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Critical crack length during fracture
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Through controlled numerical simulations in a one-dimensional fiber bundle model with local stress con-
centration, we established an inverse correlation between the strength of the material and the cracks which grow
inside it—both the maximum crack and the one that sets in instability within the system, defined to be the critical
crack. Through the Pearson correlation function as well as probabilistic study of individual configurations,
we found that the maximum and the critical crack often differ from each other unless the disorder strength
is extremely low. A phase diagram on the plane of disorder vs system size demarcates between the regions
where the largest crack is the most vulnerable one and where they differ from each other but still show moderate
correlation.
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I. INTRODUCTION

Disorder plays a crucial role during the failure of hetero-
geneous media, a topic that has been studied extensively in
the last few decades [1–4]. The existence of defects like mi-
crocracks and the interactions among them makes the process
of crack propagation more complicated than Griffith’s theory,
which was suggested by A. A. Griffith in 1921 and reported
the critical stress of a homogeneous media with a pre-existing
crack of length l to vary as 1/

√
l [5]. For heterogeneous

media, on the other hand, Griffith’s criterion produces signif-
icant error in determining the critical stress or surface energy
due to the resistance in the form of an energy barrier that
ultimately arrests a propagating crack, widely known as the
lattice trapping or intrinsic crack resistance [6–8]. Two length
scales are observed to emerge as a result of such lattice
trapping: a small length scale related to the dissipation of
energy near the crack tip and a large length scale associated
with the elastic deformation around the tip [6,7,9,10]. Even
for perfectly brittle materials, one needs to take into account
the discrete atomistic nature of the interactions and make
modifications in Griffith’s theory [11]. A correlation between
crack length and nominal stress is very important for damage
control as it can provide necessary information regarding an
upcoming catastrophic failure. Application of such prediction
ranges from laboratory experiments to large-scale building
blocks and even geological scales like seismic events [12].
The micro and mesoscale heterogeneity not only affects the
nominal stress but also the course of failure by introducing
local breaking events, known as avalanches, producing crack-
ling noises which can be captured in an acoustic emission
(AE) experiment [13]. The AE process includes the trans-
lation of the crackling noises (during a crack propagation)
into bursts and subsequently emitted energies, known as the
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acoustic signals or precursors. Though such precursors may
or may not be observed depending on whether the material
under consideration has sufficiently high [14] or low [15]
disorder strength, there is huge experimental evidence that
such precursors span through different length scales, starting
from laboratory scales like experiments with concrete [16],
wood [17], cellular glass [18], etc., to large geological scale of
seismic events Gutenberg-Richter law [19] which represents
such precursors. The precursors become more populated in
an accelerating manner as one approaches the global failure
indicated by the increasing rate of deformation [16] through
gradual accumulation of damages [14]. Such acceleration is
observed not only in experiments but through numerical sim-
ulations in statistical models like the random spring network
[20] or fiber bundle model [21]—the latter of which is used in
the present paper.

A classic work discussing the propagation of smaller
cracks vs larger cracks was published by Paris and Erdogan
in 1963, where the cracks bigger than a critical length were
observed to follow the Paris law and not others [22]. This was
followed by works of Kitagawa and Takahashi [23], where
a scale-free decay of critical stress for larger crack lengths,
similar to Griffith’s law, was observed with a crack-length in-
dependent critical stress for smaller cracks [24]. Later, Taylor
and Knott [25] showed the existence of two length scales in
the work by Kitagawa and Takahashi. A similar existence of
length scales were observed [26] numerically as well by one
of the authors of the present paper in a statistical disorder
system, the fiber bundle model [27], acted by a tensile force
in the presence of local stress concentration.

II. DESCRIPTION OF THE MODEL

This paper focuses on the numerical study of a disordered
system, the fiber bundle model [27], as a prototype for failure
dynamics in heterogeneous media. The model consists of L
vertical fibers attached between two horizontal soft clamps
pulled apart by a force F , exerting a stress σ = F/L on each
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fiber. Each fiber has an unique threshold stress chosen from a
uniform distribution spanning from 0.5 − δ to 0.5 + δ; δ is the
strength of disorder and 0.5 is the mean of the distribution. Be-
ing stretched beyond this threshold, a fiber breaks irreversibly
and the stress carried by the broken fiber is redistributed
among its neighboring fibers as per the following rule:

σr → σr + σbdl

dr + dl
,

σl → σl + σbdr

dr + dl
. (1)

Here, σb is the stress of the broken fiber, σr and σl are, respec-
tively, the local stress of the right and left nearest neighbor.
The stress distribution is made distance dependent to elimi-
nate any memory or history dependence in the process [28].
We have used the minimum image convention to include the
boundary effect due to the periodic boundary condition and
calculate the actual distances dl and dr . Such a local stress
redistribution is a result of the soft membrane which is sup-
porting the fibers and mimics the nature of stress localization
in an elastic media [29]. The redistribution can induce further
rupture events, starting an avalanche, due to the local stress
enhancement until the next threshold is beyond the redis-
tributed stress. The external force, at this moment, is increased
in a quasistatic manner to break the next weakest fiber and
the model evolves through a number of stress increments
and avalanches until all fibers break, suggesting the global
failure. The final value of the externally applied stress just
before global failure is the critical stress or strength of the
bundle. The critical crack length is the size of the crack in
the last stable configuration (just before global failure) which
propagates and sets in instability starting the final avalanche
and hence breaking the rest of the bundle. The critical crack
is one among a number of microcracks and statistically the
most vulnerable one. This does not guarantee that this critical
crack will be maximum in length. We will discuss this in
detail next. We should note here that the propagation of the
cracks include both the individual growth of a single crack
as well as coalescence of the propagating crack with other
microcracks. The critical and maximum cracks are the result
of this combined effect of growth and coalescence.

III. NUMERICAL RESULTS

Here we will discuss whether there exists a relationship
between the nominal stress, the stress at which the heteroge-
neous system breaks, and the critical crack that initiates the
final avalanche. Let us call the former σc and the latter lc. The
maximum crack length, on the other hand, is denoted by lm
and, in principle, can be different from lc. Through detailed
numerical simulation in a 1D fiber bundle model of size L and
disorder strength δ, we have explored the nature of critical
crack length lc and maximum crack length lm and how they
respond as we change either of the above two parameters,
L or δ; to be specific, whether there is a scope of future
failure prediction associated with it. In gist, we pose a twofold
question here:

(i) Does the length of the most vulnerable crack contain
any information regarding the nominal stress and vice versa?

FIG. 1. (a) The status of a fiber, broken or intact, is represented
by white and black colors, respectively, against the fiber index.
(b) The heat map for the local stress profile—blue color stands for
lower local stress while the yellow for relatively higher stress. (c),
(d) Local stress and threshold values as a function of fiber indices.
The vertical line corresponds to the fiber that breaks and sets in
instability within the system. We kept δ = 0.4 and L = 102.

(ii) Is the most vulnerable crack always the largest one or
does it depend on the material properties? A boundary on the
L − δ plane may highlight the region where the maximum
and the vulnerable cracks are interlinked and where they are
mutually exclusive.

Figure 1 shows the microcracks which are developed
within the 1D chain just before the global failure. We chose
δ = 0.4 and L = 102. The smaller system size is adopted to
make the microcracks more visible. Later, we used higher sys-
tem sizes for the numerical simulation. This diagram will be
used to establish the fact that due to local stress concentration,
the local stress to threshold difference at the notches of the
microcracks is mutually exclusive from the size of the cracks
itself. Figure 1(a) shows the broken and intact fibers by white
and black colors, respectively. The biggest white patch stands
for the maximum crack lm, which is of length 4 (fiber indices
74 to 77) for the present configuration. The critical crack, lc,
for the same configuration is of length 2 (fiber indices 9 and
10) on the other hand. The local stress profile for the same is
shown in Fig. 1(b)—lower to higher local stress as we go from
blue to yellow colors. The red vertical line represents the fiber
(fiber index 11) that breaks and sets in instability. The fact
that, in spite of having higher notch stresses (= 0.401639)
around the maximum crack, it does not propagate, is really
counterintuitive and monitoring the maximum crack can be
highly misleading for failure prediction and damage control.
The critical crack propagates in spite of having lower notch
stresses (= 0.295405).

This is due to the interplay between the local stress and
threshold values of individual fibers. Figure 1(d) shows that
the threshold values at the notches of the maximum and
critical crack are 0.632846 and 0.298248, respectively. Due
to this, the local stress to threshold difference around the
maximum crack (0.231207) is much higher than that of the
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FIG. 2. Comparison between local stress and threshold values
at the notches for the (a) maximum and (b) critical crack. The
figures show 100 different configurations for L = 103 and δ = 0.4.
The ellipse shows a particular configuration for which the critical
and maximum cracks are the same.

critical crack (0.002843), making the critical crack much more
prone to propagation (see Supplemental Material [30]). Such
a stress to threshold comparison is more evident from Fig. 2,
where the notch stresses σn and threshold values tn are plot-
ted against lm [see Fig. 2(a)] and lc [see Fig. 2(b)] for 100
different configurations. Though it is quite obvious that for a
crack to be in stable configuration demands tn > σn, the actual
difference tn − σn is larger in case of the maximum crack lm.
On the other hand, we observe tn and σn very close to each
other in case of the critical crack lc. A similar propagation
of crack for L = 103 is shown in the Supplemental Material
[30]. In Fig. 2, we have circled a particular configuration
where the critical and maximum crack is the same one, though
such configurations are very rare to find at a moderate dis-
order (δ = 0.4). We have highlighted the temporal evolution
for such a rare configuration in the Supplemental Material
[30].

Figure 3 shows the correlation between the average critical
stress 〈σc〉 and the maximum (〈lm〉) and critical crack lengths
(〈lc〉), developed within the 1D chain. We keep the system
size constant at L = 105 and vary the disorder strength δ from
0 to 0.5. 〈〉 represents the average values of the parameters
over 103 configurations. The average critical stress is observed
to decrease with increasing length of critical crack or the
maximum crack. Such reduction of critical stress is observed
earlier in real systems like mild steels under periodic load
[31]. In the fiber bundle model, the critical stress was observed
to fall in a scale-free manner with the length of the preexisting
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FIG. 3. (a) Exponential decay of 〈lc〉 and 〈lm〉 with critical stress
〈σc〉 for L = 105 and varying disorder. The following behavior is
observed: 〈lc〉 ∼ e−〈σc〉/0.01 and 〈lm〉 ∼ e−〈σc〉/0.07. (b) For δ = 0.4 and
varying system sizes (103 to 105), 〈lc〉 remains constant with respect
to 〈σc〉 while 〈lm〉 ∼ 〈σc〉−1.

crack [26]. The present scenario is much different as we
are not starting with a preexisting crack, hence the process
includes both crack initiation and propagation solely decided
by the dimension of the system and strength of disorder. We
observe both 〈lm〉 and 〈lc〉 decrease exponentially with 〈σc〉 as
the disorder strength δ is decreased, making the failure process
more and more abrupt:

〈lc〉 ∼ e−〈σc〉/0.01 and

〈lm〉 ∼ e−〈σc〉/0.07. (2)

The exponential decay of 〈lm〉 is much slower compared to
〈lc〉 when 〈σc〉 is small and drops off at a faster rate than
exponential at larger 〈σc〉. On the other hand, if we keep
the disorder strength constant (= 0.4) at a moderate value
and vary the system size between 103 and 105, 〈lc〉 remains
constant independent of the critical stress. At the same time,
〈lm〉 changes as follows:

〈lm〉 ∼ 〈σc〉−1. (3)

The maximum crack grows with the system size as a higher
system size will allow the thresholds to come closer to each
other as per the weakest link of chain theory [32] and at the
same time increases the density of the strong as well as weak
fibers. The weakest link of the chain will allow a crack to
propagate and the higher density of stronger fibers increases
the chance of a large crack getting arrested as a result of higher
threshold values compared to local notch stresses. The critical
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FIG. 4. Correlation between average critical crack 〈lc〉 and av-
erage maximum crack 〈lm〉 for different system sizes and disorder
strength. We observe different behaviors at small and large length
scales. (a) For small scale: 〈lm〉 ∼ ln〈lc〉. (b) For large scale: 〈lm〉
grows linearly with 〈lc〉. The color gradient is on the disorder strength
while point size for the size of the system which varies from 103

(smallest circles) to 105 (largest circles).

crack length remains the same independent of the critical
stress. This happens since the critical crack becomes unstable
only because it did not encounter a high enough threshold but
still encounters the weakest-link-of-chain like event. As the
system size increases, the critical stress decreases but a crack
length of almost a similar size is proven to be enough to create
instability at the notches.

Next we turn to understand how the two crack lengths,
critical and maximum, are correlated to each other. For this,
we have adopted three different ways: (i) comparing 〈lm〉 and
〈lc〉 directly with each other, (ii) probabilistic approach for
individual realizations, and (iii) through a Pearson correlation
function. We will discuss these three approaches one by one
next.

Figures 4(a) and 4(b) show the correlation between 〈lc〉
and 〈lm〉 both at smaller and larger length scales. The color
gradient represents the disorder strength and the size of the
points stands for the system size—the larger the points, the
higher the size of the bundle. We have used system sizes
ranging in between 103 (smallest circles in Fig. 4) and 105

(largest circles in Fig. 4). For small lengths of both critical
and maximum cracks, we observe the following logarithmic
dependence at a sufficiently larger system size:

〈lm〉 = a ln〈lc〉 + b, (4)

where a = 0.7 and b = 6.9 (see Supplemental Material [30]).
At a larger scale, on the other hand, such logarithmic de-
pendence vanishes and instead we observe a linear behavior
between 〈lm〉 and 〈lc〉,

〈lm〉 = c〈lc〉 + d, (5)

where c increases from 1.9 to 2.3 as the system size is in-
creased from 103 to 105. For the same increment in L, d
increases from 1.9 to 5.5 (see Supplemental Material [30]).

Next, we study the correlation between lc and lm from a
probabilistic approach to draw a phase diagram on the L −
δ plane. This is represented in Fig. 5. We define P∗ as the
probability that the critical crack and the maximum crack are
of the same size. In other words, this is the probability that the
instability within the system is created by the maximum crack.
Figure 5(a) shows the heat map of P∗ on the L − δ plane where
Fig. 5(d) explicitly shows how P∗ varies with δ for system
sizes ranging between 103 and 105. Specifically, we observe
the following three distinct regions.

Region I: In this region, P∗ = 1, making lm equal to lc for
each and every configuration. Not only that, we have lc =
lm = 0 for each realization in this region (see Supplemental
Material [30]). This is an extremely brittle region where the
first fiber initiates global failure each and every time. This
boundary between I and II remains constant at 0.1 indepen-
dent of size L of the bundle [see Fig. 5(b)]. This 0.1 constant
value can be realized by comparing the local stress due to
the immediate redistribution that takes place by breaking the
weakest fiber to the highest possible strength that one fiber can
have [33].

Region II: The probability of lm being equal to lc is less than
1 here and a decreasing function of disorder strength, but does
not respond to the change in system sizes. The Supplemen-
tal Material [30] shows the two different configurations for
δ = 0.2 (where P∗ is almost 1/2), one for which lc = lm and
another for which lc �= lm. The boundary, unlike the boundary
between I and II, is dependent on system size—for higher L,
we have to go to a higher disorder strength to enter region III.
This makes sense since increasing L makes the failure process
more abrupt and the disorder strength has to be increased to
compensate for that.

Region III: In this region, P∗ reaches its minimum and
saturates afterwards at a constant value Ps independent of the
disorder strength. It is more likely here to find configurations
for which lc �= lm (see Supplemental Material [30]), though
there will always be very few configurations for which lc and
lm will still be the same (see Supplemental Material [30]).
Contrary to region II, here P∗ is a decreasing function of
system size. Figure 5(e) shows the following scaling as we
approach the thermodynamic limit:

Ps = 1.8

ln L
− 0.07. (6)

The constant value being closer to zero suggests that Ps be-
comes zero as L → ∞. This means in the thermodynamic
limit, if we are at region III, we will not be able to find any
configuration where the instability is set on by the maximum
crack length.

The final thrust to the correlation study will be calculating
the Pearson correlation function directly as we tune both δ and
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FIG. 5. (a) Probability P∗ that lc = lm on the δ − L plane. (b), (c) The I-II and II-III phase boundaries are zoomed in for better visibility
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is a decreasing function of δ without a L dependence; (III) P∗ is a constant independent of δ with a slight L-dependence. (e) System size effect

of Ps, the saturation of P∗ at high disorder: Ps = 1.8

ln L
− 0.07.

L, over 103 realizations for each set of (δ, L). The correlation
function defined below gives us an even better idea of how
strong or weak the correlation is between the critical and
maximum crack for an individual realization. This way it can
be more relatable to the experiments since a single experiment
can be considered as a single realization in our simulation. The
correlation function has the following form:

cp =
∑

(xi − 〈x〉)(yi − 〈y〉)
[∑

(xi − 〈x〉)2
∑

(yi − 〈y〉)2
]1/2 , (7)

where xi and yi values represent lc and lm for individual con-
figurations while 〈x〉 and 〈y〉 are their average values 〈lc〉 and
〈lm〉 over all realizations.

The results are shown in Fig. 6. The Pearson coefficient
cp is an increasing function of δ. This makes sense since
for high δ, the failure process happens through a number of
avalanches giving us enough information to correlate lc and lm.
At a low δ, on the other hand, the failure process is much more
abrupt (like brittle material) [34] and there are less chances for
such prediction. Because of the same reason, with increasing
system size, as the failure process becomes more abrupt, cp

decreases. In the inset of the same figure, we divided the
whole region for δ into the following three parts:

(1) Region A: cp is almost constant at a low value indepen-
dent of δ. lc and lm are loosely correlated in this region.

(2) Region B: cp increases with δ.
(3) Region C: cp remains constant but at a higher value

closer to 0.4. The correlation between lc and lm is decent here.
In Fig. 7, we have extensively discussed how the region C

is equivalent to the region III in Fig. 5. Also, region II in Fig. 5
can be divided between A and B if we consider both the nature
of probability P∗ and correlation function cp.

Figure 7 shows a detailed phase diagram on the disorder
vs system size plane by considering the contributions of both
the probability P∗ as well as the correlation function. This
splits the whole L − δ plane in four regions: I, IIA, IIB, and III
(or C). We have discussed all four regions below in extreme
detail. We have also provided the description in a tabular form
(see Table I).

We observe region I when the disorder strength is ex-
tremely low. In this region, the maximum crack always sets
in the instability. Moreover, lm = 0 here, which means the
instability sets in from any random point in the bundle and not
from a crack tip. This is due to the low disorder which makes
the failure process extremely fast and the model reaches the
global failure even before the local stress concentration acts
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FIG. 6. Pearson correlation coefficient cp as a function of dis-
order strength δ for system sizes ranging from 103 to 105. The
inset shows the result for L = 5 × 103 with three distinct regions:
(A) constant low correlation, (B) correlation increasing with disor-
der, and (C) constant high correlation.
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TABLE I. Table showing characteristic behavior of the regions: I, IIA, IIB, and III (or C).

Region I Region IIA Region IIB Region III or C

P∗ constant at 1 P∗ decreases with δ P∗ decreases with δ P∗ remains at a constant low value
cp cannot be defined cp remains at a constant low value cp increases with δ cp remains at a constant high value

in. At moderate disorder, we find region II, which is again
divided in two parts: IIA and IIB. In IIA, with increasing
δ, P∗ decreases, making lm and lc more and more mutually
exclusive. At the same time, lm and lc are loosely correlated
here, giving a low value of cp independent of δ. In IIB, P∗
shows the same behavior as IIA but cp gradually increases
here with δ. Finally, in III, P∗ saturates at a low value inde-
pendent of δ. Here, almost for no realization the maximum
crack is responsible for the instability and lc is most of the time
different than lm. At the same time, cp ≈ 0.4, making lc and
lm more than moderately correlated in this region. We want
to stress the fact here that III and C are same region on the
L − δ plane. This is evident from the boundary drawn between
IIB and III (or C) from the study of P∗ (red solid circles) as

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5000  15000  25000  35000

δ

L

I

IIA

IIB

III or C

FIG. 7. L − δ plane showing different regions depending on the
interplay between lc and lm.Region I: lc = lm with a probability 1. cp

is undefined here as there is no fluctuation in the realizations.Region
IIA: Combination of region II and region A, making P∗ a decreasing
function of δ but cp constant at a low value.Region IIB: Combination
of region II and region B, making P∗ a decreasing function but cp

an increasing function of δ.Region III or C: III and C are equivalent,
giving P∗ constant at a low value or cp constant at a high value. The
boundary of IIB and III (or C) is drawn from both the study of P∗

(red solid circles) as well as cp (black hollow triangle).

well as cp (black hollow triangle) and they almost fall on each
other.

IV. DISCUSSION

The present paper deals with the fact that during the failure
process of a disordered system, it is not sufficient to monitor
the largest crack to predict the instability in the system as
often it might not be the vulnerable one and the instability
in the system can be initiated from some other part, making
failure prediction and damage control much more tricky than
it already is. For proper failure prediction, knowledge of both
the maximum and critical crack (the most vulnerable one)
will be required simultaneously. In the present paper, we have
numerically studied a fiber bundle model in one dimension
with a varying disorder strength and system size. An inverse
correlation is observed between the strength of the disordered
media and two crack lengths which are prominent during the
failure process—critical crack length lc and the maximum
crack length lm. At the same time, the average 〈lm〉 maximum
crack and 〈lc〉 of critical crack are correlated with each other
linearly at a larger length scale and in a logarithmic way for
a shorter length scale. Such a correlation between 〈lc〉 and
〈lm〉 on the L − δ plane shows three distinct regions. For
low disorder, where the failure process is extremely abrupt,
we get lc = lm with unit probability and with an undefined
correlation. With increasing disorder strength, P∗ decreases
and cp, the correlation between critical and maximum crack,
increases. In this limit, the maximum and the critical crack be-
comes mutually exclusive and the chance that the final trigger
comes from the maximum crack decreases. At the same time,
lm and lc becomes moderately correlated (cp ≈ 0.4 at higher
disorder strength) and we can extract the information about
one crack length from the other one with higher accuracy.

We have also repeated our results with a power-law dis-
tribution with power −1 and spanning from 10−β to 10β , β

being the strength of disorder here. The results remain the
same, qualitatively showing the same discrepancy between the
critical and largest crack as well as the inverse relationship
of the crack length, both critical and maximum, independent
of the choice of the threshold distribution. A future direction
study could be a controlled laboratory experiment monitoring
both critical and maximum crack and correlation between
them, using them for real life failure prediction and damage
control.
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