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Non-Markovian enhancement of nonequilibrium quantum thermometry
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Accurate measurement at low temperatures is essential for both gaining a fundamental understanding of
physical processes and developing technological applications. In this paper, we propose a theoretical framework
for quantum temperature sensing in a composite environment with non-Markovian dynamics. Our suggested
system uses a single qubit as a temperature sensor to test its sensitivity in calculating the temperature of a
composite environment. We show that the temperature sensor’s sensitivity can saturate the quantum Cramér-Rao
bound by measuring the σ̂z observable of the probe qubit. Temperature sensing performance is measured using
the quantum signal-to-noise ratio. We underline how non-Markovianity can enhance the performance of our
thermometers. Furthermore, we emphasize that nonequilibrium conditions do not always result in the best
sensitivities in temperature estimation.
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I. INTRODUCTION

Directly measuring the properties of quantum mechanical
systems is frequently difficult or unfeasible. Moreover, in
many circumstances, any attempt at direct disturbance may
change the properties of the system, potentially jeopardizing
its basic features. To overcome this constraint, there is rising
interest in creating efficient strategies for indirect quantum
probing [1]. One use is quantum thermometry, which involves
estimating a quantum system’s operational temperature. This
subject offers intriguing opportunities for the design and im-
plementation of indirect probing strategies, notably for the
characterization and control of the temperature of micro-
and nanodevices [2–6]. Quantum thermometry, as a promis-
ing area of quantum metrology, has the potential to address
low-temperature measurements through the use of quantum
thermometers [7–12]. In this context, an ideal quantum ther-
mometer should be significantly smaller than the sample to
be measured. Recently, attention has focused on two-level
quantum systems, or qubits, as the smallest and most versatile
thermometers [13–17]. This approach has been successfully
demonstrated in several settings, including ultracold gases
[18].

In addition, quantum parameter estimation theory provides
vital instruments for determining the ideal initial preparation
state of the probe, i.e., the thermometer. Indeed, it develops
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appropriate strategies for performing optimal measurements
on the probe’s output state in order to achieve the bound of
estimation accuracy. It is worth noting that the results of these
ideal measurements on the probe’s output state are utilized
to create an operator or estimator, which provides direct ac-
cess to parameter information. Quantum Fisher information
(QFI) [19–21] is a commonly used tool in quantum param-
eter estimation theory. The QFI is important in parameter
estimation since it is closely related to the ultimate limit on
achievable precision when estimating an unknown parameter,
as demonstrated by the quantum Cramér-Rao bound [19].
Quantum Fisher Information can be used to detect quantum
phase transitions in many-body systems [22,23], quantify the
smallest evolution time for a quantum process [24,25], and
measure non-Markovian information flow in an open quantum
system [26–29].

In this paper, we provide a theoretical model for con-
structing a thermometer using a single qubit as the sensing
probe. The suggested model includes a two-level system
(probe qubit) that interacts with a composite environment.
The composite environment represents the sample under in-
quiry and can cause non-Markovianity on the probe qubit.
In particular, the composite environment is divided into two
parts: an ancilla and a Markovian reservoir. We obtain the
combined state of the qubit and ancilla by solving the master
equation exactly. In this method, the qubit encodes tempera-
ture information from the thermally composite environment
into the state of the probe, also known as the thermometer.
The performance of temperature sensing is evaluated using
the quantum signal-to-noise ratio (QSNR) metric [19]. Af-
ter allowing the qubit to interact with its environment, we
use a measurement of σ̂z to derive temperature information.
Our findings indicate that, in nonequilibrium conditions, in-
creasing non-Markovianity improves QSNR with numerous

2470-0045/2024/110(2)/024132(9) 024132-1 Published by the American Physical Society

https://orcid.org/0009-0001-9294-138X
https://orcid.org/0000-0002-3842-3215
https://orcid.org/0000-0002-6437-826X
https://orcid.org/0000-0002-2465-8515
https://ror.org/03c4shz64
https://ror.org/00r8w8f84
https://ror.org/01bf9rw71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024132&domain=pdf&date_stamp=2024-08-23
https://doi.org/10.1103/PhysRevE.110.024132
https://creativecommons.org/licenses/by/4.0/


AIACHE, SEIDA, EL ANOUZ, AND EL ALLATI PHYSICAL REVIEW E 110, 024132 (2024)

FIG. 1. Illustration of the physical system being studied: A two-
level system interacts with a thermally composite environment,
which works as a quantum thermometer to determine its temperature.
Our probe process goes as follows: First, we set the probe qubit to
the optimal state represented by the Bloch sphere. The probe qubit
then interacts with the composite environment to encode temperature
information. Finally, we perform a measurement of σ̂z, which is
suitable for saturating the quantum Cramér-Rao constraints.

oscillations, whereas in the Markovian regime, QSNR grows
slowly. However, equilibrium conditions yield the most ac-
curacy. Overall, our proposed method performs exceptionally
well in the low-temperature range. We also investigate the
scenario in which the composite environment has varying
temperatures. The study focuses on calculating the temper-
ature of the ancilla in the presence of various Markovian
reservoir characteristics and memory effects.

This paper is organized as follows: Sec. II provides a brief
overview of the approaches from local quantum estimating
theory (QET) that will be used throughout this study. Sec-
tion III describes our physical model and characterizes the
probe qubit’s non-Markovianity. Sections IV and V discuss
the application of QET approaches to our system, giving our
findings and illustrating the achievement of optimal estima-
tion using feasible measurements. Finally, Sec. VI concludes
the paper with some final statements.

II. TOOLS FOR QUANTUM PARAMETER
ESTIMATION THEORY

Direct access to essential physical quantities is frequently
unavailable in various sensing techniques, necessitating indi-
rect measurement estimates. In such instances, the purpose of
estimate theory is to precisely infer the value of the desired
quantity by studying a set of data obtained from measuring
another observable.

We begin by examining the fundamentals of quantum
thermometry. We intend to estimate temperature, which is a
parameter rather than a quantum observable, using measure-
ments on the probe in our approach (see Fig. 1). QFI is an
important part of parameter estimation theory since it offers a
measure of the maximum precision that can be achieved in a
thermometry scheme. The ultimate precision of an unbiased
temperature estimator T̂ follows the quantum Cramér-Rao
(QCR) theorem, which asserts that

�T � �TQCR � 1/
√

νH(T ), (1)

where �T is the mean square error, ν is the number of mea-
surements, and H(T ) is the quantum Fisher information of
the probe state ρ (P), which varies with the temperature of the

composite environment. The QFI is defined in the following
manner:

H(T ) = Tr{ρ (P)(T )L2(T )}, (2)

where L2(T ) is the symmetric logarithmic derivative operator
satisfying the equation

2∂T ρ (P)(T ) = L(T )ρ (P)(T ) + ρ (P)(T )L(T ), (3)

where ∂T denotes the temperature-dependent derivative. As
seen in Fig. 1, the quantum thermometer is a single qubit
probe that interacts with the composite environment. In par-
ticular, note that for a two-dimensional quantum probe, any
qubit state in the Bloch sphere representation can be expressed
as ρ̂ = 1

2 (Î + b · σ̂ ), where Î is the 2 × 2 identity matrix,
b = (bx, by, bz ) is the real Bloch vector, and σ̂ = (σ̂x, σ̂y, σ̂z )
represents the Pauli matrices. In this situation, the quantum
Fisher information can be expressed for any mixed state by

H(T ) = |∂T b|2 + (b · ∂T b)2

1 − |b|2 . (4)

The performance of temperature sensing can be described
by the quantum signal-to-noise ratio which will be used
throughout this paper, and it defined as

RT = T 2H(T ). (5)

Using the QCR bound in Eq. (1) and the QSNR in Eq. (5),
the optimal relative error and the QSNR show the following
relationship:

(�T )min

T
= 1√

νRT
, (6)

which means that the higher QSNR allows more accurate
temperature sensing.

In the following section, we will use the framework men-
tioned above to estimate the temperature T of the sample
with either Markovian or non-Markovian dynamics. The es-
timation approach includes the interaction of a qubit with the
sample, followed by measurements to calculate the tempera-
ture. Specifically, we investigate an entirely solvable variant
of the master equation in order to build an effective quantum
thermometry method.

III. PROPOSED MODEL AND DYNAMICS

A. The physical model

All quantum physical systems interact with their surround-
ings, which distinguishes them as actual physical systems.
Their interactions with the surrounding environment fre-
quently result in a loss of coherence and information [30–32].
This phenomenon can be leveraged to transform the quan-
tum system into an effective probe for estimating various
environmental factors. Before getting into the technicalities
of quantum thermometry, we present a thorough description
of the environment, which we regard as a composite envi-
ronment. This organized reservoir produces non-Markovian
dynamics on the probe [33]. It consists of two components: a
Markovian thermal reservoir and a two-level system known
as an ancilla. Figure 1 shows a schematic diagram of our
quantum thermometry probing approach.
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The Hamiltonian governing the system of interest is ex-
pressed as (we adopt units of h̄ = 1 = kB throughout this
study)

H = ωPσ P
+σ P

− + ωAσ A
+σ A

− + J

2

(
σ P

x σ A
x + σ P

y σ A
y

)
. (7)

The coupling strength between the probe qubit and ancilla
is J , whereas the probe and ancilla frequencies are ωP and
ωA, respectively. The Pauli matrices are represented by σi

(with i = x, y, or z), while σ+ and σ− are the raising and
lowering operators, respectively. The first two terms on the
equation’s right-hand side, represented by Eq. (7), reflect
the self-Hamiltonians for the probe qubit and ancilla, while
the following term explains the probe-ancilla interaction. In
our design, the ancilla is connected to a fermionic thermal
reservoir and is regulated by the Hamiltonian

HR = ωRσ R
+σ R

−, (8)

where ωR is the frequency corresponding to the reservoir, and
the interaction between the ancilla and the reservoir has the
following form:

HI = η

2

(
σ A

x σ R
x + σ A

y σ R
y

)
. (9)

The symbol η represents the coupling strength between the
ancilla and reservoir. The rest of the paper assumes ωP =
ωA = ωR = ω. The general master equation [34] for the cou-
pled probe-ancilla system, using Born-Markov and secular
approximations [30,35], is written as follows:

d

dt
ρ(t ) = −i[H, ρ(t )] + G+D[σ A

+] + G−D[σ A
−]. (10)

Here, G+ = 	 f (ω) and G− = 	[1 − f (ω)] are the decay
rates, where 	 = 2πη2, the Fermi-Dirac distribution f (ω) =
(eβω + 1)−1, and D[h](h = σ A

+, σ A
− ) is the Lindblad dissipator,

which is described as

D[h] = hρ(t )h† − 1
2 [h†h, ρ(t )]+. (11)

In concept, [X1, X2]+ specifies the anticommutator of X1 and
X2, and β represents the inverse temperatures (see the Ap-
pendix for more details).

In the next section, we will distinguish between the Marko-
vian and non-Markovian regimes in our suggested method.
To accomplish this purpose, we shall determine which param-
eters are important. In fact, manipulating them allows us to
induce the non-Markovian regime in our strategy.

B. Non-Markovianity for a probe in the composite environment

To further recognize the non-Markovian nature of our
probe, we will employ an approach based on information flow
between the probe system and the composite environment. We
use the approach introduced by Breuer et al. to assess the
degree of non-Markovianity [36],

N = max
ρ

(P)
1,2 (0)

∫
σ>0

dt σ (t ). (12)

The above formula evaluates the presence of feedback or
recoherence by examining the change in the rate of the trace

FIG. 2. Non-Markovianity N as a function of the coupling
strength J for different values of coupling η. Indeed, η = 0.22, 0.28,
and 0.34 are represented by the green solid, red dashed and blue
dot-dashed lines, respectively.

distance between the initial states, where σ (t ) = d
dt D(t ) rep-

resents the time derivative of the trace distance, such that

D(t ) = 1
2 Tr

{∣∣ρ (P)
1 (t ) − ρ

(P)
2 (t )

∣∣}. (13)

The trace distance, which reflects the distinguishability of
states, shows a continuous decrease over time; i.e., the two
states, ρ

(P)
1 (t ) and ρ

(P)
2 (t ), become less distinguishable. In

other words, this can be interpreted as a continuous loss of
information from the system to the environment, defining
Markovian dynamics. Conversely, any temporal increase in
the trace distance over time indicates a flow of informa-
tion from the environment back into the quantum system.
This serves as a characteristic signature of memory effects,
indicating the non-Markovian nature of the dynamics. Exten-
sive research has demonstrated that for a two-level system,
the most appropriate initial states can be selected as a set
of orthogonal pure states, such that |±〉 = (|0〉 ± |1〉)/

√
2

[37–39].
Figure 2 shows the non-Markovianity measure N as a

function of J for various coupling strengths η. The measure
N is zero for small coupling values J , implying that the
composite environment is Markovian in this regime. Notably,
the N measure deviates from zero as J becomes larger. One
intriguing discovery is that the degree of non-Markovianity
reduces with increasing coupling strength η. This observation
strongly suggests that the composite environment becomes
completely non-Markovian at higher J and lower η values. As
a result, we will limit further discussion to scenarios in which
J = 0.99 in our temperature sensing technique.

IV. NON-MARKOVIAN QUANTUM THERMOMETRY
FOR THE COMPOSITE ENVIRONMENT

Calculations using the density matrix in Eq. (A3) indicate
that the analytical expression of H(T ) is not concise. Fur-
thermore, due to the lack of compact analytical results for
the QSNR, the probe’s best state is calculated via a numer-
ical technique. Specifically, Fig. 3 illustrates the ratio of the
QSNR for different values of temperature T and for different
strategies of initial preparation of the probe state, where Rg,

024132-3



AIACHE, SEIDA, EL ANOUZ, AND EL ALLATI PHYSICAL REVIEW E 110, 024132 (2024)

(a)

(b)

FIG. 3. The ratios of (a) Re(θ = π )/Rg(θ = 0) and (b) Rs(θ =
π/2)/Re(θ = π ) for different values of temperature, where T =
0.5, 1, and 2 are represented by the green solid, red dashed, and
blue dot-dashed lines, respectively. In the insets, we plot the same
quantities for small time interaction. Moreover, we set J = 0.99,
ω = 1, and η = 0.22.

Rs, and Re stand for QSNRs where the probe qubits are pre-
pared initially in the ground, superposed, and excited states,
respectively. In all plots, we set ω = 1 and η = 0.22 unless
otherwise stated.

The graphs in Fig. 3 highlight that the ideal technique
requires preparing the probe in its excited state, i.e., |1〉P
(shown by the lines with blue dots in the Bloch sphere shown
in Fig. 1), although there are certain brief time intervals when
this is not the case. As temperature values fall, the ratio
Re/Rg increases, whereas Rs/Re decreases. For lower tem-
peratures, the ideal preparation state is the excited state (|1〉P).

Furthermore, at high values of time interaction, the QSNR
becomes θ independent. State |1〉P is deemed the most optimal
one based on the approach employed. However, there are
some brief time intervals where it is advantageous to prepare
the probe in either state |0〉P or (|0〉P + |1〉P )/

√
2. By prepar-

ing the probe in its optimal state, namely, |1〉P, the density
matrix of the probe qubit in the Bloch representation reads
ρ (P)(t ) = 1

2 (Î + b · σ̂ ). The elements of the Bloch vector are
obtained as follows:

bx = 0, by = 0, bz = 2ρ11(t ) − 1. (14)

In light of the above equation, the explicit expression for the
QFI is easily obtained as

H(T ) = (∂T bz )2

1 − (bz )2
. (15)

Expressed in terms of Eq. (5), Fig. 4 illustrates the dynam-
ical behavior of the QSNR as a function of time interaction t
and temperature of the composite environment T for various
values of the strength coupling J . The results give persua-
sive evidence that greater coupling J values result in a more
effective improvement of QSNR than lower values of J , im-
plying that the QSNR behaves significantly J dependently in
nonequilibrium settings. Furthermore, the oscillating patterns
of R(t, T ), similar to Fig. 2, become more prominent as
J grows. This pattern is especially important for J ≈ 0.99,
emphasizing the substantial non-Markovian effects found in
Fig. 2. These findings indicate that non-Markovian effects
have the potential to increase temperature sensing accuracy
in nonequilibrium settings. However, regardless of the mag-
nitude of J , the QSNR values converge to a single constant
value that is exclusively reliant on the temperature of the
composite environment in the long-term regime. The highest
temperature precision achieved in this context relates to a very
low temperature regime, as seen in Fig. 4.

In our approach, nonequilibrium conditions have no ef-
fect on the maximum accuracy of the temperature estimation.
When the thermometer approaches steady state, the quantum
signal-to-noise ratio peaks. The correlation between the probe
qubit’s steady-state convergence and QSNR maximization
has significant implications for quantum thermometry and
temperature sensing [40]. This relationship emphasizes the
importance of the probe qubit stability in determining the
precision and accuracy of temperature measurements utilizing
quantum systems. As the probe qubit approaches steady state,
the QSNR improves, indicating more sensitivity to tempera-

FIG. 4. The QSNR for three distinct coupling values J as a function of interaction time t and temperature T , where J = 0.1, 0.5, and 0.99
for (a)–(c), respectively. Additionally, we set θ = π , ω = 1, and η = 0.22.
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(a)

(b)

FIG. 5. (a) The maximum QSNR Rmax as a function of temper-
ature T . (b) The optimal relative error (�T )min/T as a function of
temperature T after 200 (green solid line), 400 (red dashed line), and
600 (blue dot-dashed line) measurements.

ture fluctuations and measurement precision. These results not
only provide useful insights for enhancing quantum thermom-
etry techniques but also show a direct relationship between
probe qubit stability and temperature measurement accuracy.
Particularly, in the equilibrium performance of the thermome-
ter, i.e., the long-time interaction, the QSNR reads

R(T, t → +∞) = Rmax = ω2

2T 2
[

cosh
(

ω
T

) + 1
] . (16)

Equation (16) indicates that in the long-time interaction, the
QSNR is dependent only on the frequency ω and the temper-
ature of the sample itself.

Figure 5(a) exhibits the maximum attainable QSNR as a
function of the ratio T/ω. It reveals that the QSNR reaches
its peak when the ratio T/ω is around 0.41. Moreover, the
temperature associated with the peak is T = 0.41 ω, showing
that our sensing procedure performs better at low tempera-
tures. To validate this discovery, Fig. 5(b) depicts the optimal
relative error (�T )min/T as a function of temperature T after
200 (green solid line), 400 (red dashed line), and 600 (blue
dot-dashed line) measurements. The optimal relative error is
temperature dependent in the low-temperature region, imply-
ing that our approach may be better suited to the construction
of low-temperature quantum sensors. Figure 5(b) shows that

with only 200 measurements, the optimal relative error may
be maintained at 17% for the full temperature range (green
solid line). After 400 measurements, the ideal relative error
stays below 10% for a specified temperature range (red dashed
line). As the number of measurements reaches 600, the opti-
mum relative error regularly falls below 10% (blue dot-dashed
line).

Our study introduces a single-qubit-based quantum ther-
mometer operating in a non-Markovian composite envi-
ronment, achieving high precision as measured by QSNR.
Remarkably, compared to the dephasing-based method [5]
and the Bose-Einstein condensate sensor [41], our approach
demonstrates enhanced sensitivity, particularly at low temper-
atures. However, these methods have an advantage over our
method in terms of shorter encoding times.

In the final stage of the temperature sensing protocol, we
present a measurement approach that will saturate the quan-
tum Cramér-Rao constraint. It is critical to identify the best
measurement for experimental implementation. In this work,
we choose a measurement of 〈σ̂z〉. Therefore, for a two-level
system, the Fisher information associated with the measure-
ment can be written as [42]

F (T ) = (∂T 〈σ̂z〉)2〈
�σ̂ 2

z

〉 , (17)

where 〈σ̂z〉 and 〈�σ̂ 2
z 〉 represent the mean and variance of the

measured third Pauli matrix, respectively. The quantum state
of the single-qubit temperature sensor, as given by Eq. (A3),
is straightforward to derive:

〈σ̂z〉 = 2ρ11(t ) − 1,
〈
�σ̂ 2

z

〉 = 1 − [2ρ11(t ) − 1]2. (18)

According to Eq. (14), we have bz = 2ρ11(t ) − 1. Thus, the
Fisher information for the measurement of σ̂z is produced by
entering the aforementioned equation into Eq. (17):

F (T ) = (∂T bz )2

1 − (bz )2
. (19)

This is identical to the quantum Fisher information given by
Eq. (15). Therefore, we can deduce that the sensitivity of
the temperature sensor in the current system can saturate the
quantum Cramér-Rao bound by conducting the measurement
of σ̂z on the probe qubit.

An attractive feature of our method is that after a period
of time, a local measurement on the probe qubit can extract
nearly all the information about the temperature. This en-
hances the feasibility of implementing the thermometer (e.g.,
a biological sample [43,44]).

V. SENSING TEMPERATURE OF THE ANCILLA

In this part, we examine a configuration in which the com-
posite environment has varying temperatures. We represent
the temperature of the ancilla as TA and the temperature of the
Markovian reservoir as TR. Our goal is to determine the tem-
perature of the ancilla and explore how the reservoir affects
it.

Figure 6 displays the QSNR’s dynamic behavior for ancilla
temperatures ranging from 0.1 to 3, i.e., from the low- to
high-temperature regime. It is clear that the QSNR initially
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FIG. 6. The QSNR as a function of time interaction t and tem-
perature TA for fixed J = 0.99, θ = 0, TR = 1, ω = 1, and η = 0.22.

increases and then drops with increased interaction time. No-
tably, there is a sudden death followed by a QSNR rebirth in
the low-temperature regime. This shows that the optimal esti-
mation of the temperature of the ancilla can be accomplished
within a finite interaction time topt, i.e., before the probe qubit
reaches its stationary state.

Figure 7 provides three plots showing the maximum value
of the QSNR, denoted Ropt, as a function of the temperature of
the ancilla for varying values of θ , coupling J , and reservoir
temperature TR. However, for specified parameters, namely,
J = 0.99 and TR = 1, Fig. 7(a) depicts the best technique
for preparing the initial state of the probe qubit. The results
clearly show that the maximum of the QSNR is attained for
low temperatures in the scenario where θ = 0 [see also the
inset in Fig. 7(a)], indicating that the maxima of the QSNR
can be boosted by preparing the probe qubit in its ground
state. Moreover, Fig. 7(b) exhibits the effect of coupling J
on QSNR (with θ = 0 and TR = 1). It can be seen that the
QSNR in both regimes, low and high temperatures of the
ancilla, is substantially dependent on the coupling J and that
as the value of J grows, so does the maximum precision

in QSNR. Furthermore, precision decreases as the coupling
regime transitions from strong to weak. It should be noted
that the highest ancilla temperature precision achieved here is
for a very low ancilla temperature regime. The temperature
of the reservoir is critical to the accuracy of the ancillary
temperature estimation. Furthermore, Fig. 7(c), where we
set θ = 0 and J = 0.99, demonstrates how a high temper-
ature TR of the reservoir might boost the maximum of the
QSNR.

In Fig. 8, we display the ideal interaction time topt, which
is the time when the QSNR reaches its greatest value. How-
ever, Fig. 8(a) demonstrates the optimal time interaction as a
function of the ancilla temperature TA for different probe qubit
initializations. The ideal period for low temperatures is clearly
dependent on θ . When θ = 0, the optimal time is smaller
at low temperatures and gradually increases with rising an-
cilla temperature. For high ancilla temperatures, the behavior
of topt becomes θ independent. In contrast, the coupling J
has a significant influence on the optimal time interaction in
both the low- and high-temperature regimes. As the coupling
strength J grows, the optimal time interaction decreases. Fur-
thermore, at low temperatures, a short-time contact between
the probe and the composite environment is required for an
optimal ancilla temperature estimate. At higher temperatures,
however, a long-term interaction between the probe and the
composite environment is required to accurately determine the
temperature of the ancilla. This suggests that longer contact
time is required at high temperatures than at lower tempera-
tures in order to imprint information about the probe’s ancilla
temperature.

In addition, as expected, the optimal time is smaller for low
temperatures compared to high temperatures for all three val-
ues of J , namely, 0.1, 0.5 and 0.99. However, from Figs. 7(b)
and 8(b), it is clear that increasing the values of J leads to
an increase in the optimal QSNR [see the inset in Fig. 7(a)],
and the optimal time interaction to reach the maximum QSNR
decreases as J increases. Compared to Fig. 2, it is clear that
this gain in measurement accuracy follows the same pat-
tern as non-Markovianity. This clearly shows that increased
non-Markovianity correlates with greater temperature mea-
surement accuracy. Furthermore, the reservoir temperature TR

has no effect on topt, indicating that the optimal time interac-
tion is independent of TR.

(a) (b) (c)

FIG. 7. Plots showing the maximum value of the QSNR Ropt in time as a function of the temperature TA for (a) θ = 0 (green solid
line), θ = π/2 (red dashed line), and θ = π (blue dot-dashed line), (b) J = 0.1 (solid green line), J = 0.5 (dashed red line), and J = 0.99
(dot-dashed blue line), and (c) TR = 0.5 (green solid line), 1 (red dashed line), and 20 (blue dot-dashed line). The insets show the optimal
QSNR as a function of θ in (a), J in (b), and TR in (c).
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(a) (b) (c)

FIG. 8. Plots of the optimal interaction time topt versus (a) θ , (b) J , and (c) TR.

VI. CONCLUSION

In this study, we examined single-qubit quantum ther-
mometry with a focus on quantum memory effects and
demonstrated its usefulness in estimating the temperature of
a composite environment made up of a Markovian reservoir
and an ancillary system. We discovered that the highest quan-
tum signal-to-noise ratio occurs when the system approaches
steady state, with no observable absolute performance benefit
in the nonequilibrium phase. Initially, the probe qubit was
better prepared in the excited state than in the ground or super-
posed states. The non-Markovianity was highly influenced by
the probe’s nonequilibrium state, increasing with the coupling
strength J and leading to rapid increases with many oscilla-
tions in the QSNR, in contrast to the sluggish growth found
in the Markovian regime. Furthermore, the QSNR achieves
its peak at lengthy interaction periods, relying solely on the
temperature of the composite environment. We discovered
that the maximum QSNR over the temperature of the com-
posite environment has only one peak, which occurs in the
low-temperature regime. This shows that our technique could
be better suited to the design of low-temperature quantum
sensors. Our suggested method achieves an ideal relative error
of less than 17% with only 200 measurements for low temper-
atures and remains below 10% with 600 measurements.

In addition, we investigated the scenario in which the
composite environment has varied temperatures, specifically
how the Markovian reservoir influences the temperature es-
timation of the ancilla. Our findings demonstrated that the
QSNR over ancilla temperature reaches its maximum over
time for each fixed ancilla temperature value. Furthermore,
we emphasized the importance of non-Markovian effects,
which might improve the efficiency of ancilla temperature
estimates while decreasing the optimal interaction time. A
stable temperature in the Markovian reservoir enhanced the
maxima of the ancilla temperature estimate when compared to
low temperatures. Finally, we demonstrated that an excellent
temperature estimate at the quantum limit may be achieved
using the feasible strategy of preparing the qubit in an eigen-
state of σ̂z and measuring it after it interacts with the thermal
sample.

Our results open up possibilities for future developments,
such as the use of entangled probes and the possible ad-
justment of the interaction Hamiltonian. In addition, our

framework can be expanded by using collisional models. In-
deed, the benefits of the latter models come from repeated
interactions between a continuous stream of ancillas prepared
independently and a system that mediates thermal contact
with the environment. However, in terms of potential real-
izations of our probing scheme, there are several physical
platforms that implement a two-level system in structured
environments. In fact, examples that include atomic impuri-
ties in Bose-Einstein condensates are given in Refs. [45–47],
and examples including superconducting qubits are given in
Refs. [48,49].
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APPENDIX: DERIVATION OF THE MASTER EQUATION

In this Appendix, we provide an exact solution to the
master equation used in this paper. To solve the master equa-
tion (10), the initial state is

ρ(0) = ρ
(P)
θ ⊗ ρ

(A)
th , (A1)

where ρ
(P)
θ and ρ

(A)
th are the probe and ancilla density matrices,

respectively, of the following form:

ρ (P) = |ψ (θ )〉 〈ψ (θ )| , ρ
(A)
th = e−βAH (A)

Z . (A2)

Here, Z = Tr{e−βAH (A)} is the partition function of the ancilla,
and |ψ (θ )〉 = cos( θ

2 ) |0〉 + sin( θ
2 ) |1〉, where θ ∈ [0, π ] and

βA is the inverse temperature of the ancilla. The dynamics of
the reduced state of the probe is given by

ρ (P)(t ) = TrA{ρ(t )} =
(

ρ11(t ) ρ12(t )
ρ21(t ) ρ22(t )

)
. (A3)

We assume that the ancilla and the reservoir are in thermal
equilibrium at temperature T . Thus, the populations (diago-
nal) and coherence (off-diagonal) are exactly calculated in our
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case as

ρ11(t ) = e− 1
2 t (A1+2πη2 )

4A3/2
2 (eω/T + 1)

{
8A1eω/T

[
(π2η4 − 4J2)e

1
2 t (A1+2πη2 ) − J2

(
e

A1t
2 − 1

)2]

+ 8A1
[
(π2η4 − 4J2)e

1
2 t (A1+2πη2 ) + J2

(
e

A1t
2 − 1

)2]
+ 8 cos(θ ) cosh

(
ω

2T

)
e

A1tT +ω

2T

[
−πA2η

2 sinh

(
A1t

2

)
+ 2A1(2J2 − π2η4) cosh

(
A1t

2

)
+ 4A1J2

]

− 4(eω/T + 1) tanh

(
ω

2T

)
[2πη2(eA1t − 1)(π2η4 − 4J2)]

− 4(A1)(eω/T + 1) tanh

(
ω

2T

)[
(8J2 − 2π2η4)e

1
2 t (A1+2πη2 ) − 8J2e

A1t
2 + π2η4eA1t + π2η4

]}
,

ρ22(t ) = 1 − ρ11(t ),

ρ12(t ) = sin(θ )e− 1
4 t (2πη2+4iω)

[
2πη2 sinh

(A1t
4

) + A1 cosh
(A1t

4

)]
2A1

= ρ∗
21(t ), (A4)

where A1 and A2 are given by

A1 =
√

(2πη2)2 − 16J2, A2 = (2πη2)2 − 16J2. (A5)

From Eq. (A4), it becomes evident that the populations, which correspond to the diagonal elements of the density ma-
trix, exhibit a clear dependence on temperature. This temperature dependence indicates that these diagonal elements carry
crucial information about the thermal state of the sample. In contrast, the off-diagonal elements, or coherences, remain unaffected
by the temperature, implying that they do not encode thermal information. Consequently, by examining the populations of the
density matrix, we can infer the temperature of the sample, providing valuable insights into its thermal properties.
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