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Random matrix theory approach to quantum Fisher information in quantum ergodic systems
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We theoretically investigate quantum parameter estimation in quantum chaotic systems. Our analysis is based
on an effective description of quantum ergodic systems in terms of a random matrix Hamiltonian. Based on this
approach, we derive an analytical expression for the time evolution of the quantum Fisher information (QFI),
which we find to have three distinct timescales. Initially, the QFI increase is quadratic in time, characterizing the
timescale over which initial information is extractable from local measurements only. This quickly passes into
linear increase with slope determined by the decay rate of the measured spin observable. When the information is
fully spread among all degrees of freedom, a second quadratic timescale determines the long-time behavior of the
QFI. We test our random matrix theory prediction with the exact diagonalization of a nonintegrable spin system,
focusing on the estimation of a local magnetic field by measurements of the many-body state. Our numerical
calculations agree with the effective random matrix theory approach and show that the information on the local
Hamiltonian parameter is distributed throughout the quantum system during the quantum thermalization process.
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I. INTRODUCTION

Initially excited quantum systems typically equilibrate to
states exhibiting thermal properties, a process known as
quantum thermalization [1–6]. At the core of our current
understanding of this intriguing phenomenon is the eigen-
state thermalization hypothesis (ETH), which assumes that the
many-body eigenstates of quantum ergodic systems yield the
same expectation values of local observables as those calcu-
lated with a microcanonical ensemble [7–10]. The ETH can be
formally expressed as a conjecture on the properties of matrix
elements of local observables, which in turn can be derived
from an effective description of quantum ergodic systems in
terms of random matrix theory (RMT). The validity of the
ETH has been confirmed for a broad range of many-body
systems by means of exact diagonalizations [11–16]. Further-
more, experimental quantum optical systems have allowed for
investigation of quantum thermalization and the emergence
of statistical physics in isolated quantum systems. Exam-
ples include recent experiments with ultracold atoms [17,18],
trapped ions [19–21], and superconducting qubits [22].

An important fundamental issue in quantum many-body
theory is how information on local properties can be retrieved
or estimated from observing the quantum system’s dynamics.
This problem is closely related to fundamental research on
the connection between quantum chaos and scrambling of
quantum information [23,24] and also to applications like
quantum metrology [25–27]. For example, the exponential
sensitivity to small perturbation in imperfect time-reversal
quantum dynamics is a widely studied signal for irreversibil-
ity [28–31]. Another approach is the information gain in
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tomography, which can be used as a signature of quantum
chaos [32,33]. Here we address this question by investigating
the dynamics of the quantum Fisher information (QFI) in
quantum ergodic systems. The QFI is a quantity of central
importance in quantum metrology. It quantifies the sensitivity
of a given input state to a unitary transformation, and provides
the fundamental bound of the parameter estimation [34–37].
The QFI also provides a sufficient condition to recognize
entanglement in multiparticle state [38–41].

In this paper, we study the time evolution of the QFI of
quantum ergodic systems by a RMT approach. We model
the Hamiltonian of the ergodic system as the sum of two
contributions: a free, noninteracting, diagonal part and an
interaction term modeled by a Gaussian orthogonal random
matrix. This approach is valid as long as the coupling between
a subsystem and the rest of the closed system can be modeled
as random matrix. Such an approach was originally proposed
by Deutsch as a toy model to describe the emergence of quan-
tum thermalization in isolated quantum systems [7]. Recently,
it was shown that this approach can be extended to predict
the off-diagonal elements of observables, recovering the ETH
[42]. The description on RMT relies on strong assumptions
that are basically equivalent to the ETH itself, however, it
allows us to make scaling predictions that can be tested in
experiments or exact numerical diagonalizations.

We test the results predicted from RMT by using an exact
diagonalization of a nonintegrable spin chain. The model con-
sists of a system Hamiltonian describing one or a few nonin-
teracting spins coupled with large spin system which plays the
role of a finite quantum many-body bath. We show that three
time regimes appear in the time evolution of the QFI. In the
beginning of the time evolution, the QFI increases quadrati-
cally. In this short time period, the information of the parame-
ter can be extracted by measuring the local spin observable
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with uncertainty bounded by the standard quantum limit
(SQL). After this time period, the QFI quickly passes into a
linear increase with slope defined by the width of the random
wave functions. Essentially, this width is the decay rate of
the observable to the microcanonical average. In this second
stage, the information of the parameter propagates along the
entire system in a sense that the other spin observables begin
to depend on the local magnetic field. Remarkably, a second
quadratic timescale appears and it determines the long-time
behavior of the QFI, which occurs when the information is
spread among all quantum states involved in the evolution. We
show that in this third stage the QFI is inversely proportional
to the effective dimension of the system, a measure which
quantifies the ergodicity of the system. The transition from the
linear to quadratic regime in time occurs at Heisenberg time,
determined by the density of states of the system.

For NS noninteracting spins, one can expect that the QFI
scales as ∼NS , which gives the standard shot-noise limit.
Crucially, for a few spins coupled to the quantum many-body
heat bath, the system-bath interaction gives rise to a spin-spin
correlation within the small subsystem. Hence, we show the
quantum correlation may increase the QFI in the sense that
it can exceed the QFI corresponding to the SQL without any
initial entangled state preparation.

The paper is organized as follows: In Sec. II, we provide
the theoretical framework for quantum parameter estimation.
Section III presents the main result of our paper. We model the
interaction Hamiltonian in terms of random matrix. Based on
this, we derive an analytical expression for the time evolution
of the QFI. In Sec. IV, we test the prediction from RMT
with the exact diagonalization of a spin chain. Finally, the
conclusions are presented in Sec. V.

II. QUANTUM PARAMETER ESTIMATION

We consider a quantum system described by a Hamilto-
nian, Ĥ (λ) = Ĥ0 + ĤI , consisting of a noninteracting Hamil-
tonian Ĥ0 = ĤS + ĤB, with ĤS and ĤB being the Hamiltoni-
ans for the subsystem and the many-body environment, and
an interaction part ĤI describing the system-bath interaction.
The eigenvectors and eigenenergies of the total Hamiltonian

are |ψμ〉 and Eμ, such that Ĥ |ψμ〉 = Eμ|ψμ〉. We also de-
fine noninteracting energy eigenbasis, Ĥ0|ϕα〉 = Eα|ϕα〉. The
system is initially prepared in an out-of-equilibrium state
|�0〉 = ∑

μ aμ|ψμ〉 with aμ = 〈ψμ|�0〉, which evolves under

the action of the unitary propagator, |ψ (λ)〉 = e−iĤ (λ)t |�0〉.
The classical Fisher information (CFI)

FC(λ) =
∑

n

(∂λ p(n|λ))2

p(n|λ)
, (1)

quantifies the amount of information on the parameter λ,
which can be derived by performing discrete measurements
with conditional probability p(n|λ) = Tr(�̂nρ̂(λ)) to obtain
the value n when the parameter has a value λ. Here {�̂n}, with∑

n �̂n = 1, are the elements of a positive operator-valued
measure and ρ̂(λ) = |ψ (λ)〉〈ψ (λ)| is the density operator.
The optimal strategy to measure the value of λ is, however,
associated with a privileged observable that maximizes the
CFI. The CFI is upper bounded FC (λ) � FQ(λ), where FQ(λ)
is the QFI. The ultimate achievable precision of the parameter
estimation is quantified via the quantum Cramér-Rao bound
δλ2 � 1/(MFQ(λ)), where M is the repetition number. For a
pure state, the QFI is given by [34]

FQ(λ) = 4(〈∂λψ (λ)|∂λψ (λ)〉 − |〈ψ (λ)|∂λψ (λ)〉|2). (2)

Furthermore, the QFI can be interpreted as a measure of dis-
tinguishability of two quantum states |ψ (λ)〉 and |ψ (λ + dλ)〉
with respect to the infinitesimal variation of the parameter
of interest λ. Indeed, we can define the Bures distance be-
tween two infinitesimally close quantum states by ds2

B = 1 −
F (λ, λ + dλ), where F (λ, λ + dλ) = |〈ψ (λ)|ψ (λ + dλ)〉|2
is the fidelity between the states. Therefore, it is straight-
forward to show that ds2

B = 1
4 FQ(λ)dλ2 [34]. We note that

the QFI is also related to the Loschmidt echo (LE), which
is defined as a fidelity between a perturbed and unperturbed
time-evolving states [29].

Hereafter, we assume that the dependence on λ comes only
from the noninteracting Hamiltonian Ĥ0(λ). This example
corresponds to cases where λ represents spin frequency or
external magnetic field strength. Furthermore, we may express
the QFI (2) in the basis of |ψμ〉 eigenvectors. We have (see
Appendix A)

FQ(λ) = 4t2

⎧⎪⎨
⎪⎩

∑
μνρ

a∗
μaν (∂λĤ0)μρ (∂λĤ0)ρνeiθμν t sinc(θμρt )sinc(θρνt ) −

∣∣∣∣∣∣
∑
μν

a∗
μaνeiθμν t (∂λĤ0)μνsinc(θμνt )

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭, (3)

where (∂λĤ0)μν = 〈ψμ|∂λĤ0|ψν〉 are the matrix elements in
the many-body interacting basis, θμν = (Eμ − Eν )/2, and
sinc(x) = sin(x)/x. The expression (3) is convenient for our
further consideration because we can apply a RMT approach
to evaluate the respective matrix elements.

III. RANDOM MATRIX APPROACH

Our analysis of the QFI is based on the random ma-
trix model in which the noninteracting Hamiltonian Ĥ0 is

modeled by diagonal matrix of size N , with ω = 1/N being
the constant spacing between the energy levels. The interac-
tion term ĤI is modeled by a random matrix, (ĤI )αβ = hαβ ,
where hαβ are independent random numbers selected from the
Gaussian orthogonal ensemble with probability distribution

P(h) ∝ e
− N

4g2 Trh2

, giving average 〈hαβ〉 = 0, and variance
〈h2

αβ〉 = g2(1 + δαβ )/N , where g is the coupling strength
[7,42].

We expand the eigenstates of Ĥ in the noninteracting ba-
sis, |ψμ〉 = ∑

α cμ(α)|ϕα〉, where cμ(α) are random variables
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whose statistical properties depend on the properties of the
random matrix ĤI . The probability distribution of eigenstates
then takes a Lorentzian form [7,42]

〈|cμ(α)|2〉V = �(μ, α) = ω�

π

1

(Eμ − Eα )2 + �2
, (4)

where � = πg2 is the width of the wave function distribu-
tion and 〈. . .〉V denotes an average over realizations of the
random matrix (ĤI )αβ . The Lorentzian function is normal-
ized such that

∑
μ �(μ, α) = ∑

α �(μ, α) = 1. Furthermore,
we assume a self-averaging condition where sum over
random wave functions are replaced with their ensemble av-
erage

∑
α...β cμ(α) . . . cν (β ) = ∑

α...β〈cμ(α) . . . cν (β )〉V (see
Appendix B).

The self-averaging condition is essential for the evaluation
of the QFI (3), and is shown to hold in the description of
observables in Refs. [43,44]. Indeed, we can evaluate the
sum of the matrix elements in (3) in terms of averages of
products of random-wave functions cμ(α). The treatment of
cμ(α) as an independent random Gaussian variable, however,
is not sufficient to consistently determine the value of the
off-diagonal matrix elements of an observable [42,43,45,46].
To yield consistent results, a non-Gaussian correction should
be included, which arises as a result of the orthonormality
condition. For the above random matrix model, calculations
of observable quantities can be made under the following
assumptions: (i) We assume sparsity of Ĥ ′

0, which implies that
its matrix elements in the noninteracting basis is represented
by a diagonal matrix, or at least by a matrix with only a few
nondiagonal elements. (ii) We define smoothness of the matrix
elements of an observable in the following way:

[(Ĥ ′
0)αα]μ =

∑
α

�(μ, α)(Ĥ ′
0)αα, (5)

which represents the microcanonical average of the matrix
elements (Ĥ ′

0)αα around the energy Eμ, namely, (Ĥ ′
0)mc =

[(Ĥ ′
0)αα]μ. Such an average is well-defined as long as ω/� �

1, which ensures that a large number of matrix elements are
averaged in [(Ĥ ′

0)αα]μ. We also neglect the corrections due to
self-averaging decoupling which are of order of O(ω2/�2),
see Appendix D. These conditions are held for the random
matrix model for large N , and large enough g such that eigen-
states are spread over a significant number of noninteracting
basis states. Conditions for the validity of these assumptions
to realistic systems have been discussed in detail in Ref. [47].

Based on the above conditions, the QFI (3) is given by (see
Appendix C for more details)

FQ(λ) ≈ 4t2

{
ω

π�

(
Ĥ ′2

0

)
mc +

(
�Ĥ ′2

0

)
mc

2(�t )2
(e−2�t − 1 + 2�t )

}
.

(6)

This is the main result of our paper. Here ∂λĤ0 = Ĥ ′
0 and

(Ĥ ′
0)mc is the microcanonical average of an observable Ĥ ′

0 and
(�Ĥ ′2

0 )mc = (Ĥ ′2
0 )mc − (Ĥ ′

0)2
mc is the microcanonical average

of the variance of Ĥ ′
0.

In Fig. 1, we show the microcanonical average of
the observable Ĥ ′

0 = αδαβ according to (5) compared
with the diagonal average 〈H̄ ′

0〉 = Tr(Ĥ ′
0ρ̂DE), where ρ̂DE =

FIG. 1. Estimates for the microcanonical average for varying val-
ues of g and N . Analytic results (5) are compared with the predictions
given by the diagonal ensemble (numerical results). Average over ten
realizations of the random Hamiltonian is taken. The initial state is
|�0〉 = |ϕα〉 with α = N/2.

∑
μ |aμ|2|ψμ〉〈ψμ| is the density matrix of the diagonal en-

semble. The result is not sensitive to the choice of the initial
state except for states which are at the edge of the energy spec-
trum. The numerical and the analytical results are averaged
over ten realizations of the random Hamiltonian, but the result
does not vary significantly even if we take smaller number of
realizations.

In Fig. 2, we show the time evolution of the QFI where we
set λ = ω. We compare the exact result based on Eq. (2) using
the random matrix model and analytical expression (6). We
set the initial state to be an eigenstate of the noninteracting
Hamiltonian, |�0〉 = |ϕα〉 with α selected at the middle of the
energy spectrum. We compare the results for various g and N .
Crucially, we expect good agreement between the analytical

FIG. 2. Quantum Fisher information as a function of time for
various g and N . We compare the results for the QFI derived from
the random matrix Hamiltonian using Eq. (2) and the analytical result
Eq. (6). Average over 10 realizations of the random Hamiltonian is
taken. The initial state is |�0〉 = |ϕα〉 with α = N/2 and (Ĥ ′

0 )αβ =
αδαβ .
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and numerical results for large N and small g, where the latter
condition is required for accuracy of the Lorentzian form of
�(μ, α). On one hand, we observe that by lowering g for
constant N the decay rate � decreases and the ratio ω/�

increases such that high order terms in (6) become significant.
This explains the deviation between the numerical and the an-
alytical results for small g. On the other hand, for a given � by
increasing N the frequency ω decreases, which improves the
agreement between both results, as shown in Fig. 2. Finally,
although for high coupling g the higher order terms in (6) are
suppressed, the Lorentzian form of the probability distribution
is no longer a good approximation, which would modify the
result for the QFI. However, as we will see later, the same time
dependence of the QFI still holds even in the strong coupling
regime. We also test the result for other initial states |ϕα〉. We
find that the relative error converges faster for initial states
at the lower half of the noninteracting energy spectrum and,
respectively, slower at the upper half.

IV. EXACT DIAGONALIZATION

We now turn to the comparison of our main result (6)
with exact diagonalization of a nonintegrable spin chain. We
consider a 1D spin system with a Hamiltonian of the form

Ĥ = ĤS + ĤB + ĤSB. (7)

The system Hamiltonian describes a single spin in a presence
of a B field,

ĤS = Bσ z
1 , (8)

where σ
q
j (q = x, y, z) are the Pauli matrices acting on jth

site and B is the parameter we wish to estimate, namely,
λ = B. The bath Hamiltonian describes a spin chain with Ising
interaction

ĤB =
N∑

k>1

B(B)
x σ x

k +
N−1∑
k>1

Jx(σ+
k σ−

k+1 + σ−
k σ+

k+1), (9)

where B(B)
x is the magnetic field along the x-axis and Jx > 0 is

the spin-spin coupling. The interaction Hamiltonian describes
a coupling between the system spin and a single bath spin of
index r,

ĤSB = J (SB)
z σ z

1σ z
r + J (SB)

x (σ+
1 σ−

r + σ−
1 σ+

r ), (10)

with coupling strengths J (SB)
z and J (SB)

x .
As long as the quantum ergodic system is well described

by RMT, we expect that expression Eq. (6) holds with the
modification ω → 1/D(E0), where D(E0) is the density of
states at the initial energy E0 [42]. This assumption that D(E )
is constant over the width �, the energy width of the random
wave functions, is what leads to the effective random matrix
model with constant energy gap ω = 1/N . This limits the
above approach to a weak coupling regime. Outside of the
weak coupling regime, the structure of the density of states
modulates the eigenstate distribution, often yielding instead
Gaussian-distributed eigenstates [50], as will be discussed
below.

Then using Eq. (6) with Ĥ ′
0 = σ z

1 and thereby (Ĥ ′2
0 )mc = 1

and (�Ĥ ′2
0 )mc = 1 − (σ z

1 )2
mc, the QFI becomes

FQ(B) ≈ 4t2

⎧⎨
⎩ 1

πD(E0)�
+ 1 − (

σ z
1

)2

mc

2(�t )2
(e−2�t − 1 + 2�t )

⎫⎬
⎭.

(11)

Note that in applying the QFI as above, we are describing
a local observable of the spin system in terms of RMT. In
the Appendix E we show that such local observables are
indeed well described in terms of RMT as long as certain
energy scales of the system are sufficiently separated. No-
tably, the sparsity condition above follows trivially for a local
observable [47].

To find the value of �, we use that the time dependence of
an observable Ô obeys [44,45]

〈Ô(t )〉 = 〈Ô(t )〉0e−2�t + 〈Ō〉(1 − e−2�t ), (12)

where 〈Ô(t )〉0 is the evolution of the observable according the
noninteraction Hamiltonian Ĥ0 and 〈Ō〉 is the time-average
value defined by 〈Ō〉 = Tr(Ôρ̂DE). Thermalization of a closed
system implies the equality 〈Ō〉 ≈ (Ô)mc.

In Fig. 3(a), we plot the density of states as a function
of the energy. From here, we can extract the value of D(E0)
at the initial energy E0. We also fit the time evolution of
the observable σ z

1 to obtain the value of �; see Fig. 3(b). In
Fig. 3(c), we show the comparison between the exact result
for the QFI using (2) and the analytical expression (11) for
various initial states. Since the small spin subsystem thermal-
izes, the information for the parameter B is locally lost. What
we see, however, is that because of the spin-spin interaction
the information has not been lost, but spread among the other
degrees of freedom. At the beginning of the time evolution for
t � (2�)−1, the time scaling of the QFI is quadratic, FQ(B) ≈
4t2(�Ĥ ′2

0 )mc, as shown in Fig. 4(a). In this first stage, the
information for the parameter is still not locally lost in a sense
that it can be determined by measuring only the local spin
observable. Since the QFI scales quadratically with time, the
statistical uncertainty of the parameter estimation is bounded
by the SQL. After this short time period, the growth of the
QFI becomes linear in time with the slope determined by
the decay rate �, namely, FQ(B) ≈ (4t/�)(�Ĥ ′2

0 )mc. In this
second stage, the information for the parameter B propagates
along the entire system in a sense that global measurements
of the spin observables are required in order to determine B.
Remarkably, a second quadratic timescale defines the long-
time behavior of the QFI that occurs when the information has
fully spread between all degrees of freedom. In this third case,
we have FQ(B) ≈ (4t2/πD(E0)�)(Ĥ ′2

0 )mc. In fact, we may
connect the third time scaling of QFI with the effective dimen-
sion of the system defined by deff = (

∑
μ |〈�(0)|ψμ〉|4)−1,

which quantifies the ability of a quantum system to ther-
malize [48]. Also, the mean amplitude of time fluctuations
of an observable is bounded by d−1/2

eff [42]. The condition
deff � 1 implies that the initial state is composed of a large
number of energy eigenstates which leads to suppression
of temporal fluctuations of an observable and equilibration
of the system. Using the RMT approach, it can be shown
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FIG. 3. (a) Density of states, as a function of energy for N = 13
and initial state |�0〉 = |ϕα〉 with α = 5500. The dashed lines show
the point D(E0), where E0 = 〈�0|Ĥ |�0〉. (b) Time evolution of the
spin system observable σ z

1 both numerically and analytically using
Eq. (12). (c) Quantum Fisher information as a function of time for
initial state |�0〉 = |ϕα〉 with α = 5500 for N = 13 and for anti-
ferromagnetic initial state |�0〉 = | ↑〉S| ↓↑↓ ...〉B for N = 15. We
compare the exact result for the QFI (2) with Hamiltonian (7) and
the analytical expression (11). The parameters are set to B = 0.01,
B(B)

x = 0.3, J (SB)
z = 0.2, J (SB)

x = 0.4, Jx = 1, and r = 5. The decay
rate is � = 0.15 for both N = 13 and N = 15 is calculated by using
Eq. (12) to fit the exact time evolution of the σ z

1 operator for the
system spin. The density of states D(E0) is evaluated by interpolation
of D(E ). Inset: Long-time evolution of the CFI for J (SB)

x = 0.4.
We compare the numerical result with the function at2 + bt with
a = 0.0035 and b = 14.

that deff = (2π/3)D(E0)� [42]. Hence, the long-time behav-
ior of the QFI becomes FQ(B) ≈ (8t2/3deff )(Ĥ ′2

0 )mc. This
relation indicates that the final quadratic behavior of the QFI
occurs when the information of the parameter has been dis-
tributed over all quantum states involved in the evolution of
the quantum system. The crossover between the linear-to-
quadratic time regimes occurs at the Heisenberg time τ2 ≈
πD(E0)((�Ĥ ′2

0 )mc/(Ĥ ′2
0 )mc), which is defined as the longest

timescale for the system [49]. We point out that the density
of states is related to the microcanonical entropy S via the
relation 1/D(E0) = e−S . Since the entropy is an extensive
quantity, the transition time τ increases with the number of
spins.

Finally, we note that the study of the time evolution of
the quantum echo-dynamics can be used as a signature for
quantum chaos. The LE is a measure for the sensitivity of the
state vector evolution to small perturbations. Since the QFI
and the LE are related, we may expect that similar behavior
occurs in the time evolution of the LE [28]. Indeed, the dy-
namics of the LE for quantum chaotic systems is expected
to have diffusive behavior where it scales linearly with time,

FIG. 4. (a) Short time evolution of QFI for chain with N = 13
spins. The vertical dashed-dot line indicates the transition time τ1 =
1/2� between quadratic to linear time regime of QFI. (b) The QFI
for various JSB

x for t = 104. (c) Long time evolution of the QFI. The
initial state is |�0〉 = |ϕα〉 for α = 5500. We compare the numerical
results (solid lines) with the analytical expression (11) The vertical
dashed-dot line indicates the transition time τ2 = πD(E0) between
linear to quadratic time regime of QFI. The grey solid lines show the
asymptotic behavior of the QFI with α = 4/� and β = 4/πD(E0)�.
Inset: Long-time evolution of the QFI for JSB

x = 2.4. We compare
the numerical result (solid line) with the analytical expression (green
dashed line). We fit the numerical result for the QFI with the function
ct2 + dt for c = 0.0028 and d = 9 (yellow dash-dotted line).

whereas for regular dynamics one expects ballistic behavior
with quadratic time scaling [28,29]. In this sense, our RMT
approach provides a general framework for the dynamics of
the QFI, which can be related with the properties of the LE.
Furthermore, our approach allows one to express the transition
times between the different time regimes in terms of decay
rate, density of states, and microcanonical average of the
observable.

In Fig. 4, we plot the short- and long-time behavior of
the QFI. We observe good agreement between the exact and
the analytical results. As we see, increasing the time the
QFI makes a transition to quadratic time regime is shown
in Fig. 4(c). Increasing the spin-bath coupling J (SB)

x leads
to higher decay rate �, which lowers the QFI according to
Eq (11). We note that for larger spin-bath couplings, we expect
the same general phenomena, however, with differing func-
tional forms of the random wave-function distribution. For
example, at intermediate couplings it has been observed that
the random wave function takes a Gaussian form [50], and for
strong couplings where a full random matrix Hamiltonian is
valid, the density of states dominates the energy dependence
and hence leads to a decay in the form of a Bessel function
[51,52]. In each case a RMT approach holds, however, the
assumption here of Lorentzian wave functions is strictly valid
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FIG. 5. Exact time evolution of the ratio F (1)
Q /F (SQL)

Q for a spin
chain consisting of two system spins. The initial state is |�0〉 = | ↑↑
〉S| ↑↓↑ ...〉B for N = 15. Case 1: The system spins interact with
different bath spins (r1 = 5 and r2 = 8) with QFI F (SQL)

Q . Case 2:
Both systems spins interact with the same bath spin (r1 = 5) with
corresponding QFI F (1)

Q . Time evolution of the correlation 〈σ z
1 σ z

2 〉 for
cases 1 (a) and 2 (b).

for weak couplings. We show in Fig. 4(c) (inset) the long-time
behavior of the QFI for a strong spin-bath coupling. As we
expect in this limit, the numerical result deviates quan-
titatively, however, not qualitatively from the analytical
expression (11), as the predicted distinct timescales are evi-
dent. We fit the numerical result with the function ct2 + dt ,
indicating that the same time dependency holds even in this
case.

An important issue is whether we can recover the be-
havior of the QFI by measuring a suitable observable. An
optimal measurement that provides equality between CFI
and QFI is given by the eigenvectors of the so-called SLD
operator L̂B. For a pure state, the SLD operator can be
written as L̂B = 2(|∂Bψ〉〈ψ | + |ψ〉〈∂Bψ |). We numerically
diagonalize L̂B and, respectively, calculate the CFI as is
shown in Fig. 3(c). Such a basis, however, is composed
by entangled states and is not suitable for measurement. A
more convenient approach is to detect the spin populations
ps1,...,sN = Tr(ρ̂(t )�̂s1,...,sN ), where ρ̂(t ) = |ψ (t )〉〈ψ (t )| is the
density operator and �̂s1,...,sN is the projection operator with
sl =↑l ,↓l . In Fig. 3(c) (inset), we plot the long-time behavior
of the CFI for such spin observables. We see that although the
CFI is lower than QFI, the associated timescales of the QFI
are captured by detecting the spin populations.

We proceed with an application of our result (11) to
a spin system Hamiltonian consisting of two spins, ĤS =
B(σ z

1 + σ z
2 ). In that case, we have (Ĥ ′2

0 )mc = (�Ĥ ′2
0 )mc = 2 +

2(σ z
1σ z

2 )mc. The system-bath Hamiltonian is given by

ĤSB = J (SB)
z σ z

1σ z
r1

+ J (SB)
x (σ+

1 σ−
r1

+ σ−
1 σ+

r1
) + J (SB)

z σ z
2σ z

r2

+ J (SB)
x (σ+

2 σ−
r2

+ σ−
2 σ+

r2
), (13)

where rk (k = 1, 2) denotes the position of the bath spins.
For two spins coupled to different bath spins r1 �= r2, we find
that no correlation is created between the system spins in
a sense that (σ z

1σ z
2 )mc = (σ z

1 )mc(σ z
2 )mc ≈ 0, see Fig. 5(a). In

that case, the QFI is twice the QFI for a single system spin,
F (SQL)

Q (B) = 2FQ(B), which corresponds to the SQL. Let us

now consider the case r1 = r2, where the two system spins are
coupled to a single bath spin. Then the spin-bath interaction
creates a correlation between the two system spins in a sense
that (σ z

1σ z
2 )mc �= 0; see Fig. 5(b). As long as (σ z

1σ z
2 )mc > 0,

we have F (1)
Q (B) > F (SQL)

Q (B) and thus one can overcome the
SQL. We plot in Fig. 5 the exact time evolution of the ratio
F (1)

Q /F (SQL)
Q . We see that the positive quantum correlation

between the system spins leads to enhancement of the QFI
compared with the F (SQL)

Q (B).

V. CONCLUSION

We use a RMT approach to derive an analytical expression
for the time evolution of the QFI in quantum ergodic systems.
We find that the QFI obeys three different time regimes. At the
beginning of the time evolution, the QFI grows quadratically,
which quickly passes into a linear growth with a slope de-
fined by the width of the random wave function. Furthermore,
we find a second quadratic timescale which determines the
long-time behavior of the QFI. This timescale is shown to cor-
respond to the Heisenberg time, after which the information
of the local observable has spread throughout all accessible
degrees of freedom of the system.

We have compared our RMT result with an exact diago-
nalization of a nonintegrable spin chain, confirming the RMT
prediction of the three separate timescales. We have shown
that the information for a parameter describing a single spin
system is locally lost but propagates among the other degrees
of freedom of the spin system. The transition time between
the linear and quadratic time regimes depends on the density
of states, and increases with the number of spins.

Our analytical approach is based on the assumption that
the probability distribution of the random variables is given
by a Lorentzian functional form. Such a form is obtained in
the perturbative regime of weak coupling, and thus we only
expect good agreement with the RMT result when the interac-
tion Hamiltonian is small. The only feature of our approach,
which is sensitive to this assumption, however, is that the
explicit expression for the time evolution of the QFI depends
on the Lorentzian probability distribution derived from the
weak coupling assumptions. In the strong coupling regime,
we may expect that the probability distribution of the random
variables will become Gaussian. This will modify our main
result but we anticipate, and indeed numerically observe, that
the asymptotic behavior of the QFI will be the same but with
different prefactors. Furthermore, the result for the QFI in
quantum ergodic systems can be used for a comparison with
the evolution of the QFI in a system with disorder, where the
ergodicity is broken and the systems can fail to thermalize.
Thus, the observation of the time evolution of QFI can be used
as a potential signature for many-body localization.
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APPENDIX A: QUANTUM FISHER INFORMATION
IN THE MANY-BODY INTERACTING BASIS

The quantum Fisher information for a pure state is given
by

FQ(λ) = 4{〈∂λψ |∂λψ〉 − 〈ψ |∂λψ〉〈∂λψ |ψ〉}, (A1)

where the state vector is |ψ〉 = e−iĤt |�0〉 and |�0〉 is the
initial state which is independent on parameter λ. Therefore,
we have |∂λψ〉 = (∂λe−iĤt )|�0〉. The partial derivative can be
written as

∂λe−iĤt = −it
∫ 1

0
dse−iĤt eiĤts(∂λĤ )e−iĤts. (A2)

The quantum Fisher information can be rewritten as

FQ(λ) = 4{〈�0|(∂λeiĤt )(∂λe−iĤt )|�0〉
− |〈�0|eiĤt (∂λe−iĤt )|�0〉|2}. (A3)

Now, let us consider the first term. We have

〈�0|(∂λeiĤt )(∂λe−iĤt )|�0〉
=

∑
μνρ

a∗
μaν〈ψμ|∂λeiĤt e−iĤt |ψρ〉

× 〈ψρ |eiĤt∂λe−iĤt |ψν〉, (A4)

where we use that |�0〉 = ∑
μ aμ|ψμ〉 and

∑
ρ |ψρ〉〈ψρ | = 1.

Using (A2), we obtain

〈ψρ |eiĤt∂λe−iĤt |ψν〉 = −it
∫ 1

0
ds〈ψρ |eisĤt∂λĤe−isĤt |ψν〉

= −it〈ψρ |∂λĤ |ψν〉
∫ 1

0
dsei(Eρ−Eν )st

= −it〈ψρ |∂λĤ |ψν〉eiθρν t sinc(θρνt ).

(A5)

Here we have defined θμν = Eμ−Eν

2 . Therefore, we get

〈�0|(∂λeiĤt )(∂λe−iĤt )|�0〉
= t2

∑
μνρ

a∗
μaν〈ψμ|∂λĤ |ψρ〉〈ψρ |∂λĤ |ψν〉

× eiθμν sinc(θμρt )sinc(θρνt ). (A6)

Similarly, for the second term, we obtain

〈�0|eiĤt (∂λe−iĤt )|�0〉

= −it
∑
μν

a∗
μaν

∫ 1

0
ds〈ψμ|eisĤt∂λĤe−isĤt |ψν〉

= −it
∑
μν

a∗
μaνeiθμν t 〈ψμ|∂λĤ |ψν〉sinc(θμνt ). (A7)

Using (A1), (A6), and (A7) we obtain

FQ(λ) = 4t2

⎧⎨
⎩

∑
μνρ

a∗
μaν (∂λĤ0)μρ (∂λĤ0)ρνeiθμν t sinc(θμρt )sinc(θρνt ) −

∣∣∣∣∣
∑
μν

a∗
μaνeiθμν t (∂λĤ0)μνsinc(θμνt )

∣∣∣∣∣
2
⎫⎬
⎭. (A8)

APPENDIX B: CORRELATION FUNCTIONS

In this Appendix, we outline the core RMT approach to eigenstate correlations formulated in Ref. [42]. We can calculate
arbitrary correlation functions of the random wave functions cμ(α) by defining the respective generating function. For μ = ν, it
reads

Gμμ(�ξμ) ∝ e
1
2

∑
α ξ 2

μ,α�(μ,α), (B1)

where �ξμ = (ξμ,1, ξμ,2 . . . ξμ,N ) are ancillary fields. An arbitrary correlation function of the random wave functions can be
obtained via

〈cμ(α)cμ(α′) . . . cμ(β )cμ(β ′)〉V = 1

Gμμ

∂ξμ,α
∂ξμ,α′ . . . ∂ξμ,β

∂ξμ,β′ Gμμ|
ξμ,α=0. (B2)

Similarly, for μ �= ν the generating function is

Gμν (�ξμ, �ξν ) ∝ e
1
2

∑
α ξ 2

μ,α�(μ,α)+ 1
2

∑
α ξ 2

ν,α�(ν,α)− 1
2

∑
αβ ξμ,αξμ,β ξν,αξν,β

�(μ,α)�(μ,β )�(ν,α)�(ν,β )∑
γ �(μ,γ )�(ν,γ ) (B3)

and the correlation function becomes

〈cμ(α)cν (α′) . . . cμ(β )cν (β ′)〉V = 1

Gμν

∂ξμ,α
∂ξν,α′ . . . ∂ξμ,β

∂ξν,β′ Gμν |ξμ,α=0,ξν,α=0. (B4)

To evaluate the QFI, we focus on two sets of four-point correlation functions of interest: 〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V for μ = ν

and μ �= ν.
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For μ = ν, the random wave functions can be treated as independent random variables, namely,

〈cμ(α)cμ(β )cμ(α′)cμ(β ′)〉V = �(μ, α)�(μ, β )δαα′δββ ′ + �(μ, α)�(μ, α′)(δα′β ′δαβ + δαβ ′δα′β ). (B5)

For μ �= ν, we have

〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V = �(μ, α)�(ν, β )δαα′δββ ′ − �(μ, α)�(ν, β )�(μ, α′)�(ν, β ′)∑
γ �(μ, γ )�(ν, γ )

(δαβδα′β ′ + δαβ ′δα′β ). (B6)

The first term in (B6) describes the four-point correlation function as an independent random Gaussian variables, while the last
two terms correspond to the non-Gaussian correction which arises as a result of the orthogonality condition.

In fact, we may express graphically the correlation functions as a sum of products of two-point correlation functions. Consider
first μ = ν. Then we have

〈cμ(α)cμ(β )cμ(α′)cμ(β ′)〉V = 〈cμ(α)cμ(β )cμ(α′)cμ(β ′)〉V + 〈cμ(α)cμ(β )cμ(α′)cμ(β ′)〉V + 〈cμ(α)cμ(β )cμ(α′)cμ(β ′)〉V .

(B7)

Each of the terms can be written as a product of two-point correlation functions. For example,

〈cμ(α)cμ(β )cμ(α′)cμ(β ′)〉V = 〈cμ(α)cμ(β )〉V 〈cμ(α′)cμ(β ′)〉V = �(μ, α)δαβ�(μ, α′)δα′β ′ . (B8)

For the case μ �= ν, we also need to include the non-Gaussian corrections. We have

〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V = 〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V + 〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V + 〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V . (B9)

The last two terms in (B9) arise as a result of the orthogonality condition between the many-body eigenstates. For example, the
first non-Gaussian term is

〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V = −�(μ, α)�(ν, β )�(μ, α′)�(ν, β ′)∑
γ �(μ, γ )�(ν, γ )

δαβδα′β ′ , (B10)

and similarly for the second one.

APPENDIX C: CALCULATION OF THE QFI USING RANDOM MATRIX APPROACH

Here we provide the method which we use to evaluate the QFI (6). We set ∂λĤ0 = Ĥ ′
0 and assume that Ĥ ′

0 is a diagonal matrix
in the noninteracting basis. Therefore, the QFI is

FQ(λ) = 4t2

⎧⎪⎨
⎪⎩

∑
μνρ

a∗
μaν (Ĥ ′

0)μρ (Ĥ ′
0)ρνeiθμν t sinc(θμρt )sinc(θρνt ) −

∣∣∣∣∣∣
∑
μν

a∗
μaνeiθμν t (Ĥ ′

0)μνsinc(θμνt )

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭. (C1)

Let us now consider separately the first term in (C1), namely,∑
μνρ

a∗
μaν〈ψμ|Ĥ ′

0|ψρ〉〈ψρ |Ĥ ′
0|ψν〉eiθμν t sinc(θμρt )sinc(θρνt )

=
∑

μ

|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2 +

∑
μν

μ �=ν

|aμ|2|〈ψμ|Ĥ ′
0|ψν〉|2sinc2(θμνt )

+
∑

μν

μ �=ν

a∗
μaν〈ψμ|Ĥ ′

0|ψν〉〈ψν |Ĥ ′
0|ψν〉eiθμν t sinc(θμνt ) +

∑
μν

μ �=ν

a∗
μaν〈ψμ|Ĥ ′

0|ψμ〉〈ψμ|Ĥ ′
0|ψν〉eiθμν t sinc(θμνt )

+
∑
μνρ

μ �=ν �=ρ

a∗
μaν〈ψμ|Ĥ ′

0|ψρ〉〈ψρ |Ĥ ′
0|ψν〉eiθμν t sinc(θμρt )sinc(θρνt ). (C2)

Now we apply the self-averaging condition for each of the terms in (C2). For the first one, we have∑
μ

|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2 =

∑
μ

〈|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2〉V . (C3)

To evaluate (C3), we may further decouple the coefficients aμ describing the initial state part and observable in the sense that
(see Appendix D for more details)∑

μ

〈|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2〉V =

∑
μ

〈|aμ|2〉V 〈|〈ψμ|Ĥ ′
0|ψμ〉|2〉V . (C4)
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Therefore, we have

〈|〈ψμ|Ĥ ′
0|ψμ〉|2〉V =

∑
αβ

〈cμ(α)cμ(α)cμ(β )cμ(β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ

=
∑
αβ

(2�2(μ, α)δαβ (Ĥ ′
0)αα (Ĥ ′

0)ββ + �(μ, α)(Ĥ ′
0)αα�(μ, β )(Ĥ ′

0)ββ ). (C5)

We define the average [(Ĥ ′
0)αα]μ = ∑

α �(μ, α)(Ĥ ′
0)αα , which is essentially a microcanonical average centered on the energy

Eμ. We also apply the smoothness condition, which implies that the variation of [(Ĥ ′
0)αα]μ as a function of Eμ can be neglected.

Using this, we obtain

〈|〈ψμ|Ĥ ′
0|ψμ〉|2〉V ≈ 2

[
(Ĥ ′

0)2
αα

]
μ

∑
α

�2(μ, α) + [(Ĥ ′
0)αα]2

μ. (C6)

Further, we take the continuum limit, substituting
∑

α → ∫ ∞
−∞

dEα

ω
, and thereby obtain

∑
α

�2(μ, α) = 1

ω

∫ ∞

−∞
�2(μ, α)dEα = ω

2π�
. (C7)

Substituting in Eq. (C3), we have∑
μ

|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2 =

∑
μ

〈|aμ|2〉V

( ω

π�

[
(Ĥ ′

0)2
αα

]
μ

+ [(Ĥ ′
0)αα]2

μ

)
. (C8)

As long as [(Ĥ ′
0)2

αα]μ and [(Ĥ ′
0)αα]2

μ are smooth functions of the energy Eμ and the probabilities |aμ|2 take nonvanishing value
close to the mean energy E0 = 〈�0|Ĥ |�0〉 with |�0〉 being the initial state, the ETH ensures that Eq. (C8) is equivalent to a
microcanonical average: ∑

μ

|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2 = ω

π�

(
Ĥ ′2

0

)
mc + (Ĥ ′

0)2
mc. (C9)

Consider the second term in (C2):∑
μν

μ �=ν

|aμ|2|〈ψμ|Ĥ ′
0|ψν〉|2sinc2(θμνt ) =

∑
μν

μ �=ν

〈|aμ|2〉V 〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V sinc2(θμνt ). (C10)

For the matrix element, we have

〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V =

∑
αβ

〈cμ(α)cν (α)cμ(β )cν (β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ. (C11)

Now, using (B6) we obtain

〈cμ(α)cν (α)cμ(β )cν (β )〉V = �(μ, α)�(ν, α)δαβ − �(μ, α)�(ν, α)�(μ, β )�(ν, β )∑
γ �(μ, γ )�(ν, γ )

− �2(μ, α)�2(ν, α)∑
γ �(μ, γ )�(ν, γ )

δαβ (C12)

and the matrix element becomes

〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V =

∑
αβ

(
�(μ, α)�(ν, α)δαβ − �(μ, α)�(ν, α)�(μ, β )�(ν, β )∑

γ �(μ, γ )�(ν, γ )
− �2(μ, α)�2(ν, α)∑

γ �(μ, γ )�(ν, γ )
δαβ

)
(Ĥ ′

0)αα (Ĥ ′
0)ββ

≈ [(�Ĥ ′
0)αα]2

μ̄

∑
α

�(μ, α)�(ν, α), (C13)

where [(�Ĥ ′
0)αα]2

μ̄ is the variance, μ̄ = μ+ν

2 . Going in the continuum limit, we get

∑
α

�(μ, α)�(ν, α) = 2ω�

π

1

(Eμ − Eν )2 + 4�2
. (C14)

Therefore, the second term becomes

∑
μν

μ �=ν

〈|aμ|2〉V 〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V sinc2(θμνt ) = 2ω�

π

∑
μν

μ �=ν

〈|aμ|2〉V [(�Ĥ ′
0)αα]2

μ̄

sinc2(θμνt )

(Eμ − Eν )2 + 4�2
. (C15)
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We now replace the sum over the index ν with integration, namely,

∑
ν

sinc2(θμνt )

(Eμ − Eν )2 + 4�2
→ 1

ω

∫ ∞

−∞

sinc2(θμνt )

(Eμ − Eν )2 + 4�2
dEν = t

2ω

∫ ∞

−∞

sinc2(x)

x2 + (�t )2
dx = πt

4ω(�t )3
(e−2�t − 1 + 2�t ). (C16)

Finally, we have

∑
μν

μ �=ν

|aμ|2|〈ψμ|Ĥ ′
0|ψν〉|2sinc2(θμνt ) =

(
�Ĥ ′2

0

)
mc

2(�t )2
(e−2�t − 1 + 2�t ). (C17)

We note that in Eq. (C13) we have neglected the contribution from the third term which is of order of (ω/�)2. Indeed, we have

∑
α

�2(μ, α)�2(ν, α) →
(

ω�

π

)4 1

ω

∫ ∞

−∞

dEα

((Eμ − Eα )2 + �2)2((Eν − Eα )2 + �2)2

=
(

ω�

π

)4
π

ω�3

(Eμ − Eν )2 + 20�2

((Eμ − Eν )2 + 4�2)3
. (C18)

Therefore, using (C14) we conclude that the third term in (C13) is of the order of (ω/�)2. We also note that the contribution for
μ = ν in Eq. (C15) can be neglected.

Consider the third term in (C2). We have∑
μν

μ �=ν

a∗
μaν〈ψμ|Ĥ ′

0|ψν〉〈ψν |Ĥ ′
0|ψν〉eiθμν t sinc(θμνt ) =

∑
μν

μ �=ν

〈a∗
μaν〉V 〈〈ψμ|Ĥ ′

0|ψν〉〈ψν |Ĥ ′
0|ψν〉〉V eiθμν t sinc(θμνt ). (C19)

The matrix elements expressed in the noninteracting basis are

〈〈ψμ|Ĥ ′
0|ψν〉〈ψν |Ĥ ′

0|ψν〉〉V =
∑
αβ

〈cμ(α)cν (α)cν (β )cν (β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ. (C20)

Using the generating function Eq. (B3), the four-point correlation function is

〈cμ(α)cν (α)cν (β )cν (β )〉V = 0. (C21)

Similarly, for the last term in (C2) we have

〈〈ψμ|Ĥ ′
0|ψρ〉〈ψρ |Ĥ ′

0|ψν〉〉V =
∑
αβ

〈cμ(α)cρ (α)cρ (β )cν (β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ. (C22)

Now, the four-point correlation function contains three different indices. To evaluate it, we need to introduce three auxiliary
fields. Because the indexes μ and ν repeat only once, we have

〈cμ(α)cρ (α)cρ (β )cν (β )〉V = 0. (C23)

Combining all averages in (C2), we obtain

∑
μνρ

a∗
μaν〈ψμ|Ĥ ′

0|ψρ〉〈ψρ |Ĥ ′
0|ψν〉eiθμν t sinc(θμρt )sinc(θρνt ) = ω

π�

(
Ĥ ′2

0

)
mc + (Ĥ ′

0)2
mc +

(
�Ĥ ′2

0

)
mc

2(�t )2
(e−2�t − 1 + 2�t ). (C24)

Let us now consider separately the second term in (C1), namely∑
μν

∑
μ′ν ′

a∗
μaνaμ′a∗

ν ′ 〈ψμ|Ĥ ′
0|ψν〉〈ψν ′ |Ĥ ′

0|ψμ′ 〉eiθμν t e−iθμ′ν′ t sinc(θμνt )sinc(θμ′ν ′t )

=
∑

μ

|aμ|4|〈ψμ|Ĥ ′
0|ψμ〉|2 +

∑
μν

μ �=ν

|aμ|2|aν |2〈ψμ|Ĥ ′
0|ψμ〉〈ψν |Ĥ ′

0|ψν〉 +
∑

μν

μ �=ν

|aμ|2|aν |2〈ψμ|Ĥ ′
0|ψν〉〈ψν |Ĥ ′

0|ψμ〉sinc2(θμνt )

+
∑

μν

μ �=ν

a∗2
μ a2

ν〈ψμ|Ĥ ′
0|ψν〉〈ψμ|Ĥ ′

0|ψν〉e2iθμν t sinc2(θμνt ) + · · · . (C25)

We have∑
μ

|aμ|4|〈ψμ|Ĥ ′
0|ψμ〉|2 =

∑
μ

〈|aμ|4〉V

(
ω

π�
[(Ĥ ′

0)2
αα]μ + [

(Ĥ ′
0)αα

]2

μ

)
=

(
ω

π�

(
Ĥ ′2

0

)
mc + (Ĥ ′

0)2
mc

)∑
μ

〈|aμ|4〉V . (C26)
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Note that ( ω
π�

)(Ĥ ′2
0 )mc〈

∑
μ |aμ|4〉V is of order of (ω/�)2 and thereby neglected. The second term in (C25) is∑

μν

μ �=ν

|aμ|2|aν |2〈ψμ|Ĥ ′
0|ψμ〉〈ψν |Ĥ ′

0|ψν〉 =
∑

μν

μ �=ν

〈|aμ|2|aν |2〉V 〈〈ψμ|Ĥ ′
0|ψμ〉〈ψν |Ĥ ′

0|ψν〉〉V . (C27)

The matrix elements are

〈〈ψμ|Ĥ ′
0|ψμ〉〈ψν |Ĥ ′

0|ψν〉〉V =
∑
αβ

〈cμ(α)cμ(α)cν (β )cν (β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ

=
∑
αβ

(
�(μ, α)�(ν, β ) − 2

�2(μ, α)�2(ν, β )∑
γ �(μ, γ )�(ν, γ )

δαβ

)
(Ĥ ′

0)αα (Ĥ ′
0)ββ

≈ [(Ĥ ′
0)αα]2

μ̄, (C28)

where we neglect the second term, which is of order of (ω/�)2. Therefore, we obtain

∑
μν

μ �=ν

〈|aμ|2|aν |2〉V [(Ĥ ′
0)αα]2

μ̄ ≈ (Ĥ ′
0)2

mc

⎛
⎝∑

μν

〈|aμ|2|aν |2〉V −
∑

μ

〈|aμ|4〉V

⎞
⎠ = (Ĥ ′

0)2
mc

⎛
⎝1 −

∑
μ

〈|aμ|4〉V

⎞
⎠. (C29)

Consider the term∑
μν

μ �=ν

|aμ|2|aν |2〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V sinc2(θμνt ) =

∑
μν

μ �=ν

〈|aμ|2|aν |2〉V 〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V sinc2(θμνt ). (C30)

Using (C13), we obtain

∑
μν

μ �=ν

〈|aμ|2|aν |2〉V 〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V sinc2(θμνt ) ≈ (

�Ĥ ′2
0

)
mc

2�ω

π

∑
μν

μ �=ν

〈|aμ|2|aν |2〉V
sinc2(θμνt )

(Eμ − Eν )2 + 4�2
. (C31)

Let us now assume that the initial state is an eigenstate of the noninteraction Hamiltonian Ĥ0, namely, |ψ (0)〉 = |ϕα0〉. Then we
have

〈|aμ|2|aν |2〉V = �(μ, α0)�(ν, α0) (C32)

and we get

(
�Ĥ ′2

0

)
mc

2�ω

π

∑
μν

μ �=ν

〈|aμ|2|aν |2〉V
sinc2(θμνt )

(Eμ − Eν )2 + 4�2
= (

�Ĥ ′2
0

)
mc

2�ω

π

∑
μν

μ �=ν

�(μ, α0)�(ν, α0)
sinc2(θμνt )

(Eμ − Eν )2 + 4�2
. (C33)

We replace the sum with the integration, such that we have

2�ω

π

1

ω

∫ ∞

−∞
�(μ, α0)

sinc2(θμνt )

(Eμ − Eν )2 + 4�2
dEμ � 2�

π

ω

π�

∫ ∞

−∞

sinc2(θμνt )

(Eμ − Eν )2 + 4�2
dEμ = ω

π�

1

2(�t )2
(e−2�t − 1 + 2�t ). (C34)

In the above equation, we have used that for any two functions f (x) > 0 and g(x) > 0, which obey f (x)g(x) � fmaxg(x), it
follows that

∫ ∞
−∞ f (x)g(x)dx � fmax

∫ ∞
−∞ g(x)dx. Therefore, we obtain

∑
μν

μ �=ν

〈|aμ|2|aν |2〉V 〈|〈ψμ|Ĥ ′
0|ψν〉|2〉V sinc2(θμνt ) �

(
�Ĥ ′2

0

)
mc

ω

π�

1

2(�t )2
(e−2�t − 1 + 2�t ). (C35)

As long as � � ω, we neglect this term.
Similarly, we have

2
∑

μν

μ �=ν

a∗2
μ a2

ν |〈ψμ|Ĥ ′
0|ψν〉|2 cos(2θμνt )sinc2(θμνt ) ≈ 2

(
�Ĥ ′2

0

)
mc

2�ω

π

∑
μν

μ �=ν

�(μ, α0)�(ν, α0)
cos(2θμνt )sinc2(θμνt )

(Eμ − Eν )2 + 4�2
. (C36)

Replacing the sum with integration, we get

2�ω

π

∫ ∞

−∞
�(μ, α0)

cos(2θμνt )sinc2(θμνt )

(Eμ − Eν )2 + 4�2
dEμ � 2�

π

ω

π�

∫ ∞

−∞

cos(2θμνt )sinc2(θμνt )

(Eμ − Eν )2 + 4�2
dEμ. (C37)

024135-11



VENELIN P. PAVLOV et al. PHYSICAL REVIEW E 110, 024135 (2024)

The integral is given by

2�

π

∫ ∞

−∞

cos(2θμνt )sinc2(θμνt )

(Eμ − Eν )2 + 4�2
dEμ = (e−2�t − 1)2

4(�t )2
. (C38)

Therefore, we obtain

2
∑

μν

μ �=ν

a∗2
μ a2

ν〈ψμ|Ĥ ′
0|ψν〉〈ψμ|Ĥ ′

0|ψν〉 cos(2θμνt )sinc2(θμνt )

�
(
�Ĥ ′2

0

)
mc

( ω

π�

) (e−2�t − 1)2

4(�t )2
, (C39)

which we neglect in the limit � � ω. All other terms in (C25)
contain matrix elements with two and three equal indexes
and, respectively, four different indexes, and their ensemble
average is zero.

Combining all averages in the second term (C25), we get∑
μν

∑
μ′ν ′

a∗
μaνaμ′a∗

ν ′ 〈ψμ|Ĥ ′
0|ψν〉〈ψν ′ |Ĥ ′

0|ψμ′ 〉eiθμν t e−iθμ′ν′ t

× sinc(θμνt )sinc(θμ′ν ′t ) ≈ (Ĥ ′
0)2

mc. (C40)

Finally, using Eqs. (C1), (C24), and (C40), we obtain

FQ(λ) = 4t2

{
ω

π�

(
Ĥ ′2

0

)
mc +

(
�Ĥ ′2

0

)
mc

2(�t )2
(e−2�t − 1 + 2�t )

}
.

(C41)

FIG. 6. Relative error d = |1 − (FQ(ω))RMT/(FQ(ω))| between
results for the QFI derived from Eqs. (6) and (2).

In Fig. 6, we show the relative error between the exact result
derived from Eq. (A1) and the analytical formula Eq. (C41)
for various g and N .

We see that increasing the time scaling of the QFI passes
from linear to quadratic. In fact, we can obtain the long time
scaling of QFI using that limt→∞ sinc(x) = 0. Using (C1), we
obtain

lim
t→∞

FQ(λ)

t2
= 4

⎧⎨
⎩

∑
μ

|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2 −

∑
μν

|aμ|2|aν |2〈ψμ|Ĥ ′
0|ψμ〉〈ψν |Ĥ ′

0|ψν〉
⎫⎬
⎭

= 4

⎧⎪⎨
⎪⎩

∑
μ

|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2 −

∑
μ

|aμ|4|〈ψμ|Ĥ ′
0|ψμ〉|2 −

∑
μν

μ �=ν

|aμ|2|aν |2〈ψμ|Ĥ ′
0|ψμ〉〈ψν |Ĥ ′

0|ψν〉

⎫⎪⎬
⎪⎭

= 4

⎧⎨
⎩ ω

π�

(
Ĥ ′2

0

)
mc + (Ĥ ′

0)2
mc − (Ĥ ′

0)2
mc

∑
μ

〈|aμ|4〉V − (Ĥ ′
0)2

mc

⎛
⎝1 −

∑
μ

〈|aμ|4〉V

⎞
⎠

⎫⎬
⎭. (C42)

Therefore, neglecting terms of order of (ω/�)2 we obtain the long time limit of QFI as FQ(λ) ≈ (Ĥ ′2
0 )mc(4ω/π�)t2. Similarly,

we may consider the short-time limit of the QFI by using that limt→0 sinc(x) = 1. Then we have

lim
t→0

FQ(λ)

t2
= 4

⎧⎪⎨
⎪⎩

∑
μ

|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2 +

∑
μν

μ �=ν

|aμ|2|〈ψμ|Ĥ ′
0|ψν〉|2

−
∑

μ

|aμ|4|〈ψμ|Ĥ ′
0|ψμ〉|2 −

∑
μν

μ �=ν

|aμ|2|aν |2〈ψμ|Ĥ ′
0|ψμ〉〈ψν |Ĥ ′

0|ψν〉

⎫⎪⎬
⎪⎭

= 4

⎧⎪⎨
⎪⎩

ω

π�

(
Ĥ ′2

0

)
mc + 2ω�

π

(
�Ĥ ′2

0

)
mc

∑
μν

μ �=ν

|aμ|2
(Eμ − Eν )2 + 4�2

⎫⎪⎬
⎪⎭. (C43)
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Furthermore, we replace the sum with integration such that we have∑
ν

1

(Eμ − Eν )2 + 4�2
→ 1

ω

∫ ∞

−∞

dEν

(Eμ − Eν )2 + 4�2
= π

2ω�
. (C44)

Therefore, neglecting the terms of order of ω/�, the short time scaling of the QFI is FQ(λ) ≈ 4t2(�Ĥ ′2
0 )mc.

APPENDIX D: CORRECTIONS DUE TO SELF-AVERAGING DECOUPLING

Let us assume that the initial state is an eigenstate of non-interaction Hamiltonian Ĥ0, namely, |�0〉 = |ϕα0〉. Therefore, we
have ∑

μ

〈|aμ|2|〈ψμ|Ĥ ′
0|ψμ〉|2〉V =

∑
μ

∑
αβ

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ. (D1)

To evaluate the average, we use the generating function (B1). There are in total 15 terms. Consider the term

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V = �2(μ, α)�(μ, α0)δαβ. (D2)

Hence we get

∑
μ

∑
αβ

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ =
∑

μ

(∑
α

�2(μ, α)(Ĥ ′
0)2

αα

)
�(μ, α0)

≈ [
(Ĥ ′

0)2
αα

]
μ

∑
μ

∑
α

�2(μ, α)�(μ, α0) = ω

2π�

[
(Ĥ ′

0)2
αα

]
μ
. (D3)

Similarly, we have ∑
μ

∑
αβ

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ ≈ ω

2π�

[
(Ĥ ′

0)2
αα

]
μ
. (D4)

Another six-point correlation term is∑
μ

∑
αβ

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ =
∑

μ

∑
αβ

�(μ, α)�(μ, β )�(μ, α0)(Ĥ ′
0)αα (Ĥ ′

0)ββ

≈ [(Ĥ ′
0)αα]2

μ

∑
μ

∑
αβ

�(μ, α)�(μ, β )�(μ, α0) = [(Ĥ ′
0)αα]2

μ. (D5)

Combining Eqs. (D3), (D4), and (D5) we obtain Eq. (C9). Now, let us consider the corrections. We have

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V = �(μ, β )δα0,β�(μ, α0)δα,α0�(μ, α)δαβ. (D6)

Therefore, we obtain∑
μ

∑
αβ

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ = (Ĥ ′
0)2

α0α0

∑
μ

�3(μ, α0). (D7)

Such a term gives correction of order of (ω/�)2. In fact, there are in total eight terms which give corrections of such order.
Consider now the term

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V = �2(μ, α)δα,α0�(μ, β ). (D8)

Hence we get ∑
μ

∑
αβ

〈cμ(α0)cμ(α0)cμ(α)cμ(α)cμ(β )cμ(β )〉V (Ĥ ′
0)αα (Ĥ ′

0)ββ

=
∑

μ

∑
β

�(μ, β )(Ĥ ′
0)ββ�2(μ, α0)(Ĥ ′

0)α0α0

≈ [(Ĥ ′
0)αα]μ(Ĥ ′

0)α0α0

∑
μ

∑
β

�(μ, β )�2(μ, α0) = ω

2π�
[(Ĥ ′

0)αα]μ(Ĥ ′
0)α0α0 . (D9)
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There are in total four terms with the same contribution. Note
that for spin chains that we consider, the microcanonical aver-
age of the spin observable is zero and thus these terms can be
neglected.

APPENDIX E: DEFINING A LOCAL
OBSERVABLE IN RMT

In the main text, we analyzed the QFI for a local observable
of the system interacting with a bath. In this Appendix, we
will see that such an approach can be formalized within our
RMT approach, and indeed gives way to a crucial condition—
observable sparsity—of the application of RMT. We will see
that an additional condition is required on the system and
bath parts of the total system for RMT to apply to such local
observables, namely, that the system energy is much smaller
than that of the bath.

We begin by separating the system into system and bath
components via Ĥ0 = ĤS (λ) ⊗ 1B + 1S ⊗ ĤB, with 1S(B) the
identity on the system (bath) Hilbert space. Crucially, here the
system part of the Hamiltonian is assumed to depend on some
parameter λ. The eigenstates of Ĥ0 are then

|φα〉 = |s(α)〉S ⊗ ∣∣φ(B)
αB (α)

〉
B
, (E1)

with energies

Eα = S〈s(α)|B
〈
φ

(B)
αB (α)

∣∣ĤS (λ) + ĤB|s(α)〉S ⊗ ∣∣φ(B)
αB (α)

〉
B

= εs(α)(λ) + E (B)
αB (α), (E2)

where we have denoted eigenenergies of the system and bath
Hamiltonians by εs(α)(λ) and E (B)

αB (α) respectively.

Relevant observables in our approach act on the system
Hilbert space as Ô = ÔS ⊗ 1B, which have matrix elements

Oαβ = S〈s(α)|B
〈
φ

(B)
αB (α)

∣∣Ô|s(β )〉S ⊗ ∣∣φ(B)
αB (β )

〉
B

= (OS )s(α)s(β )δαB (α)αB (β ), (E3)

where (OS )s(α)s(β ) = S〈s(α)|ÔS|s(β )〉S . We see here that the
local observable Ô is guaranteed to be sparse if the dimension
of the system Hilbert space dS is much lower than that of the
bath, dB, as there are a maximum of dS (dS − 1) independent
off diagonal matrix elements of Oαβ |α �=β , corresponding to
the possible system state transitions, plus dS possible diagonal
matrix elements.

These possible transitions that the local operator Ô may
induce must obey

Eα − Eβ = εs(α)(λ) − εs(β )(λ) := �
(S)
αβ (λ), (E4)

and, more generally, we have

Eα − Eβ = �
(S)
αβ (λ) + E (B)

αB (α) − E (B)
αB (β ). (E5)

For the random matrix model, we have Eα = αω, so we re-
quire for the RMT to hold that Eα − Eβ ≈ (α − β )ω can be
approximated by an equidistant spacing of energies that does
not depend on λ. This is understood to hold if ĤB is itself a
nonintegrable Hamiltonian, and if �

(S)
αβ (λ) � E (B)

αB (α) − E (B)
αB (β ),

indicating that the possible transitions induced by the local
observable are negligible in energy in comparison to the bath
energy for the state |φα〉.

[1] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[2] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2, 754 (2006).
[3] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,

854 (2008).
[4] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11, 124

(2015).
[5] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.

Phys. 65, 239 (2016).
[6] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter

Phys. 6, 15 (2015).
[7] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[8] J. M. Deutsch, Rep. Prog. Phys. 81, 082001 (2018).
[9] M. Srednicki, Phys. Rev. E 50, 888 (1994).

[10] M. Srednicki, J. Phys. A: Math. Gen. 29, L75 (1996).
[11] M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).
[12] M. Rigol and M. Srednicki, Phys. Rev. Lett. 108, 110601

(2012).
[13] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M.

Rey, Nat. Commun. 10, 1581 (2019).
[14] D. Jansen, J. Stolpp, L. Vidmar, and F. Heidrich-Meisner, Phys.

Rev. B 99, 155130 (2019).
[15] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105

(2014).
[16] A. V. Kirkova and P. A. Ivanov, Phys. Scr. 98, 045105 (2023).

[17] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J.
Schmiedmayer, Science 337, 1318 (2012).

[18] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Science 353, 794 (2016).

[19] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat. Phys. 12,
907 (2016).

[20] G. Clos, D. Porras, U. Warring, and T. Schaetz, Phys. Rev. Lett.
117, 170401 (2016).

[21] F. Kranzl, A. Lasek, M. K. Joshi, A. Kalev, R. Blatt, C. F. Roos,
and N. Yunger Halpern, PRX Quantum 4, 020318 (2023).

[22] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z.
Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro et al.,
Nat. Phys. 12, 1037 (2016).

[23] B. Swingle, Nature Phys. 14, 988 (2018).
[24] M. A. Rampp and R. Moessner, and P. W. Claeys, Phys. Rev.

Lett. 130, 130402 (2023).
[25] X.-Q. Wang, M. Jian, Z. Xi-He, and W. Xiao-Guang, Chin.

Phys. B 20, 050510 (2011).
[26] L. J. Song, J. Ma, D. Yan, and X. G. Wang, Eur. Phys. J. D 66,

201 (2012).
[27] L. J. Fiderer and D. Braun, Nat. Commun. 9, 1351 (2018).
[28] N. R. Cerruti and S. Tomsovic, Phys. Rev. Lett. 88, 054103

(2002).

024135-14

https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nphys3215
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/0305-4470/29/4/003
https://doi.org/10.1103/PhysRevLett.103.100403
https://doi.org/10.1103/PhysRevLett.108.110601
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1103/PhysRevB.99.155130
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1088/1402-4896/acc0b1
https://doi.org/10.1126/science.1224953
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevLett.117.170401
https://doi.org/10.1103/PRXQuantum.4.020318
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/s41567-018-0295-5
https://doi.org/10.1103/PhysRevLett.130.130402
https://doi.org/10.1088/1674-1056/20/5/050510
https://doi.org/10.1140/epjd/e2012-30197-x
https://doi.org/10.1038/s41467-018-03623-z
https://doi.org/10.1103/PhysRevLett.88.054103


RANDOM MATRIX THEORY APPROACH TO QUANTUM … PHYSICAL REVIEW E 110, 024135 (2024)

[29] T. Gorin, T. Prosen, T. H. Seligman, and M. Znidaric, Phys.
Rep. 435, 33 (2006).

[30] M. Schmitt, D. Sels, S. Kehrein, and A. Polkovnikov, Phys. Rev.
B 99, 134301 (2019).

[31] A. V. Kirkova, D. Porras, and P. A. Ivanov, Phys. Rev. A 105,
032444 (2022).

[32] V. Madhok, C. A. Riofrio, S. Ghose, and I. H. Deutsch, Phys.
Rev. Lett. 112, 014102 (2014).

[33] A. Sahu, S. PG, and V. Madhok, Phys. Rev. E 106, 024209
(2022).

[34] M. G. A. Paris, Int. J. Quantum Inf. 07, 125 (2009).
[35] L. Pezze and A. Smerzi, Atom Interferometry, in Proceedings

of the International School of Physics “Enrico Fermi”, Course
188, Varenna, edited by G. M. Tino and M. A. Kasevich (IOS
Press, Amsterdam, 2014), p. 691.

[36] J. Liu, H. Yuan, X.-M. Lu, and X. Wang, J. Phys. A: Math.
Theor. 53, 023001 (2020).

[37] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222
(2011).

[38] L. Pezze and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
[39] G. Toth, Phys. Rev. A 85, 022322 (2012).

[40] M. Brenes, S. Pappalardi, J. Goold, and A. Silva, Phys. Rev.
Lett. 124, 040605 (2020).

[41] V. P. Pavlov, D. Porras, and P. A. Ivanov, Phys. Scr. 98, 095103
(2023).

[42] C. Nation and D. Porras, New J. Phys. 20, 103003 (2018).
[43] C. Nation and D. Porras, Quantum 3, 207 (2019).
[44] L. Dabelow and P. Reimann, Phys. Rev. Lett. 124, 120602

(2020).
[45] C. Nation and D. Porras, Phys. Rev. E 99, 052139 (2019).
[46] C. Nation, D. Porras, Phys. Rev. E 102, 042115 (2020).
[47] C. Nation, Ph.D. thesis, University of Sussex, 2020.
[48] N. Linden, S. Popescu, A. J. Short, and A. Winter, Phys. Rev. E

79, 061103 (2009).
[49] M. Schiulaz, E. J. Torres-Herrera, and L. F. Santos, Phys. Rev.

B 99, 174313 (2019).
[50] Y. Y. Atas and E. Bogomolny, J. Phys. A: Math. Theor. 50,

385102 (2017).
[51] E. J. Torres-Herrera and L. F. Santos, Phys. Rev. A 89, 043620

(2014).
[52] E. J. Torres-Herrera, A. M. Garcia-Garcia, and L. F. Santos,

Phys. Rev. B 97, 060303(R) (2018).

024135-15

https://doi.org/10.1016/j.physrep.2006.09.003
https://doi.org/10.1103/PhysRevB.99.134301
https://doi.org/10.1103/PhysRevA.105.032444
https://doi.org/10.1103/PhysRevLett.112.014102
https://doi.org/10.1103/PhysRevE.106.024209
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevLett.124.040605
https://doi.org/10.1088/1402-4896/ace99f
https://doi.org/10.1088/1367-2630/aae28f
https://doi.org/10.22331/q-2019-12-02-207
https://doi.org/10.1103/PhysRevLett.124.120602
https://doi.org/10.1103/PhysRevE.99.052139
https://doi.org/10.1103/PhysRevE.102.042115
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1103/PhysRevB.99.174313
https://doi.org/10.1088/1751-8121/aa81f6
https://doi.org/10.1103/PhysRevA.89.043620
https://doi.org/10.1103/PhysRevB.97.060303

