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Identifying vegetation patterns for a qualitative assessment of land degradation
using a cellular automata model and satellite imagery
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We aim to identify the spatial distribution of vegetation and its growth dynamics with the purpose of obtaining
a qualitative assessment of vegetation characteristics tied to its condition, productivity and health, and to
land degradation. To do so, we compare a statistical model of vegetation growth and land surface imagery
derived vegetation indices. Specifically, we analyze a stochastic cellular automata model and data obtained
from satellite images, namely using the normalized difference vegetation index and the leaf area index. In the
experimental data, we look for areas where vegetation is broken into small patches and qualitatively compare
it to the percolating, fragmented, and degraded states that appear in the cellular automata model. We model the
periodic effect of seasons, finding numerical evidence of a periodic fragmentation and recovery phenomenology
if the model parameters are sufficiently close to the model’s percolation transition. We qualitatively recognize
these effects in real-world vegetation images and consider them a signal of increased environmental stress and
vulnerability. Finally, we show an estimation of the environmental stress in land images by considering both the
vegetation density and its clusterization.

DOI: 10.1103/PhysRevE.110.024136

I. INTRODUCTION

Land degradation is a complex environmental process
involving the loss of biological activity and economic pro-
ductivity. It is caused both by peculiarities of the land and
climate, and by unadapted human activity. Specifically, de-
sertification is a transition that involves land degradation of
drylands, resulting in the transformation of productive land
into arid areas [1–4]. Drylands [5], covering approximately
41% of the Earth’s land surface, are characterized by limited
and fluctuating rainfall, exerting an environmental pressure, or
stress, on soil and vegetation growth [6]. Several areas in the
world, including Europe—which is the geographical focus of
this work—have seen an increase in dryland extent [7].

Monitoring large land areas is fundamental to under-
stand the progression of these environmental changes. To
this aim, numerous studies [8–10] have explored the rela-
tionships among drylands, vegetation patterns, and. external
stresses, using a number of models and data sources. These
include remote sensing [11], which uses satellite or air-
borne sensors to gather data on vegetation cover and health;
geographic information systems [12] for analyzing spatial
patterns and changes in vegetation; ecohydrological mod-
eling [13] to examine the interaction between vegetation
and water resources; agent-based modeling [14] to simulate
individual-level behavior and its impact on ecosystems; and
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species distribution modeling [15] to predict plant species
distribution under different environmental conditions. A sta-
tistical physics approach, alongside these methods, also
contributes to understanding vegetation distribution and dy-
namics, as well as the role of disorder in the vegetation
processes. Particularly, vegetation patchiness is a valuable tool
for assessing degradation risk and detecting early warning
signals associated with it [16–18]. Disorder enters the vegeta-
tion dynamics through environmental fluctuations, stochastic
processes such as weather patterns, disturbances (e.g., wild-
fires and human activities), and spatial heterogeneity in soil
composition or topography. The presence of disorder affects
both the existence and the way the transitions occurs, making
them more gradual or continuous [19–21]. This, in turn, may
affect the environmental resilience.

Our objective in this work is to describe the structure of
vegetation cover through a numerical model of vegetation
growth dynamics, and to conduct an analysis of satellite image
data to recognize patterns of vegetation patchiness that are
signs of land degradation in progress. We use a stochastic cel-
lular automaton (SCA) model [3,4,22,23], which incorporates
events such as vegetation mortality, survival and propagation.
This SCA model is born out of individual plant lifecycle
considerations (e.g., propagation of seeds, new plant coloniza-
tion, plant competition, etc). These effects are coarse-grained
into stochastic state transitions of macroscopic cells which
are arranged in a grid, covering large land areas. The state
changes in the cells are able to generate patterns observed
in arid ecosystems, such as gaps, stripes, and labyrinth-like
structures [3,4]. It also presents two phase transitions as
the environmental stress (or vegetation mortality) changes: a
desertification transition where vegetation disappears, and a
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percolation transition where the vegetation breaks down into
clusters and which acts as a precursor to the desertification
transition [24–26].

A number of data sources are available to survey and
identify changes in vegetation and land ecosystems. These
include satellite images from several Landsat missions, Sen-
tinel, MODIS, SPOT, and RapidEye [27], as well as databases
of specific-purpose processed data (e.g., several vegetation
intensity indices in the Copernicus Land [28] database). The
availability of such data has enabled the investigation of phase
transitions in drylands [29]. Here, we aim to verify whether
the processes in the SCA—namely the clusterization pro-
cesses acting under increased environmental stress—can be
qualitatively detected in satellite image data at a large scale,
focusing on several areas across Europe.

The work is structured as follows: Sec. II provides an
overview of the theoretical and numerical methods employed,
including the model used for simulations and the incorpora-
tion of seasonal effects. In Sec. III, the analysis is applied
to recent satellite images of a selection of European coun-
tries. Section IV connects the SCA simulated process and the
observed land data. Finally, our conclusions are outlined in
Sec. V.

II. VEGETATION DYNAMICS AND CLUSTERIZATION

In order to capture the vegetation patchiness dynamics,
we consider the already mentioned SCA model introduced in
Ref. [4] and used to study the dynamics of vegetation patterns
in ecological systems. In the following, we will provide a brief
overview of the model, while we refer to the original papers
for a comprehensive description [4,22].

We represent the vegetation by means of a three-state SCA
model. In a L × L square lattice, each cell can exist in one
of three states: (+) is a vegetation-covered state (living cell);
(0) is an empty state, available for colonization (dead cell);
and (−) is a degraded state (degraded cell). Cells undergo
state transitions with transition rates Wi j . For instance, W0+
represents the rate of transition from an empty to a vegetated
state. Not all transitions have a nonzero probability. For in-
stance, a degraded cell must undergo recovery before it can be
colonized. At the same time, only an empty cell is vulnerable
to degradation. Consequently, transitions between a degraded
state (−) and a vegetated state (+) are prohibited. The rates at
which the allowed transitions take place are as follows:

W+0 = m, (1)

W0+ = [δρ+ + (1 − δ)q+|0](b − cρ+), (2)

W0− = d, (3)

W−0 = r + f q+|−. (4)

The system’s dynamic evolution is governed by a Markov
chain, with Eqs. (1)–(4) representing mortality, colonization,
degradation, and recovery processes, respectively. Transitions
from and to the dead (0) state are influenced by qi| j : Given
a cell in state j, this represents the fraction of its nearest
neighbors in state i. Besides the contribution of the neighbor-
ing cells, Eqs. (1)–(4) involve additional parameters related

to the lifecycle of plants, with the following interpretations:
δ is the proportion of seeds dispersed by wind, animals, etc.;
b is the colonization parameter, which accounts for various
intrinsic properties of a vegetated cell, such as seed production
rate, seed survival, germination, and survival probabilities (not
including global competition effects); c is the strength of
global competition effects; d represents the rate of soil degra-
dation, incorporating intrinsic soil characteristics, climatic
factors, and anthropogenic influences; f is the local facili-
tation parameter, describing cooperative interactions among
plants and positive feedback between soil and plants; and
finally, r is the spontaneous regenerative rate of a degraded
cell in the absence of vegetation covering the neighboring
cells. The parameter values used in the following analysis are
as follows: b = 0.6, c = 0.3, d = 0.2, δ = 0.1, f = 0.9, and
r = 0.0004. These values reflect typical processes in semi-
arid ecosystems (particularly: intermediate colonization, low
competition, intermediate soil degradation, high facilitation,
and low spontaneous regeneration) and align with those used
in previous studies in order to reflect real field data simula-
tions [4,23,24]. A wide range of parameter values has been
analyzed in the literature with numerical simulations in or-
der to qualitatively reproduce different climatic regimes [3].
In our analysis, the control parameter for the model is the
mortality rate m, which represents the intensity of external
stress.

The process to simulate vegetation dynamics is as follows:
We start by initializing a randomized lattice configuration
consisting of alive, barren, and dead cells. The system evolves
through the transition probabilities given by Eqs. (1)–(4). We
note that, while Eq. (1) and (4) can be applied independently,
Eq. (2) and (3) have to satisfy the condition W00 + W0+ +
W0− = 1, on whether the zero cells will transition into the
alive or barren states or preserve their current situation. After
a transient dynamics due to the initialization of the system
with a random configuration, the system converges to an
equilibrium which depends on the chosen parameter set. This
initial transient dynamic is discarded (typically 5000 itera-
tions); once the system reaches equilibrium, we collect the
vegetation fraction and vegetation cluster sizes for each iter-
ation step. Throughout this work, unless explicitly specified,
the simulations are conducted on square L × L lattices with
a linear size of L = 100 with periodic boundary conditions.
This system size is comparable with the sample size chosen
for the satellite images in Sec. III and has weak finite size
effects [24]. The time-series data typically consists of at least
104 records, but near the desertification threshold, the number
of steps is increased up to 106 due to critical slowing down
effects.

The properties of vegetation clusters are investigated
through the alive vegetation density ρ+ = N+

L2 , where N+ is the
number of alive cells, and the size of the largest cluster of alive
cells C+, which is the largest vegetation cluster size divided
by the total number of lattice cells. We analyze a percolation
transition in response to the external stress parameter m.

A. Numerical simulations of vegetation dynamics

In this section, we investigate the model for different values
of the mortality rates m. The inset in Fig. 1(a) shows the
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FIG. 1. Evolution of vegetation dynamics. Panel (a): The average
of the vegetation density 〈ρ+〉 for L = 100 and the relative size of
the largest cluster 〈C+〉 for L = 50, 100, 200, 400 as a function of
the mortality rate m. The markers represent the percolation thresh-
old mPer = 0.113, which is determined from the crossing point for
the various system sizes, and the degradation transition point mc =
0.169. Inset of (a): The typical evolution of the living cell density
ρ+(t ) for several values of the mortality rate m. The linear lattice size
is L = 100, and the time unit corresponds to one iteration step. Panels
(b)–(d): Vegetation distribution in a lattice of size L = 50 at (b) low
(m = 0.05), (c) intermediate (m = 0.13), and (d) high (m = 0.17)
mortality. Green cells are vegetated, yellow cells are empty, and red
cells are degraded areas.

evolution of the living cell density ρ+(t ), for several values
of m. After a short transient (not shown), the system fluctu-
ates around an equilibrium value ρ+(m). With the increase
of external stress m, the average density of vegetated cells
decreases, until a continuous phase transition occurs at mc =
0.169 [see the main panel of Fig. 1(a)] corresponding to a
desertification transition. Additionally, we determine the size
of the largest cluster of vegetated cells C+(m). As m increases,
at finite sizes C+ has a sharp crossover that corresponds to
a percolation transition which acts as a precursor to deserti-
fication [4,23,24]. Considering different system sizes allows
to find the percolation transition point at mPer = 0.113 as
the crossing point of the curves at different L. See Sec. I of
Supplemental Material (SM) Ref. [30] for information about
the transitions.

Thus, two distinct transitions are involved in land degrada-
tion processes [24,31–33]. The first transition, a percolation
transition in the living vegetation clusters, serves as an early
warning sign for the second transition, which is associated
with desertification as the fraction of living vegetation goes
to zero. Both of these transitions have been observed to oc-
cur in ecosystems [26]. The bottom panels of Fig. 1 shows
snapshots of the model at different stages: healthy and perco-
lating [Fig. 1(b)], vulnerable and broken into small clusters
[Fig. 1(c)], and degraded [Fig. 1(d)].

B. Modeling the seasonal effects

So far, we have considered a SCA model with a constant
mortality rate. In order to include the effect of seasonal cycles
in real ecosystems, we introduce a time-dependent, periodic
mortality rate m(t ). We aim to model a simplified time depen-
dence in the environmental stress. To do so, we consider an
asymmetric periodic function representing a fast increase in
environmental stress, which is reminiscent of the phenomeno-
logical temperature and precipitation time series in semiarid
areas [34].

Specifically, we are interested in investigating whether an
ecosystem that seasonally is put in a situation of high envi-
ronmental stress is able to recover, as well as what conditions
need to be satisfied to avoid a permanent transition to a deser-
tified state.

In our analysis, starting from a randomly generated con-
figuration, we first let the system equilibrate with a constant
mortality parameter min = m0. At time tin we apply a time-
dependent m(t ) given by the following asymmetric functional
form, which we choose as it is both simple in terms of number
of parameters, and resembles phenomenologically the experi-
mental time series of air temperature in the geographic areas
considered:

m(t ) = m0 + A sin[2π/T t + k sin(2π/T t )] t > tin, (5)

where m(t ) consists of a constant component, m0, representing
the average environmental stress across the seasons. The addi-
tional parameters in the oscillatory term are: the amplitude A,
representing the intensity of the seasonal effect, the period T
representing the duration of a year in the simulation’s arbitrary
time units, and an asymmetry parameter k representing fast
season changes particularly from winter to summer. Here we
consider T = 5000 and k = 0.2. Note that T is sufficiently
large to be greater than the timescale of the internal fluctu-
ations of ρ+. The asymmetry k is chosen to resemble fits of
experimental temperature data. The initial value m0 is set to
several values near the percolation and degradation transition
points, mPer = 0113 and mc = 0.169, respectively. Values just
below mc are specifically interesting in order to determine
the effects of periodic increases in environmental stress and
whether they can drive a transition to a nonrecoverable dead
or barren state. The numerical computation is performed for
m0 = 0.08 to 0.17, varying A, and 106 time steps.

We investigate the impact of increasing the amplitude A
on the behavior of ρ+ and C+. Fig. 2(a) shows the effects of
different amplitude values for m0 = 0.08. ρ+ shows a peri-
odical response to m(t ), with a very small response delay in
the system size considered. C+ closely follows and overlaps
with ρ+ for the majority of the time, showing that most alive
cells belong to the same contiguous cluster. For sufficiently
high amplitudes, C+ temporarily dips to lower values only
near the minimums of m(t ), with a fast recovery to values
overlapping ρ+.

In Fig. 2(b) we show results for a higher mortality which
is close to the percolation transition value and periodically
sent above it. In this case as well, C+ and ρ+ both show a
periodical response to m(t ). For low amplitudes, C+ is at all
times significantly lower than ρ+ while still being nonzero.
For sufficiently high amplitude, however, it quickly goes to
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FIG. 2. Evolution of vegetation dynamics for time-dependent
mortality rate m(t ). Panels (a), (b), and (c): Vegetation density ρ+
(solid lines) and largest cluster size C+ (dotted lines) as a function
of time, for initial mortality m0 = 0.08, 0.11, and 0.16 respectively.
Data are smoothed by means of a moving average with a window size
of 100. Panel (d): Mean value of the minima of the vegetation density
〈ρ+,min〉 as a function of the amplitude A. We mark the crossover
amplitudes Ac(m0, T ) where the curves drop to 0. Inset of panel (d):
Crossover amplitude Ac as a function of m0.

very small values during the lower half-period of the oscil-
lation, suggesting that the system has been temporarily driven
to the highly fragmented and nonpercolating regime; although
C+ stays near 0 for a substantial part of the lower half-period,
a similar rapid recover happens in the upper half-period, up to
reaching values close to ρ+ only near the maximum of m(t ).

Finally, in Fig. 2(c) we show the results for a system oscil-
lating around m0 = 0.16, that is a point close to the transition
value mc. Interestingly, we show that even when the time-
dependent mortality rate goes above the critical value, the
system can recover its alive vegetation cover ρ+ and continue
to respond to the oscillating m(t ), as long as the amplitude
of the oscillation, and thus the time spent in a condition
where m(t ) > m0, is sufficiently small. We find that there is
a crossover amplitude Ac such that for A > Ac the system
enters a state of almost all dead or degraded cells and is no
longer able to recover, even though the environmental stress
m(t ) strongly decreases afterwards. The drop to a dead or de-
graded configuration happens as the system fluctuates near the
crossover point with increasingly long metastable oscillating
states. At this value of m0, the system is already firmly in the
highly fragmented regime and C+, while responding to the
oscillations alongside ρ+ (as long as the system is not fully
degraded and ρ+ is not identically 0), is an order of magnitude
smaller.

Next, we extract the crossover amplitude Ac for several
values of average mortality m0. To do so, we look for the
time series which identically reach 0. For each value of A, we
determine the value of ρ+,min, the minimum vegetation density
for each period, which happens at the time of highest seasonal
stress for each period. We use a cubic spline interpolation to
determine the minima for each period. ρ+,min(t ) reaching 0

quantitatively marks the drop to a nonrecoverable degraded
configuration. Figure 2(d) shows 〈ρ+,min〉, the average mini-
mum across all periods, as a function of the amplitude A for
m0 = 0.14, 0.15, and 0.16. The crossover to full degradation
is observed as 〈ρ+,min(A)〉 goes to zero at A = Ac. For A > Ac,
ρ+ will be asymptotically zero after an unstable transient.
Finally, in the inset of Fig. 2(d), we plot these crossover
amplitude points Ac(m0). Ac is approximately linear in m0

until m0 = 0.17 ≈ mc, at which point it reaches zero. Beyond
this point, for m0 � 0.17, Ac is identically zero.

The system’s behavior and crossover to desertification are
influenced by the period T , with shorter oscillations (com-
pared to the system’s own intrinsic timescales) resulting in a
more robust alive phase.

III. FINDING VEGETATION CLUSTERS
THROUGH SATELLITE DATA

Data obtained from Earth observation satellites can be an-
alyzed to recognize the patterns of vegetation cover in real
ecosystems. In this section, we recognize areas of fragmented
vegetation qualitatively matching the phases exhibited by the
cellular automaton model of Sec. II.

We use two vegetation indices commonly used to detect
vegetation from satellite imagery: the normalized differ-
ence vegetation index (NDVI) [35] and the leaf area index
(LAI) [36]. NDVI is widely used in ecosystem monitoring
due to its simple formulation. It measures the vegetation
greenness by calculating the ratio of spectral reflectances in
near-infrared and red light. Green, living plants have a high
reflection in the near-infrared and high absorption in red and
visible light frequencies, which is a markedly different re-
sponse than bare soil, water, snow, or urbanized areas. For this
reason, it is commonly used in remote sensing to qualitatively
assess vegetation health and density in a specific area. We also
use the LAI data, which is defined as half the total area of liv-
ing vegetation elements in the canopy per unit of ground area.
This quantity is obtained either through direct measurement
(performed locally on a sampling basis) or through indirect
methods such as image analysis. All of the data for our anal-
ysis are extracted from the European database Copernicus
Global Land Service, which provides global vegetation data
products [28].

The NDVI and LAI images were acquired from the
Copernicus Land dataset for three days per month: For NDVI
on the 1st, 11th, and 21st day of each month spanning the
time period from 2014 to 2021, while for LAI on the 10th,
20th, and last day of each month, from 2014 up until August
2020 (there are gaps in the LAI data during the winter and
autumn seasons, due to insufficient illumination in satellite
observations). Both datasets have a resolution of 300 m and
the data used are composed of a mosaic corrected for atmo-
spheric differences, including the removal of cloud coverage.
Our analysis focuses on specific regions, namely in France,
Germany, Ireland, Spain, and Greece. We note that drylands
are particularly present in Spain and Greece. We preprocessed
the images in the dataset in order to normalize the individual
image pixel data, a grayscale image with values from 0 to 255,
to [0,1] for land areas. Additionally, we exclude pixels corre-
sponding to sea, lakes, rivers and any water bodies that have
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FIG. 3. Probability distribution of normalized NDVI and LAI
values across examined land regions. The data are aggregated over
samples taken at different dates and times. As a reference, the thresh-
old values λ1 and λ2 for Greece, France, and Germany are marked as
vertical dotted lines.

been premarked by the Copernicus dataset preprocessing, as
well as those otherwise detectable through NDVI and LAI
intensity values: indeed, some smaller water areas need to be
manually excluded, which we do through a local thresholding
method (we use the Threshold-Sauvola approach [37], see the
SM Sec. II [30] for more detail). We note that the values of C+
and ρ+ which will be computed from the experimental data
and used in the following analysis have been normalized to
the land area only, excluding water bodies.

A. Spatial distribution of vegetation
and breakdown into clusters

We now analyze the satellite images of vegetation in order
to identify a breakdown into disconnected clusters. Specifi-
cally, here we look for the breakdown in connectivity which
in the vegetation model used in Sec. II translates to a per-
colation transition. To do so, we match the pixel intensity in
the satellite image to three possible states, reminiscent of the
SCA model. We thus introduce a simplification to discretize
the data, which for a single pixel corresponds to an intensity
between 0 and 1, based on two chosen threshold parameters.
This effectively maps low intensity pixels to a degraded cell,
medium intensity to an empty cell, and high intensity to an
alive cell. We are then able to consider the fraction of alive
vegetation ρ+ and the largest vegetation cluster C+ analo-
gously to the analysis of the SCA model in Sec. II.

Determining the threshold values is tied to the typical
values of the NDVI and LAI indices, which itself are qual-
itative in nature, and their interpretations in terms of plant
health. As a starting point, we consider the probability dis-
tribution function of NDVI and LAI pixels intensity across
the analyzed regions, shown in Fig. 3. It is worth noting that
LAI is a curated index, deriving from a mix of indirect and
direct measurements, and it is not directly and quantitatively
comparable to NDVI. Both indices clearly signal the presence
of vegetation, with different distributions due to the climate
and morphological characteristics of the country groups: es-
pecially intense values in Ireland, and less vegetation intensity
in Spain.

We introduce the two cut-off parameters λ1 and λ2, which
classify the pixels as vegetated or alive for values > λ2, empty
or dead for values between λ1 and λ2 and degraded for values
< λ1. The specific values of λ1 and λ2 are chosen so that
they are respectively below and around the typical values of
the indices. Note that for different regions we may choose
different λ1 and λ2 values due to differences in vegetation type
and thus NDVI or LAI intensity; this is particularly relevant
for the selected areas in Spain and Ireland. In the following
analysis, we use the values λ1 = 0.5, λ2 = 0.7 (NDVI) and
λ1 = 0.1, λ2 = 0.175 (LAI) for Greece, France, and Germany,
all of which have similar NDVI and LAI intensities. We note
that the qualitative results of the following analysis will not
depend on the precise values chosen (see SM Sec. V [30] for
more details).

The SCA model considered in Sec. II describes lifecycle
processes at the scale of a single plant; it is however also
suitable to coarse-graining, as the mortality, reproduction or
colonization, degradation and recovery processes can be ap-
plied collectively and averaged over land areas. Our aim is
to verify that the overall behaviors of in the simplified SCA
model can be qualitatively detected in vegetation even at the
rather coarse resolution of 300m of the considered satellite
data.

The NDVI and LAI images include, as well as water bod-
ies which are identified and excluded from each sample as
described above, areas which are blocked from vegetation
growth, and therefore locked in a “degraded” state, due to
anthropic causes (e.g., cities). As well, additional human ac-
tivities such as farming and grazing will introduce systematic
effects in the classification of the image pixels into the three
states. In the following analysis, we neglect these effects on
the analysis of vegetation clusterization. Moreover, we ne-
glect the internal heterogeneity of the data within each region,
namely the diversity in soil type, local climate, prevalent plant
type and any other small-scale properties. This choice is due
to both the low resolution of the source image data and of the
selected samples (which, as outlined in Sec. III B, will have a
linear size of 30 km), and the simplified coarse-grained nature
of the analysis of vegetation dynamics that will be performed.

B. Analysis of NDVI time series

Here we focus on NDVI data specifically for areas in
France (first two samples) and Greece (last sample), which
respectively have a higher or lower prevalence of semiarid
conditions. The areas that we consider in each different coun-
try is split in samples of 100 × 100 pixels (that is, 30 ×
30 km). For each sample, we analyze the fraction of alive
vegetation ρ+ and the relative size of the largest vegetation
cluster C+ over time. Among the samples considered, we see a
range of phenomenology, which we analyze qualitatively and
for which we show some examples in Fig. 4.

In Fig. 4(a) we consider a sample with very high maximum
values of ρ+(t ) and C+(t ) and where, for the majority of
the time, there is an overlap between ρ+(t ) and C+(t ). This
indicates that nearly all the vegetated pixels belong to the
largest cluster of vegetation. This situation is akin to the phase
at a low mortality rate in the simulated vegetation dynamics
in Sec. II, which we associate to healthy vegetation and low
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FIG. 4. Comparison of ρ+ and C+ as a function of time for three
samples [(a) and (b)] in France and (c) in Greece. We use NDVI data
for the years 2014 to 2021. The data are smoothed by moving average
over a window of size 10.

environmental stress. We note a seasonal periodic behavior
in both ρ+(t ) and C+(t ) with a temporary dip in C+ during
the autumn or winter season. This is qualitatively similar to
the behavior in Fig. 2(a) for low average mortality rate in the
presence of strong seasonal oscillations.

In Fig. 4(b) we show a sample exhibiting a more marked
difference between ρ+(t ) and C+(t ), which only overlap at
their maximum points. This situation is similar to Fig. 2(b),
where a mortality rate close to the percolation transition value
is periodically pushed above it.

Finally, in Fig 4(c) we show a sample with consistently
different ρ+(t ) and C+(t ), which themselves exhibit low val-
ues. This is qualitatively comparable with Fig. 2(c), where
the average mortality rate is between the percolation and the
degradation point and, if seasonal oscillation have a suffi-
ciently small amplitude, C+(t ) oscillates as ρ+(t ) but around
a much smaller average value without pushing the system to
full degradation.

We have repeated this analysis for the additional areas that
have been considered in Spain, Germany, and Ireland. As
for Greece and France, respectively, we are able to identify
a higher prevalence of situations of stress associated with
the semiarid climate for Spain, and generally its absence in
Germany and Ireland.

IV. MAPPING VEGETATION STRESS

In this section, we qualitatively compare the vegetation
fraction and clusterization data obtained from the SCA model
simulations with the experimental one obtained from satellite
images. We aim here to identify the areas that show vulner-
ability: These areas will have a relatively dense vegetation
(high ρ+), but are noncontiguous and broken down into many

small clusters (low C+). As shown in Sec. II, this is a percola-
tion transition that precedes the situation where vegetation is
not surviving. Increased vulnerability is especially detectable
in many areas during the autumn and winter months, as ob-
served by the analysis of the time series of ρ+ and C+ in
Sec. III B.

In order to better visually identify the situation in which
each image sample lies, we consider a simultaneous scatter
plot of ρ+ and C+. We first simulate the SCA model for several
(non-time-dependent) values of the mortality rate m and we
construct the curve (m, ρ+, C+). The averages ρ+ and C+ are
computed by taking the centroid of the scatter cloud obtained
from a large (104–3 × 105) number of snapshots of the equili-
brated system. Interestingly, the projection of the curve in the
ρ+, C+ plane is independent of the value of the parameters of
the SCA model for a wide range of realistic parameters (see
Sec. III of the SM [30]). Given their universality, we use this
simulated curve as a reference for the ρ+ and C+ computed
from the experimental image data.

We then again consider the subimage samples of size
30 × 30 km and consider the values of ρ+ and C+ for each
sample. We summarize again here the three main scenarios.
First, when we encounter areas with high ρ+ and C+, it is an
indication of regions with low mortality rate: this corresponds
to a large portion of the image covered by unbroken, contigu-
ous percolating vegetation. The second case corresponds to
regions characterized by low ρ+ and C+ values. These areas
thus have low vegetation coverage, which include genuinely
degraded land, rocky terrains, and urban areas. The last case
involves instances of high ρ+ values but low C+ values. This
combination suggests that despite the presence of relatively
dense vegetation, the environmental stress and thus the mor-
tality rate is high, causing the vegetation to break down into
small clusters, as a precursor to full degradation. The data
points obtained from satellite images can be compared with
two guidelines. The first is the already mentioned curve nu-
merically simulated with the SCA model at various values
of the mortality rate; the other is the line ρ+ = C+, which
corresponds to a fully connected vegetation. This condition
represents a low mortality rate situation, and all data points
will lie in the ρ+ > C+ sector.

We show in Fig. 5 a scatter plot of ρ+ against C+ for
all NDVI image samples obtained for France [Fig. 5(a)] and
Greece [Fig. 5(b)] from 2014 to 2021; we additionally show
the results for the LAI dataset in the inset. In this figure we
display all available sample points, aggregated for all dates,
in order to highlight their distribution in the (ρ+, C) plane.
For additional geographical areas, we refer to the SM Sec. IV
[30]. The data points in Fig. 5 approximately lie between
the numerical curve obtained from the numerical simulations
of the SCA model and the diagonal C+ = ρ+. In order to
understand the significance in terms of environmental stress,
we should first highlight the systematic effect of permanently
unvegetated pixels in each sample. These pixels might cor-
respond to locations not covered by soil, e.g., urban or rocky
areas. These reduce the effective available size of each sample,
in a way that is not accounted by the model (as these pixels
are not recoverable even in the most favorable conditions).
This explains the presence of data points close to the diagonal
for even mid and low values of C+. As well, points spread
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FIG. 5. Vegetation density ρ+ and the relative size of the largest
cluster C+ for 30 × 30 km samples. The main panels (a) and
(b) present the cumulative NDVI data for all available dates spanning
the years 2014–2021, showing the results for France and Greece,
respectively. The points are color-coded with C+/ρ+ representing
a qualitative classification of the degradation in each sample. The
diagonal ρ+ = C+ is shown, as well as the (m, ρ+, C+) data points
obtained from the numerical simulation of the SCA model with the
parameters’ values outlined in Sec. II; the values of m are represented
through a color scale. Insets: Results from the LAI data for all
available dates spanning the years 2014 to 2021, for France (a) and
Greece (b).

between the diagonal and the numerical curve correspond to
increasingly degraded samples with reduced effective size.
One could attempt to quantify this systematic effect by intro-
ducing stochastically arranged blocked pixels in the numerical
model; we leave this detailed analysis to future work. Here,
we give a simple qualitative assessment of vulnerability by
evaluating the ratio C+/ρ+. Given its value, we classify the
data points in three levels of vegetation health. The healthiest
vegetation samples are located close to the diagonal and in the
top right area (green points), where the vegetation is above
the percolation transition. The points in the bottom left area
(red points), close to the numerical curve, are samples whose
vegetation is broken down into small nonpercolating clusters,
which therefore have the lowest vegetation health. The points
in the central area have a reduced effective soil availability;
among them, the points close to the diagonal (green points)
still present contiguous vegetation, while, farther away from

FIG. 6. Qualitative assessment of land degradation, obtained by
comparing each sample’s vegetation density and largest vegetation
cluster size. The color coding refers to the value of C+/ρ+ for each
sample, representing a qualitative classification of its degradation.
We show here France (left) and Greece (right) on 11 March 2020.

the diagonal and closer to C+ = 0, the samples show inter-
mediate (yellow points) to low (red points) vegetation health.
In Fig. 5 we mark the different classifications for all points
with green-yellow-red colors, for which we consider these
approximate threshold values for C+/ρ+: 0.3 for red to yellow
and 0.7 for yellow to green. Finally, we show this qualitative
classification by color coding each sample with its C+/ρ+
value in Fig. 6 for areas in France and Greece, superimposed
to a map of the land that has been analyzed, where each square
correspond to one 30km2 sample, as defined in Sec. III B.

V. CONCLUSIONS

In this work, we have analyzed the spatial distribution of
vegetation through a numerical stochastic model and through
the analysis of land data from satellite images. The model is
known to exhibit three phases, namely showing contiguous,
fragmented, and degraded vegetation, and the corresponding
two transitions, a percolation and a degradation transition
which happen as the environmental stress increases. Consid-
ering samples of 30 km in size, we looked at the vegetation
fraction and the fraction of contiguous vegetation in each
sample with the aim of identifying these processes in real land
data.

Although the model has simplifications and the experimen-
tal data have relatively low resolution, we have shown that
the model’s description of the vegetation dynamics can be
qualitatively compared to the land data. Particularly, we ex-
tended the model with a time-dependent environmental stress
resembling the periodic seasonal changes. Some key aspects
of its phenomenology can be recognized in the experimental
time series for a variety of samples. Finally, the values of
the vegetation fraction and the largest cluster size allowed us
to offer a qualitative categorization of each sample between
the three scenarios of contiguous, fragmented and degraded
vegetation. As a future perspective, we highlight the potential
usage of this classification as a tracker of land health (see
an example of this use in the SM Sec. VI [30]). Namely,
after accounting for seasonal variations, the time series of
vegetation fraction and cluster size for a land area can be used
to detect worsening or recover of vegetation over time based
on the historical data presented in this work.
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