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Efficient generation of barrier crossing trajectories using approximate Brownian bridges
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We examine continuous random walks that are conditioned to reach one region before another. These
conditioned processes are used to generate stochastic trajectories for barrier crossing events, which are generally
rare and difficult to sample. The processes are generated using a Brownian bridge technique, resulting in near
perfect sampling efficiency without accruing error in the conditional statistics of the process. The construction
requires the hitting probability or committer function, which is a solution to the backward Fokker-Planck
equation, a partial-differential equation that can be difficult to solve through general means. Therefore, we
derive a one-dimensional approximation through asymptotic methods for barrier crossing trajectories. We show
that this approximation has a simple analytical representation and approaches the true solution as the barrier
height increases. Brownian bridge trajectories generated with this approximate solution are then shown to result
in accurate conditional statistics when used in conjunction with importance sampling, even in the case when
potential energy barriers are not large. We show this idea’s effectiveness by simulating rare events in a stochastic
chemical reaction network (Schögl reaction) with multiple steady states. This methodology shows great promise
for future implementation to simulate rare barrier crossing events for a wide variety of physical processes.
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I. INTRODUCTION

Continuous random walks (CRWs), processes character-
ized by diffusion and drift, are fundamental in modeling a
broad spectrum of physical phenomena across many fields.
These models provide valuable insight into the dynamics
found in heat and mass transfer [1], polymer physics [2–4],
nucleation [5], and chemical reaction processes [6]. In many
of these processes, the most intriguing events are rare tran-
sitions between metastable states; however, these events (as
the name implies) occur rarely and are therefore particularly
difficult to sample directly. This paper proposes an efficient
method to generate such events, specifically paths that reach
one region before another.

Consider a stochastic process Xt whose probability density
function p(x, t ) satisfies the Fokker-Planck equation (FP) [7],
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]
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where Di j are the components of the diffusion tensor D, and
A = −D∇xV represents the drift from a potential energy sur-
face (PES) V (x, t ). The FP equation (1) is associated with an
Itö stochastic differential equation (SDE) [8,9],

dx(t ) = [A(x, t ) + ∇x · D]dt

+ B(x, t )dW; x(0) = x0, t � 0, (2)

where x(t ) ∈ Rn represents the state at time t , and B is a ma-
trix related to the diffusion tensor as D = 1

2 (BBT ) [10], often
obtained by Cholesky decomposition [11]. The symbol dW ∈
Rn is a Wiener process, where W(t ) is an n-dimensional
standard Brownian motion (BM) with independent Gaussian
increments, W(t + s) − W(s) ∼ N (0, t ) [12].

Let � be the path ensemble for (2), i.e., the set of all
possible trajectories. We are interested only in the subset
� ⊂ �, the set of paths that reach one region of phase space
before another. That is, if we define two regions �1,�2 ⊂ �

with �1 ∩ �2 = ∅, then we are interested only in the tra-
jectories for which Xt ∈ {x(t ) ∈ �1, x(s) /∈ �2 | ∀ s ∈ [0, t]},
i.e., the first hitting time to region �1 is less than for
region �2, T1 < T2. These types of paths occur often in re-
action dynamics; for example, a set of reactants produces
two products A and B, and only the reaction pathway to
A is of interest. Specifically, we are interested in barrier
crossing trajectories (BCTs), which provide insight into the
dynamics and properties of various chemical and physical
transformations. Unfortunately, a phenomenon known as the
separation of timescales occurs, i.e., a long waiting time
within a metastable state and a short barrier crossing event
[13], so the BCT is rare and computationally expensive to
generate.

The foregoing necessitates more efficient sampling algo-
rithms designed to constrain the stochastic system, increasing
the rate at which BCTs are generated. Various techniques have
been implemented to achieve this, such as umbrella sampling
[4,14,15], transition path sampling [16], action-based methods
[17], adaptive forcing [18], and string methods [19–21], each
coming with their own set of advantages and disadvantages.
For many of these, their accuracy is highly dependent on an
initial guess; for example, transition state theory highly relies
on the choice of a dividing surface in the reaction region [22],
and string theories highly depend on the initial guess for the
minimum free energy path (MFEP) [21] and only yield a
single transition path. For example, consider the simple toy
problem illustrated in Fig. 1. Let the energy wells represent
three different metastable states of some barrier crossing pro-
cess. We are interested in only one of the transitions between
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FIG. 1. Example surface for paths which cross from one potential energy minima (upper green dot) to another (rightmost blue dot) before
reaching another (leftmost red dot). The minimum free energy path (thick red line) is shown on the contour plot as well as a few sample
trajectories. Note that not all trajectories follow the minimum free energy path.

energy wells, i.e., sampling the subset of paths that start at the
topmost energy well and reach the bottom right well before
the bottom left well.

The string method shows the MFEP for these trajectories,
but does not capture all such paths that the system can take to
reach that state. So, rate predictions made using this method
can ignore some of the possible pathways, resulting in an
underestimation of the rates, and may not illuminate possible
alternative mechanisms and intermediate states dividing these
two surfaces. One way to avoid such a disadvantage is to use
a conditioned random walk, i.e., a Brownian bridge (BB).
A BB is a type of Doob h-transform [23], which generates
only trajectories that satisfy the constraint, which in this case
is {x(t ) ∈ �1, x(s) /∈ �2 | ∀ s ∈ [0, t]}. This bridge process
is illustrated in Fig. 2. Out of the entire path ensemble, �,
the bridge process selects only those paths that satisfy the
constraint that the system reaches a state within the shaded
region. The bridge process is very general and can be ap-
plied to many types of stochastic systems, such as extremely
high or low temperature (noise) systems and those far from
equilibrium, and it may also be used to study a wide variety
of rare events depending on the constraints applied to the
system. The bridge process has far-reaching applicability to
the study of rare event processes; however, its main draw-
back is that it requires solving the backward Fokker-Planck
equation [10], which for complex potential energy surfaces
or in high-dimensional spaces becomes cumbersome to nu-
merically calculate. Therefore, the main idea of this paper is
the development of efficient and accurate ways to calculate its
solution in order to construct these bridges and sample rare
events.

II. BROWNIAN BRIDGE CONSTRUCTION

A Brownian bridge modifies the underlying stochastic
process (2) to focus on a specific subset of paths. Consider

a stochastic process Xt defined within a domain � and
let � represent the set of all possible trajectories or path
ensemble. Our interest lies only in the set of paths � that
reach a region �1 before �2. Since � ⊆ �, the bridge process
is associated with an entropic penalty. To understand this
phenomenon, let P describe the probability measure of �

[24]; then define its entropy S(P) using the Kullback-Leiber
(KL) divergence. A property of KL divergence is that
conditioning reduces the entropy, so S(P|�) � S(P) [25].
Consequently, there is an accompanying entropic force
caused by the set partition � = {�, � \ �} [26]. This
entropic force is accounted for in the bridge construction as
an additional biasing force added to the drift term of (2).

FIG. 2. Path ensemble, {Xi} ∈ �, for a stochastic system begin-
ning at a state x0. We are interested in the subset of paths, � ⊂ �,
that reach a specified region of the phase space, represented by the
shaded circle. The bridge process generates only such paths so that
each sample Xi(t ) ∈ �.
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FIG. 3. Comparison of a potential energy surface (blue) and
bridge surface (red). The bridge surface is the equivalent energy
surface for the conditional sampling of paths that reach xh = 1.6
(green line) before reaching xa = −0.4 (black line), for any initial
point x0 ∈ (−0.4, 1.6).

Thus, the modified SDE describing the bridge processes
satisfies [3,4,10]

dxBr = [A + ∇x · D + (BBT )∇x ln q(x, t )]dt + BdW, (3)

where q(x, t ) is the hitting probability. We define that
probability as

q(x, t ) = P [T1 < T2|x(t )], (4)

where T1 and T2 are the first passage times to regions �1 and
�2, respectively, i.e., the probability that the remaining path
for the original SDE (2) reaches �1 before �2, given that it
starts at x(t ). The hitting probability satisfies the backward
Fokker-Planck (BFP) equation, and since the hitting time is
not specified, we use the time homogeneous equation, that is,
∂q
∂t = 0. The BFP equation is given by [27]

(A + ∇x · D) · ∇xq + 1
2 (BBT ) : ∇x∇xq = 0,

q(x ∈ ∂�1) = 1; q(x ∈ ∂�2) = 0, (5)

where ∂�1 and ∂�2 are the boundaries for regions 1 and 2.
We note that the bridge SDE (3) takes the same form

as the original SDE (2) with a modified drift, A∗ = A +
(BBT )∇x ln q. Take an overdamped Langevin equation where
A = − 1

2 (BBT )∇xV (x) = −D∇xV (x), where V (x) is a PES;
then the bridge is equivalent to sampling on a modified PES,
V ∗ = V − 2 ln q. Thus, sampling on the modified PES V ∗ is
equivalent to conditional sampling on the original surface V ,
for paths that reach region �1 before �2. In Fig. 3, we show
what the modified PES would be for one-dimensional (1D)
diffusion (B = 0.5) on V (x) = 2 sin(3x)e

x
π , for the subset of

paths that reach xh = 1.6 (bottom of right well) before they
reach xa = −0.4 (bottom of left well). Note that as we ap-
proach the avoidance region, x → xa, we have V ∗(x) → ∞.
The singularity implies that it would take infinite energy for
the system to reach the region we wish to avoid; therefore,
all trajectories sampled from this bridge must first reach the
hitting location, xh.

A strength of calculating these modified potential energy
surfaces is that it retains a great deal of flexibility. For a
given hitting and avoiding region, the starting location can
be placed anywhere, x(0) ∈ �, as long as x(0) /∈ �1 ∪ �2,
without altering the modified surface.

III. DETERMINATION OF HITTING PROBABILITY

To implement the bridge construction, we require an effi-
cient and accurate solution technique to the BFP equation. In
this section, we develop an approximation method to quickly
and accurately determine the hitting probability. We derive an
analytical approximation for the 1D time-independent BFP
equation through asymptotic expansions, which are valid in
the case of either larger potential energy barriers or in the
low-noise limit. We call this approximation technique the
reflection method since it results in simply reflecting the po-
tential energy surface in specific locations.

A. Asymptotic analysis: Reflection method

Let X represent a trajectory of a 1D stochastic process and
x(t ) represent the state of the process at time t . The system is
governed by

dx = −dV

dx
dt + BdW, (6)

where V (x) is a PES and, for simplicity, we assume B is
constant; however, B can be made to depend on x with very
little modification to this theory. We are interested in the
subset of trajectories where X ∈ {x(t ) = xh|x(0) = y, x(s) �=
xa ∀ s < t}, where y is the initial position anywhere in the
interval y ∈ (xa, xh). The associated BFP equation is then

−dV

dx

dq

dx
+ 1

2
B2 d2q

dx2
= 0,

q(xa) = 0; q(xh) = 1. (7)

After integrating twice, we find that the solution can be written
as

q(x) = N
∫ x

xa

eβV (x′ )dx′, (8)

where β = 2
B2 and N is a normalization constant. The SDE

for the conditioned process is then

dxBr =
(

−dV

dx
+ B2 d ln q

dx

)
dt + BdW, (9)

so the modified drift for capturing the conditional statistics
is A∗ = − dV

dx + B2 d
dx ln q. The analytical solution to (8) can

only be found for simple PES and so we wish to find an
analytical representation of q(x) that approximates the exact
solution. Assume that supy,z∈(xa,xh ) β|V (y) − V (z)| � 1, that
is, the system is either in the low-noise limit or the existence
of a large potential energy barrier. Then examine the Laplace-
type integral,

I (x; β ) =
∫ x

xa

eβV (x′ )dx′, (10)
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which for β � 1 can be accurately approximated by the
Laplace method [28,29]. Then define the following sets:

M =
{

x1, x2, . . . , xN | xi ∈ (xa, xh),
dV (xi )

dx
= 0,

× d2V (xi )

dx2
< 0

}
,

m = {ηi ∈ (xi, xi+1) | V (ηi) = V (xi )}, (11)

where M is the set of all locations corresponding to local
maxima of V (x) and the set m is the corresponding points on
the PES between the two local maxima and has a value equal
to the previous maximum value. Note that since βV (x1) � 1,
I (x) is sharply peaked at x = x1. Here we split into two cases:
Case 1: x < x1, before reaching the potential energy maxima;
and Case 2: x1 < x < η1, after reaching the potential energy
maxima but before growing larger than that maxima.

Case 1: x < x1. At x < x1 before reaching the first maxima,
V ′(x) > 0 ∀ x ∈ (xa, x1), and therefore I (x) is sharply peaked
at x. Thus, we can asymptotically expand the exponent around
x,

I (x) ≈
∫ x

x0

eβ[V (x)+V ′(x)(y−x)]dy ≈ eβV (x)

(
eβV ′(x)(x−x0 ) − 1

βV ′(x)

)

≈ eβV (x), (12)

so I (x) ≈ eβV (x) for all x ∈ [0, x1].
Case 2: x1 < x < η1. For x1 < x < η1, V (x1) > V (y) ∀ y ∈

(x1, η1) so I (x) is sharply peaked at x1. Thus, we asymp-
totically expand the exponent around x1, V (y) ≈ V (x1) +
V ′′(x1 )

2 (y − x)2, and substitute this into I (x) to yield

I (x) ≈
∫ x

x1

eβ[V (x1 )+ 1
2 V ′′(x1 )(y−x1 )]2

dy,

=
√

π

2
{erf[ξ (x1 − x0)] + erf[ξ (x − x1)]}eβV (x1 ),

where ξ =
√

−βV ′′(x1 )
2 . Then, for ξ (x − x1) � 1, we have

I (x) ≈ √
πeβV (x1 ) = const, (13)

so I (x) is constant for x ∈ (x1, η1). We repeat this same anal-
ysis for each pair (xi, ηi ) so

I (x) ≈
{

eβV (x); ∀x ∈ (xi, ηi ), i = 1, 2, . . . , N√
πeβV (xi ); ∀x ∈ (ηi, xi+1), i = 1, 2, . . . , N − 1,

(14)

which results in the approximation

A∗ = A + B2 ln I (x)

=
{−A; ∀x ∈ (xi, ηi ), i = 1, 2, . . . , N

A; ∀x ∈ (ηi, xi+1), i = 1, 2, . . . , N − 1.
(15)

This formulation can be extended to nonconstant diffusion
problems as well. The simple change is that the sets m, M will
no longer depend on the maxima of βV (x), but instead depend
on the maxima of

∫ 2V ′(x)
B2(x) dx, and will still result in the same

FIG. 4. Visual representation of asymptotic regions on a poten-
tial energy surface for trajectories which reach x = π before they
reach x = −π . Case 1 holds in the red (reflecting) regions and case 2
holds in the blue (nonreflecting) regions, respectively. Green markers
are placed at each xi ∈ M and red markers are placed at each ηi ∈ m.

reflection behavior. To illustrate and better explain the reason
for defining sets M and m, in Fig. 4 we show where each are to
be placed and the regions where the potential surface should
be reflected.

B. Reflected potential

From the previous result in (14), we can begin to construct
the approximate bridges. Plugging the approximation into the
SDE in (3) yields the modified drift velocity as

A∗ ≈
{

− dV
dx if x ∈ (xi, ηi )

+ dV
dx if x ∈ (ηi, xi+1),

(16)

which clearly implies that the modified potential energy sur-
face is simply reflected about the potential energy maxima up
to a constant,

V ∗ =
{

V (x) if x ∈ (xi, ηi )

−V (x) + ci if x ∈ (ηi, xi+1),
(17)

where ci is a set of constants that are used to enforce the
continuity of V ∗(x).

In Fig. 5, we examine a 1D diffusion (B = 1) over a
double-well potential, V (x) = U0[4(x4 − x2) + 1]. We plot
the modified potential energy surface (bridge surface) when
one examines the subset of paths that reach the rightmost
well (xh = 1√

2
) before the leftmost well (xa = −1√

2
), as well as

the potential energy surface from the approximation in (17)
that comes from “reflecting” the potential energy surface in
specific regions.

Note that as the barrier height increases, the reflected
bridge surfaces converge to the exact bridge surface. The sole
difference between the reflected and exact bridge for very
large potential barriers is that the reflected bridge does not
exhibit the singular behavior near the avoidance region, which
forfeits the impossibility of a trajectory reaching that location.
Those trajectories become extremely rare nonetheless.
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FIG. 5. Simple barrier crossing over 1D potential, V (x) = U0[4(x4 − x2) + 1] [blue (bottom) line], with diffusion, B = 1. Comparison of
the exact bridge [orange (upper) line] with the reflection approximation [green (middle) line], over several different barrier heights, for the
subset of paths which reach xh = 1√

2
before reaching xa = −1√

2
. As the barrier height U0 increases, the approximation converges to the integral

solution.

As the barrier height decreases, this reflection method be-
comes less viable. However, in our previous work [10], we
found an importance sampling method to correct for errors
incurred by the approximation. Let q∗ be an approximation of
the hitting probability q, and define the functional

G[ln q∗] = ∂ ln q∗

∂t
+ ∇xV · ∇x ln q∗ + 1

2

(
BBT

)
:

× [∇x∇x ln q∗ + (∇x ln q∗) · (∇x ln q∗)T ], (18)

where, as q∗ → q, then G[ln q∗] → 0. We then assign weights
wi to each trajectory Xt through path integration,

wi = exp

{∫
G[ln q∗][xi(t )]dt

}
. (19)

So for any observable f of the trajectories, the reweighted
expectation is

E[ f ] =
∑

i fiwi∑
i wi

. (20)

Thus, we can use the approximate hitting probability to sam-
ple the bridge, and any errors in the conditional statistics
can be alleviated using this weighted average. A drawback of
this importance sampling scheme is that a bad approximation
leads to a wide variation of the weights wi, and therefore to
incorrect conditional statistics. Using the reflection method
sidesteps this issue, producing a valid approximation in all but
the most extreme cases.

We note that the problem formulation differs from that in
Wang et al. [10] as they derived a method to produce accurate
conditional statistics for an SDE that had a fixed time horizon.
In fixed time horizon problems, one needs to approximate the
solution to a time-dependent BFP equation in the importance
sampling procedure, typically using a singular perturbation
expansion near the endpoint. In the problem in this paper, we
are examining an SDE where the time horizon is not fixed, i.e.,
the first hitting time occurs randomly. The BFP equation (5)
in this case is time independent, and the appropriate approxi-
mation to use in the importance sampling procedure involves
an asymptotic expansion in an interior region of the domain.

IV. RESULTS AND ANALYSIS

In this section, we analyze barrier crossing trajectories
for a few different potential energy surfaces and compare
brute-force sampling, bridge sampling, and sampling on the
approximate bridge, i.e., using the reflection method. For clar-
ity we define these methods (for constant matrix B) as

dx = A(x, t )dt + BdW,

dxBr = [A(x, t ) + (BBT ) · ∇ ln q]dt + BdW,

dxBr
approx = ±A(x, t )dt + BdW. (21)

The sign on the latter is selected based on the results from the
reflection method.

A. Single barrier

We begin by looking at a normal double-well potential,
V (x) = k(x4 − x2), as shown in Fig. 5, where the barrier
height is U0. We wish to sample the subset of trajectories
that reach the rightmost minima xh = 1√

2
before reaching

the leftmost one, xa = −1√
2
. To accomplish this, we com-

pare the stopping times of brute-force sampling, bridge
sampling, and sampling using the reflection method. The lat-
ter is also subjected to the reweighting procedure outlined
in Ref. [10].

In Fig. 6, we show the results of sampling such paths as
we increase the barrier height. Note that brute-force sampling
is inefficient, as the ratio of samples that reach the hitting
region first compared to the total number of samples is low
and decreases exponentially with increasing barrier height.
Alternatively, sampling on the bridge surface boasts perfect
sampling efficiency. We also see that the reflection method
has a much greater efficiency than that of brute-force sam-
pling. As the barrier height increases, the brute-force sampling
efficiency falls, whereas the reflection method improves as it
converges to the real bridge. Additionally, the stopping times
are also in good agreement. Notably, the reflection method
also yields very good results after reweighting, matching the
brute-force samples nearly perfectly. Thus, this approximation
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FIG. 6. Statistics of conditional path sampling on a potential
energy surface V (x) = k(x4 − x2), where k represents the energy
barrier. Conditional sampling was performed for paths that reach
xh = 1√

2
before reaching xa = −1√

2
and start at x(0) = −0.3. The

stopping time Tf (solid lines) is defined as the time at which the
paths reach x f , and the efficiency (dotted lines) is defined as the ratio
of the number of successful paths to the total number of samples.
Sampling is performed by brute force (naïve), bridge (numerically
integrated), and the reflection approximation that was reweighted
in Eqs. (18)–(20). The error bars indicate the standard error in the
samples for successful paths N = 1000.

method can be used even in cases where the large barrier
assumption does not hold, as long as the reweighting proce-
dure is carried out. It should be noted that if the reweighting
method is not carried out, these statistics do not match well
with the brute-force results unless the barrier height is suffi-
ciently large.

B. 1D multiple barriers

In Fig. 7, we choose a PES with several potential energy
barriers (green), V (x) = 15x cos(x) sin(3x), with diffusion

constant D = 1
2 B2 = 1. We construct a bridge that conditions

the trajectories to reach xa = 8.97 before they reach xa =
1.31, by direct numerical integration (dotted orange) and the
reflection method (blue). Note that the derivative of V (x) is
the actual drift force when sampling trajectories; therefore,
we can arbitrarily add any constant to V (x) without altering
the system’s dynamics. In Fig. 7(b), the original PES is
removed and the bridge surfaces are shifted to overlap. In this
case, where the barriers are very large U0 ∼ O(10–100), the
reflection approximation lies almost entirely along the exact
bridge surface, confirming that the multibarrier approximation
is accurate. Trajectories sampled from these surfaces will
yield only such paths that reach xh before xa. However, there
is considerable variability in such trajectories. This is caused
by the presence of large internal potential energy barriers. As
such, there can be extended waiting times within the interior
wells before escaping to adjacent wells. This variability con-
tributes to a different sort of sampling inefficiency, which the
bridge surfaces generated via the time-homogeneous BFP are
not equipped to handle.

C. Schögl reaction example

In the last example, we show that Brownian bridges (BBs)
can act as a valuable tool to simulate chemical reaction sys-
tems. Consider the Schögl reaction system [30] defined by

A + 2X
k2−⇀↽−
k1

3X, B
k4−⇀↽−
k3

X, (22)

where A, B, and X are chemical species and the reaction rates
are k1 − k4. From the master equation that satisfies the above
reaction system, we can determine a chemical Langevin equa-
tion. Let pn(t ) = P {nX (t ) = n} be the probability of having
n molecules of species X at time t ; then the master equa-
tion governing the system is

d p0

dt
= μ1 p1 − λ0 p0, (23)

d pn

dt
= λn−1 pn−1 + μn+1 pn+1 − (λn + μn)pn,

FIG. 7. Potential energy surface (green) and equivalent bridge surfaces for paths that reach xh = 8.97 before reaching xa = 1.31 (two
minima of the surface). The exact bridge (orange) is calculated via numerical integration and the reflection approximation (blue) is calculated
using the reflection method outlined above. (a) Potential energy surface and the equivalent potential energy surfaces (exact and approximate)
for paths reaching one region before another. (b) The same bridge surfaces as in (a), shifted to overlap. Note how well the reflection method
approximates the bridge surface.
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FIG. 8. Stopping time and efficiency comparison of the Schögl reaction system (22). The unbiased, bridge, and reflection cases are
simulated under the continuum approximation using the Langevin equation (27), whereas the CME-discrete case is modeled by the chemical
master equation (23) and (24) using the Gillespie algorithm [32]. The bridge and reflection cases are simulated using the Langevin equation with
an additional drift force (3), the former using the exact hitting probability and the latter using an approximate hitting probability via the
reflection method. The samples are initiated at varying concentrations, x0 = xc + δx, about the central unstable state, xc = 1.204, conditional
on hitting xh = 0.094 before xa = 3.702. Solid lines indicate the mean stopping time and error bars indicate the standard error at each initial
concentration after simulating N = 1000 successful samples. The dotted lines indicate the sampling efficiency, i.e., the ratio of successful
samples to the total number of simulated samples.

n = 1, 2, . . . ,∞, (24)

where λn = k̂3nB + k̂1nAn(n − 1), μn = k̂4n + k̂2n(n −
1)(n − 2), and k̂i = k1/V m−1, where (nA, nB) are the number
of molecules of chemical species (A, B), respectively, and
m is the number of reactant molecules. In the continuum
limit V → ∞, the master equation can be approximated
by the chemical Langevin equation. The drift and diffusion
coefficients are determined via

d〈X 〉
dt

= k1ax2 − k2x3 + k3x − k4b, (25)

dσ 2(X )

dt
= d〈X 2〉

dt
− 2〈X 〉d〈X 〉

dt

= k1ax2 + k2x3 + k3x + k4b, (26)

which is calculated from the master equation [31]. Therefore,
the reaction system is approximated by

dx = (k1ax2 − k2x3 + k3x − k4b)dt

+
√

k1ax2 + k2x3 + k3x + k4b

V
dW, (27)

where x = X/V, a = A/V, b = B/V are concentrations. The
choice of parameters as k1 = 3, k1 = 0.6, k3 = 0.25, k4 =
2.95, a = b = 1, and V = 40 results in a chemical system
that contains three steady states, including an unstable state
at xc = 1.204 flanked by two stable states at xh = 0.094 and
xa = 3.702. The central unstable state acts as a potential en-
ergy barrier between the two stable states. We look at the paths
that reach the stable low-concentration steady state before the
stable high-concentration steady state, τxh < τxa .

In Fig. 8, the initial concentration is x0 = xc + δx, where
xc = 1.204 is the central unstable steady state and δx is the
displacement from the unstable state. We plot the average
stopping time Tf , conditioned for the case that paths hit the
leftmost stable state first, τxh < τxa , for (a) the discrete unbi-
ased case, given by Eqs. (23) and (24), solved via the Gillespie
algorithm [32], (b) the continuous unbiased case (27), and
(c)–(d) bridge cases (3), i.e., biasing using the exact bridge
solution and the approximate reflection scheme (modified to
take into account nonconstant diffusion). The standard re-
flection method overestimates the stopping time; however,
the importance sampling procedure again produces accurate
conditional statistics. Furthermore, we see that while the unbi-
ased (discrete and continuous) sampling efficiency decreases
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exponentially as x0 increases past xc (i.e., δx > 0), both the
bridge and reflection sampling methods retain near perfect
sampling efficiency. This validates the use of the bridge to
generate these conditional statistics for this chemical reaction
problem and, in fact, can easily be modified to follow more
general reaction schemes. Further, it shows that the simple re-
fection approximation can be used even within a nonconstant
diffusion problem.

V. SUMMARY

Paths that reach one region before another often arise in
chemistry and physics since the interesting dynamics of a
system often occurs during some sort of barrier crossing event.
The study of these types of paths is hindered by the fact that
they usually are rare events. There are many different methods
commonly used in the literature that circumvent this issue;
however, they are generally very sensitive to their user-defined
initial conditions. In this paper, we demonstrate that Brownian
bridges (BBs) can be used as an effective tool to generate
these paths and do not require any guesswork. Additionally,
often times other methods, such as string techniques, can
overlook valid barrier crossing pathways and reveal only the
minimum free energy path. In some cases, this may not be
a huge concern as the MFEP will dominate a majority of
these trajectories. When that is not the case, these methods
can completely overlook a lot of dynamics and result in
inaccurate property calculations. The bridge does not suffer
from this because it samples from the other pathways with the
same probability as the unbiased trajectories. In so doing, it
generates a path ensemble that is more faithful to the real
unbiased ensemble.

The main drawback of this methodology is that the con-
struction of the bridge requires the hitting probability, that

is, a solution to the backward Fokker-Planck (BFP) equation.
The BFP equation can be difficult to solve, especially on
high-dimensional and/or complex potential energy surfaces.
In order to ameliorate that difficulty, we derived two solution
methods. The first, which we call the reflection method, is
an approximation method that is extremely simple to apply
and yields an analytical representation of the solution. This
method is best for trajectories that cross large energy barriers
and we show that it converges to the hitting probability as
the barrier height becomes very large. Although this method
does not yield the perfect sampling efficiency that the exact
bridge does, it does show a drastic improvement in efficiency
compared to brute-force sampling, as well as an improve-
ment in its efficiency with increasing barrier height. We show
that the reflection method may also be used in conjunction
with importance sampling and still yield accurate conditional
statistics even for smaller barriers. This method is currently
restricted to 1D stochastic processes, but we intend to use the
insights the 1D method provides to attempt to generalize this
approximation technique to higher dimensions.

We have shown that these methods can accurately construct
Brownian bridges and can capture rare events, e.g., barrier
crossing events, much more effectively than traditional sam-
pling. They are also quite versatile, as they can be applied to a
wide variety of systems and accurately capture many types of
rare events. In the future, we would like to use these methods
to examine a wider range of chemical reaction problems.
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