ (0)

) 1
α+1

×
(

E

�V

) α
α+1

]
. (33)

The nonanalytic correction ∼E
α

α+1 , coming from the bias, de-
scribes an increase in the “action cost” of creating the barrier
�V and, as a result, a decrease in the probability P (�V ) of
observing this barrier. This perturbative calculation demands
the strong inequality E � �V . When E → 0, the first line of
Eq. (26) is reproduced, as to be expected.

Now we can evaluate the MET from Eq. (6). Substituting
Eq. (33) into Eq. (5), we obtain

φ(�V ) = �V

D
− (�V )2

4κ (0)

[
1 +

(
2 + B

κ (0)

)(
αB

2κ (0)

) 1
α+1

×
(

E

�V

) α
α+1

]
. (34)

We find the saddle point by minimizing this expression over
�V . In the zeroth order in the bias we obtain �V = 2κ (0)/D.
We proceed perturbatively and, in the first order, obtain

�V ∗ 
 2κ (0)

D
− (α + 2)(B + 2κ (0))

2(α + 1)κ (0)

(
αBEα

D

) 1
α+1

. (35)

As a result, we arrive at the following expression for the MET
(6) in the presence of a positive bias:

ln 〈T 〉 
 κ (0)

D2
− (αB)

1
α+1 [B + 2κ (0)]

2κ (0)D2
(DE )

α
α+1 . (36)

Crucially, as D goes to zero, this MET is exponentially smaller
than its zero-bias counterpart. Also noticeable are the nonan-
alytic scalings of the correction with the bias E and with the
diffusion coefficient D. For E → 0, Eq. (27) is reproduced.
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FIG. 2. Optimal configuration of the disorder potential V (x) as
described by Eq. (40) for the Lorentzian covariance κ (z) = (1 +
z2/σ 2)−1, where, for simplicity, we set σ = 1. For the chosen ratio
E/�V = 10−3 the optimal barrier width is 2L = 10.

Repeating these calculations for a general MD covariance,
we arrive at the following results for the action and the MET:

S(�V ) = 1

4

(�V )2 + 2E�V (|κ ′|)−1[ 2Eκ (0)
�V

]
κ (0) − κ

{
(|κ ′|)−1

[ 2Eκ (0)
�V

]} , (37)

ln 〈T 〉 
 κ (0) − κ[(|κ ′|)−1(ED)] − DE (|κ ′|)−1(ED)

D2
. (38)

The saddle point in this case is

�V∗ = 2κ (0) − 2κ[(|κ ′|)−1(ED)]

D
− E (|κ ′|)−1(ED). (39)

Another instructive example, and a consistency check,
is provided by the Lorentzian covariance: κ (z) = (1 +
z2/σ 2)−1, where σ is the characteristic correlation length.
In this example κ (0) = 1, B = σ 2, and α = 2. This example
allows for an exact analytical solution of Eq. (21) that is valid
for any value of E > 0. After some straightforward algebra
we obtain

2L =
(

σ 2�V

E

)1/3

. (40)

Remarkably, this exact result perfectly coincides with the
large-L asymptotic (32) for this particular case.

Going back to Eqs. (40) and (23), we obtain an exact
expression for the action in this case:

S(�V ) = 1
4 [(�V )2/3 + (σE )2/3]3. (41)

The optimal disorder configuration (22), with L given by
Eq. (40), is shown in Fig. 2. A finite barrier width 2L is visible.
The localization of the barrier in this case should be contrasted
with the delocalized barrier, L → ∞, predicted for the zero
bias.

The small-E expansion of the action (41),

S(�V ) 
 1
4 (�V )2 + 3

4 (�V )4/3(σE )2/3, (42)

perfectly agrees with the asymptotic presented in Eq. (33).
Let us summarize this subsection. Adding a positive bias to

a disorder potential with monotonically decreasing covariance
makes the action and, as a result, the MET sensitive not only to

the bias itself (as to be expected) but also to the large-distance
behavior of the covariance derivative. The width of the opti-
mal barrier configuration becomes finite, and it increases quite
slowly as the bias goes to zero [see, e.g., Eq. (32)]. Finally,
we predict nonanalytic scalings with the bias E and with the
diffusion coefficient D of the (exponentially large) correction
to the MET.

2. Nonmonotonic covariance

For NM covariances κ (z), a positive bias reduces the op-
timal value of L as described by Eq. (21). When E is small,
Eq. (21) in the leading order becomes

κ ′(2L) 
 −2E [κ (0) − κ (2L)]

�V
. (43)

We look for the optimal barrier width 2L = �∗ + δ� and solve
Eq. (43) perturbatively for the small correction δ�. In the
leading order, we obtain

2L = �∗ − 4E

�V

κ (0) − κ (�∗)

κ ′′(�∗)
. (44)

The small parameter of this perturbative expansion is
E�∗/�V � 1. Equation (44) shows that the positive bias
“squeezes” the optimal disorder configuration V (x) a bit.

Substituting Eq. (44) into Eq. (23) and expanding the small
parameter E�∗/�V , we arrive at the following action:

S(�V, E ) 
 (�V )2

4[κ (0) − κ (�∗)]

(
1 + 2

E�∗
�V

+ . . .

)
. (45)

Using Eqs. (5) and (45), we obtain the saddle point

�V ∗ = 2[κ (0) − κ (�∗)]

D
− E�∗, (46)

which results in the MET

ln〈T 〉 
 κ (0) − κ (�∗)

D2
− E�∗

D
. (47)

In contrast to the case of MD covariance, here the correction
coming from the bias is analytic and not as prominent.

III. LARGE-DEVIATION SIMULATIONS

A. Simulation method

To generate numerical realizations of a one-dimensional
statistically homogeneous Gaussian field (HGF) V (x), we
consider a discrete array V = (V (1),V (2), . . . ,V (M ))T of
size M � 1, which provides a space discretization of the
continuous field with the lattice step �x = 1. There is a
straightforward method of sampling a discretized HGF V with
a given covariance matrix Ci j = κ (|i − j|) = 〈V (i)V ( j)〉 for
i, j = 1, M. The method consists of two steps: diagonalization
of the covariance matrix Ci j and matrix multiplication:

V = C1/2ξ, (48)

where ξ = (ξ1, ξ2, . . . , ξM )T is a vector composed of indepen-
dent standard normals. Although it is transparent, this method
is highly inefficient since it involves two computationally
expensive steps: the matrix diagonalization, which requires
O(M3) operations, and matrix products, which require O(M2)
operations.
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Instead of the poorly scalable matrix multiplications, a
more efficient way to sample HGFs is to use the circulant
embedding method (CEM) [30,31]. The method is based on
embedding a covariance matrix Ci, j of size M × M in a larger
circulant covariance matrix C′

i j of size M ′ > 2M. Then, using
the fact that a matrix multiplication with a circulant matrix
implements convolution, one can replace the matrix equa-
tion (48) with multiplication in Fourier space. Therefore, the
required data (like the result of matrix diagonalization) can
easily be precomputed numerically by using the fast Fourier
transform, while sampling a HGF requires only O(M ′ ln M ′)
operations. In our implementation of the CEM we allowed
for free ends of the sampled HGF V (x). One could instead
use periodic boundary conditions V (x + M ) = V (x) [32]. See
also Refs. [33,34] for instructive implementations of the CEM
for large-deviation simulations of fractal Brownian motion
(whose time derivative is a stationary Gaussian process).

Here we are interested in extremely small probability
densities, which are virtually impossible to reach with con-
ventional Monte Carlo (MC) simulations employing the
Metropolis-Hastings algorithm. Therefore, in order to reach
the large-�V tail of the distribution P (�V ), we employed the
Wang-Landau (WL) algorithm [35,36]. Unlike the ordinary
Metropolis-Hastings algorithm, where the acceptance or re-
jection decisions are Markovian, the WL algorithm takes into
account information about previously visited states in such
a way that it “forces” the algorithm to explore the available
configurational space more quickly.

In a nutshell, the WL algorithm aims at estimating the
density of states P (�V ) = exp[−S(�V )] on a chosen interval
a � �V � b, updating in each MC step the histogram of
visited states H (�V ) and adjusting the action S(�V ) in an
iterative manner; see Ref. [37] for details.

At the start of the simulation, the histogram is initialized to
zero, H (�V ) = 0, and the action is set to some guess function
[we use S(�V ) = 1]. Let {ξr, Vr,�Vr} represent the running
configurations of the random vector, the disorder potential
computed using the CEM, and the maximal potential barrier
of Vr, respectively. A proposed configuration of the random
vector ξp is generated by changing a randomly chosen com-
ponent [ξr] j of the random vector according to the Gaussian
distribution centered at [ξr] j :

[ξp] j ∼ exp[−(x − [ξr] j )
2/2]. (49)

Then, the proposed configuration of the disorder potential Vr

and its maximal potential barrier �Vr are computed using the
CEM and the proposed random vector ξp.

Every decision on whether to accept (a) or reject (r) the
proposed configuration {ξp, Vp,�Vp} is made according to the
transition probability

pa/r = min

(
r( Vp| Vr )

exp[−S(�Vr )]

exp[−S(�Vp)]
, 1

)
,

r( Vp| Vr ) = exp

[
[ξr]2

j − [ξp]2
j

2

]
. (50)

If the proposed configuration is rejected, the running configu-
ration {ξr, Vr,�Vr} is kept. Following each decision, the action

and the histogram are updated:

S(�Vr ) → S(�Vr ) − f ,

H (�Vr ) → H (�Vr ) + 1, (51)

where f is a modification factor (initially, we set f = 1).
This process is repeated until the histogram of visited states
H (�V ) is sufficiently flat. As a measure of flatness, we used
the condition

0.9H (�V ) � min[H (�V )], (52)

where H (�V ) is the mean value of the histogram [38]. Once
this condition is met, f is reduced, f → f /2, and the his-
togram is reset to zero. Then, the process continues until f
is sufficiently small.

It is known that, in the early stages of a simulation, the
WL algorithm violates the detailed balance condition. The
detailed balance is recovered, however, as the modification
factor f tends to zero [37]. We stopped the simulations after
18 reductions of the modification factor f . The resulting rel-
ative accuracy of the simulations, 1 − S(17)(�V )/S(18)(�V ),
was of the order of 10−3, where S(i)(�V ) is the numerical
estimate of the action corresponding to the ith reduction of
the modification factor f . The remaining statistical errors of
the WL algorithm, which are known to saturate at a nonzero
value (which depends on the protocol of reduction f [39,40]),
were of order O(1). In its turn, the numerically estimated ac-
tion S(�V ) varied from hundreds to thousands. The resulting
relative accuracy was sufficient for our purposes.

B. Simulation results

To verify our theoretical predictions for the tail of the
barrier height distribution and the corresponding optimal
configurations of the disorder for the monotonic and non-
monotonic covariances, we implemented the WL algorithm
for sampling discretized configurations of the disorder Gaus-
sian potential V (x) on a regular lattice of length M = 103 with
the following three covariances:

κ (z) =

⎧⎪⎪⎨
⎪⎪⎩

1
1+(z/σ )2 , MD,
3+2 cos(ωz)
5[1+(z/σ )2]

, NMP,
cos(ωz)

1+(z/σ )2 , NMN.

(53)

These covariances are depicted in the top panel of Fig. 3.
Note that, for all the covariances (53), the corresponding vari-
ances are equal to 1. The parameters σ = 40 and ω = 0.15 in
Eq. (53) represent the correlation length and oscillation fre-
quency, respectively, of this HGF. These values were chosen
to be sufficiently large to accurately approximate a continuous
HGF but not so large that effects of the finite system size
would come into play.

1. Zero bias

We started by verifying the theory predictions for the un-
biased potential [17,22], which were summarized in Sec. II A.
The simulation results for the rate functions − lnP (�V ) are
shown in the bottom panel of Fig. 3 along with the theoreti-
cally predicted rate functions given by Eq. (26). As one can
see, the agreement is excellent.
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FIG. 3. Top: Plotted versus the distance are three covariances,
presented in Eq. (53): the MD covariance (black line), the NMP
covariance (red line), and the NMN covariance (blue line). The
parameters of the first local minima for the red and blue curves are
�∗ = 21.41 and κ (�∗) = 0.16 and �∗ = 20.06 and κ (�∗) = −0.79,
respectively. Bottom: The large-�V behavior of the rate function
− lnP (�V ), as measured in the WL simulations of HGFs with the
MD covariance (black circles), the NMP covariance (red triangles),
and the NMN covariance (blue squares) for zero bias. The theoretical
predictions (26) are shown by the solid curves of the corresponding
color.

Examples of configurations of the disorder potential V (x),
conditioned on large �V and sampled in the WL simulations
[41], are presented in Fig. 4. Also shown are the optimal
configurations predicted by Eq. (24) with the optimal values of
L. As one can see, the agreement of theory and simulations is
excellent in all three cases. Note that, for the NMN and NMP
covariances, the theoretically predicted optimal barrier size is
finite, allowing the true minimum of the action to be reached
in the simulations. In the case of MD covariance, the true
minimum of the action can be reached only when L → ∞,
and it is therefore inaccessible in numerical simulations. A
finite value of L, observed in the simulations, is comparable
with the size of the simulated system and caused by finite size
effects.

2. Nonzero bias

Now we present the results of a comparison of theory
and simulations for the positively biased potentials. The the-
oretical results were obtained in Secs. II B 1 and II B 2. The
simulation results for − lnP (�V ) for the MD and NMN co-
variances, along with the theoretical predictions, are depicted
in Fig. 5. Again, excellent agreement is observed.

FIG. 4. Configurations of the disorder potential V (x), corre-
sponding to the potential barrier �V = 80, for three types of
covariances (53): simulations (black circles) vs theoretical prediction
(24) (blue solid curve). Top: NMP covariance. Middle: MD covari-
ance. Bottom: NMN covariance.

Some examples of sampled configurations of the disorder
potential V (x) are presented in Fig. 6. In contrast to the
unbiased case, the optimal distances between the spike and
antispike are always finite here. Therefore, choosing a suffi-
ciently large system size makes it possible to achieve the true
minimum of the action in numerical simulations. In particular,
one can clearly see the dramatic effect of the bias (even a
relatively small one, E = 0.1) on the optimal barrier width 2L
for the MD covariance, in very good agreement with Eq. (40).
For comparison, the same bias E = 0.1 hardly changes the
optimal barrier width for the NM covariances.

IV. SUMMARY AND DISCUSSION

We found that the presence of a small potential bias leads
to an exponentially large reduction in the MET of overdamped
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FIG. 5. Simulation results for the large-�V behavior of the rate
function − ln P(�V ) in the presence of a positive bias. Top: re-
sults for MD covariance (53) for E = 0.005 (green circles) and
E = 0.1 (magenta circles). For comparison, the results for the zero
bias, E = 0, are shown by black circles. The theoretical predictions
(42) are shown by the solid curves of the corresponding color. The
dashed magenta curve depicts the exact expression (41). Bottom:
results for the NMN covariance and E = 0.1 (magenta squares).
For comparison, the zero-bias results are shown by black squares.
The solid curves of the corresponding color depict the theoretical
prediction (45).

particles trapped in local potential minima. The leading-order
correction, which describes this reduction, behaves differently
in disorder potentials with monotonic and nonmonotonic co-
variance.

In the nonmonotonic case, the effect of the bias can be
accounted for via a perturbative expansion in the bias. In
the monotonic case, the scaling of the MET with the bias is
nontrivial, as it is affected by the large-distance asymptotic of
the inverse function of the derivative of the covariance. The
optimal barrier width of the biased potential in this case is
finite, in contrast to the unbiased case, where it is infinite.
Even a very small potential bias has a strong effect on the char-
acteristic barrier width. As a result, all bias-related effects are
more pronounced for disorder potentials with monotonically
decreasing covariances.

We verified in numerical simulations our predictions for
the large-�V tail of the barrier height distribution, as well
as earlier predictions of this tail for zero bias [17,22]. The
simulations employed the WL algorithm and the circulant
embedding method of sampling a homogeneous Gaussian
field. We measured the large-�V tail of the barrier distribution

FIG. 6. Configurations of the disorder potential V (x) with bias
E = 0.1 and potential barrier �V = 50 for the MD and NMN co-
variance (53): simulations (black circles) vs theoretical prediction
[Eq. (22); blue solid curve]. The top panel corresponds to the MD
covariance, where the predicted 2L = (σ 2�V/E )1/3 
 92.9. The
bottom panel corresponds to the NMN covariance, where the optimal
value of 2L is given by Eq. (44).

P (�V ) for different covariances and bias magnitudes. The
method also allowed us to sample the disorder potentials
V (x), allowing for a direct comparison with the OFM predic-
tions for the optimal configurations, demonstrating excellent
agreement. Combining the WL algorithm with the circulant
embedding method, we were able to measure probability
densities below 10−1200. The numerical methods which we
employed here should also be useful when studying large-
deviation statistics of other Gaussian processes and fields.

Among future directions is an extension of theory to higher
spatial dimensions, where the character of activated escape
changes considerably. Indeed, in this case the particle must
reach the closest saddle point of the random potential, rather
than the closest maximum.

Finally, it is worth recalling that our results for the distri-
bution tail of P (�V ) are readily applicable to the distribution
tail of the differences between adjacent maxima and minima
of correlated Gaussian processes in time.
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