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Unusual low-temperature behavior in the half-filled band of the one-dimensional
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Recently, a kind of finite-temperature pseudotransition was observed in several quasi-one-dimensional models.
In this work, we consider a genuine one-dimensional extended Hubbard model in the atomic limit, influenced by
an external magnetic field and with the arbitrary number of particles controlled by the chemical potential. The
one-dimensional extended Hubbard model in the atomic limit was initially studied in the seventies and has been
investigated over the past decades, but it still surprises us today with its fascinating properties. We rigorously
analyze its low-temperature behavior using the transfer matrix technique and provide accurate numerical results.
Our analysis confirms that there is an anomalous behavior in the half-filled band, specifically occurring between
the alternating pair (AP) and paramagnetic (PM) phases at zero temperature. Previous investigations did not
deeply identify this anomalous behavior, maybe due to the numerical simplicity of the model, but from an
analytical point of view this is not so easy to manipulate algebraically because one needs to solve an algebraic
cubic equation. In this study, we explore this behavior and clearly distinguish the pseudotransition, which could
easily be mistaken with a real phase transition. This anomalous behavior mimics features of both first- and
second-order phase transitions. However, due to its nature, we cannot expect a finite-temperature phase transition
in this model.

DOI: 10.1103/PhysRevE.110.024130

I. INTRODUCTION

Recent studies on various effective one-dimensional mod-
els with short-range interactions have revealed intriguing
thermal behaviors, resembling first- and second-order phase
transitions [1]. This peculiar behavior, to be called fur-
ther pseudotransition [1], is also dubbed ultranarrow phase
crossover [2,3], thermal pseudotransition [4], or curious
thermodynamics that resembles a phase transition [5]. Pseu-
dotransitions have been further analyzed in Ref. [6], focusing
on spin correlation functions. The simplest models where this
unusual behavior arises are in the Ising diamond chain [3,7,8].
Another similar decorated Ising chain discussed is the Ising
sawtooth-like chain model [8], along with two- and three-leg
Ising ladder models [2,9,10]. Pseudotransitions also appear in
other models, such as the Ising-Heisenberg diamond chain
[11,12] and the one-dimensional double-tetrahedral model
with alternating Ising spins and delocalized electrons [13].
Similar phenomena are observed in ladder models with Ising-
Heisenberg coupling [14] and triangular tube models [15],
highlighting a pattern of pseudotransition. Further investi-
gations [9,16,17] have shown some kind of universality of
power-law exponents, while still satisfying the Rushbrooke
inequality. All the above models are related to classical
and classical-quantum spin models; here by classical we
mean that the Hamiltonian does not contain noncommuting
terms. However, models of other natures, like the extended

Hubbard model in a diamond chain structure [18] and the
Potts model on a diamond chain structure, have also ex-
hibited this unusual behavior. On the other hand, exploring
pseudotransitions in genuine one-dimensional systems with-
out decoration couplings is rather interesting. In this sense, the
Zimm-Bragg-Potts model was recently explored and found to
exhibit this anomalous behavior [19].

On the other hand, the Hubbard model [20] stands as a
foundational model in the modern theory of strongly cor-
related electrons, playing a paradigmatic role in the study
of electronic correlations in quantum materials. This model
is particularly significant in contexts where interactions are
crucial. The Bethe ansatz method helps to understand this
model better, especially in figuring out how electrons be-
have in different conditions and how they interact with
each other [21]. The one-dimensional extended Hubbard
model is a simplified theoretical model that describes the
behavior of electrons in a one-dimensional chain, which ad-
ditionally includes nearest-neighbor interaction energy terms.
The nearest-neighbor interaction energy term describes the
Coulomb repulsion between electrons occupying neighbor-
ing sites. The one-dimensional extended Hubbard model has
been widely studied in the literature due to its relevance in
understanding the electronic properties of one-dimensional
materials such as carbon nanotubes and organic conduc-
tors [22]. It also serves as a simple prototype model for
studying strongly correlated electron systems [23]. On the
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other hand, several theoretical investigations have focused
on the extended Hubbard model in the one-dimensional
case. Numerous investigations regarding the half-filled ground
states of the extended Hubbard model have been conducted.
Tsuchiizu and Furusaki [24] revisited the ground-state phase
diagram of the one-dimensional half-filled extended Hub-
bard model, revealing different phases and transitions using
a renormalization-group approach. Glocke et al. [25] utilized
density-matrix renormalization group methods on transfer
matrices to study the thermodynamics of the one-dimensional
extended Hubbard model at half-filling. This highlights the
detection of phase transitions through standard thermody-
namic measures like isothermal compressibility and magnetic
susceptibility. The study identifies a unique phase with
long-range dimer order and delineates the phase diagram,
comparing it with quantum Monte Carlo studies [26,27].
The phase diagram and power-law exponents of the one-
dimensional U − V model at quarter-filling were identified
using exact diagonalization and various limit results, identify-
ing a transition from Luttinger liquid to charge density wave
insulator, noting dominant superconducting or spin density
wave fluctuations depending on the value of V [28]. Further
investigation was also performed in Ref. [29].

Recent experiments have successfully demonstrated the
realization of an extended fermionic Hubbard model using
a two-dimensional lattice composed of dopant-based quan-
tum dots. Quantum dots, often likened to artificial atoms,
can be accurately arranged into structures resembling ar-
tificial molecules and lattices. These arrangements offer
adjustable hopping amplitudes and interaction strengths, as
well as the ability to design specific point symmetries.
This advancement marks a significant step in the explo-
ration of complex quantum systems and could pave the
way for new insights into the behaviors of electronic sys-
tems [30]. Recent angle-resolved photoemission spectroscopy
(ARPES) studies on the one-dimensional extended Hubbard
model, employing bosonization and time-dependent calcu-
lations, reveal insights into electron-phonon coupling and
interactions in one-dimensional systems [31]. Earlier, Ep-
stein et al. [32] discussed the metal-insulator transition
of N-methyl phenazinium (NMP) tetracyanoquinodimethane
(TCNQ) based on the strongly correlated Hubbard model
(t � U ). A considerable number of theoretical studies of this
model have been undertaken, and many of its properties are
now well known. However, this simple model still surprises us
with unexpected features, which are the focus in the following
sections.

Although the simplest version of the extended Hubbard
model has been considerably studied and applied to various
physical systems, here we consider a typical one-dimensional
extended Hubbard model in the atomic limit (neglecting the
hopping term),

H =
N∑

i=1

[Uni,↑ni,↓ + V nini+1

− μ(ni,↑ + ni,↓) − h(ni,↑ − ni,↓)], (1)

where U is the on-site Coulomb interaction, V is the Coulomb
interaction between electrons on the neighboring sites, μ is the

chemical potential, and ni,σ is the corresponding number oper-
ator at site i, with spin σ = {↑,↓} and ni = ni,↑ + ni,↓. And,
the last term reports the contribution of external magnetic field
h. Despite its simplicity, the present model still astonishes
us by providing further interesting anomalous properties not
previously elucidated elsewhere, through careful analysis.

The present work is organized as follows: In Sec. II, we
give the thermodynamics of the one-dimensional extended
Hubbard model in the atomic limit, identifying each eigen-
value of the cubic root and determining which one is the
largest, a topic not previously elucidated. In Sec. III, we
analyze a peculiar property in the low-temperature region and
explore the anomalous behavior, along with the corresponding
region where the main properties undergo significant changes
at this anomalous temperature. This phenomenon is what we
refer to as the quasi-phase diagram [1]. In Sec. IV, we explore
additional physical quantities, reporting the influence of pseu-
dotransition. Finally, in Sec. V, we present our conclusions.

II. THERMODYNAMICS OF THE MODEL

In the 1970s, the thermodynamics of the one-dimensional
extended Hubbard model in the atomic limit garnered signif-
icant interest, with pioneering analyses by Bari [33], Beni
and Pincus [34], and Gallinar [35] employing the transfer
matrix approach. These studies examined specific heat, static
magnetic susceptibility, and density-density correlation func-
tions at various temperatures, particularly focusing on the
half-filled band and briefly on the quarter-filled band case
with infinite intra-atomic Coulomb repulsion. Later, Mancini
and Mancini [36,37] advanced this research using Green’s
function and equations of motion formalism, finding four dis-
tinct phases and diverse charge orderings at zero temperature.
Their work also considered the influence of external magnetic
fields [38] on thermodynamic properties like magnetization
and specific heat, identifying critical fields associated with
polarization levels.

A. Transfer matrix

In order to express the transfer matrix of the model, we
use the following natural basis {|0〉, |↑〉, |↓〉, |��〉}. The first
state corresponds to the vacuum state, the second state denotes
the spin-up state, the third state is the spin-down state, and the
fourth state corresponds to two spins with opposite spins on
the same site.

In principle, this model can be solved using the transfer
matrix technique [34,39], and the transfer matrix is given by

W =

⎡
⎢⎢⎢⎢⎣

1 yw0,1 y−1w0,1 w0,2

yw0,1 y2w1,1 w1,1 yw1,2

y−1w0,1 w1,1 y−2w1,1 y−1w1,2

w0,2 yw1,2 y−1w1,2 w2,2

⎤
⎥⎥⎥⎥⎦, (2)

where w0,1 = eβμ/2, w0,2 = eβ(μ−U/2), w1,1 = eβ(μ−V ),
w1,2 = eβ(3μ/2−2V −U/2), w2,2 = eβ(2μ−4V −U ), y = eβh/2, and β

is the inverse temperature, β = 1/(kBT ).
Certainly, we can proceed by calculating det(W − λ1) = 0

to obtain the eigenvalues of the transfer matrix, as was pre-
viously done by Beni and Pincus [34]. Alternatively, we can
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manipulate the transfer matrix for convenience, considering
the spin inversion symmetry, in order to simplify our pertur-
bative approach calculations later on. Thus, we can employ
a new set of basis vectors {|0〉, |�〉, |��〉, | ↔〉}, where |�〉 =
(y|↑〉 + y−1|↓〉)/

√
z corresponds to the symmetric state and

| ↔〉 = (y|↓〉 − y−1|↑〉)/
√

z denotes the antisymmetric state,
with z = y2 + y−2 = 2 cosh(βh). Note that these states are
invariant under simultaneous spin inversion and magnetic field
inversion. In this new basis, the transfer matrix (2) simply
becomes

W =

⎡
⎢⎢⎢⎢⎣

1 w0,1
√

z w0,2 0

w0,1
√

z w1,1z w1,2
√

z 0

w0,2 w1,2
√

z w2,2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ =

[
V 0

0 0

]
, (3)

where the matrix V, expressed in the basis {|0〉, |�〉, |��〉},
results in

V =

⎡
⎢⎣

1 w0,1
√

z w0,2

w0,1
√

z w1,1z w1,2
√

z

w0,2 w1,2
√

z w2,2

⎤
⎥⎦. (4)

Obviously, the eigenvalue corresponding to the state | ↔〉 is
null.

It is straightforward to diagonalize the transfer matrix
by solving the determinant equation det(V − λ1) = 0, which
leads to the following secular equation:

λ3 + a2λ
2 + a1λ + a0 = 0, (5)

where the coefficients result in

a0 =z
(
w2

1,2 + w2
0,2w1,1 + w2

0,1w2,2
)

− z(w1,1w2,2 − 2w0,2w0,1w1,2),

a1 =z
(
w1,1 + w1,1w2,2 − w2

0,1 − w2
1,2

) + w2,2 − w2
0,2,

a2 = − 1 − zw1,1 − w2,2. (6)

Therefore, the roots of the algebraic cubic Eq. (5) can be
expressed conveniently using trigonometric function, i.e.,

λ j = 2
√

Q cos

(
φ − 2π j

3

)
− 1

3
a2, j = 0, 1, 2, (7)

with

φ = arccos

(
R√
Q3

)
, (8)

Q = a2
2 − 3a1

9
, (9)

R = 9a1a2 − 27a0 − 2a3
2

54
. (10)

Note that it is sufficient to restrict the cubic equation solu-
tion without loss of generality to the interval of 0 < φ < π ;
thus, the eigenvalues are ordered as follows: λ0 > λ1 > λ2.
This criterion is discussed in more detail in Ref. [18]. To
analyze the characteristics of the eigenvalues in the interval
0 < φ < π , after some trigonometric manipulation, we have√

Q − a2

3
< λ0 < 2

√
Q − a2

3
. (11)

Obviously λ0 is definitely positive, because a2 < 0. Similarly,
for the second eigenvalue, we can express

−
√

Q − a2

3
< λ1 <

√
Q − a2

3
. (12)

In this case, λ1 can be positive or negative depending on the
Hamiltonian parameters. For the last eigenvalue, the corre-
sponding interval can be expressed as

−2
√

Q − a2

3
< λ2 < −

√
Q − a2

3
; (13)

similarly, λ2 can be positive or negative. Particularly to satisfy
λ2 < 0, the following condition must be met:

√
Q > − a2

3 ,
which implies that a1 < 0. It is noteworthy that for other
intervals, the arrangement of the cubic root solutions merely
exchanges; for details, see Table 2 of Ref. [18].

As said above, the fourth eigenvalue λ3 of the transfer
matrix (2) becomes null.

B. Thermodynamic quantities and correlators

To analyze thermodynamic quantities, we use the grand
partition function for a chain consisting of N sites

�(T, μ, h, N ) = λN
0 + λN

1 + λN
2 . (14)

Given the hierarchy of the eigenvalues (λ0 > λ1 > λ2), one
can determine the grand potential per site in the thermody-
namic limit N → ∞, which is solely dictated by the largest
eigenvalue of the transfer matrix

�(T, μ, h) = − kBT lim
N→∞

ln [�(T, μ, h, N )]

N

= − kBT ln λ0. (15)

Here, we introduce several useful thermodynamic quantities;
all these quantities will be quantified per site. The entropy
is calculated as S = − ∂�

∂T ; the enthalpy is given by E =
− ∂ ln(λ0 )

∂β
= kBT 2 ∂ ln(λ0 )

∂T ; analogously, we can obtain specific

heat at constant chemical potential C = T ∂S
∂T = ∂E

∂T [40]; the
magnetization can be expressed as M = − ∂�

∂h ; magnetic sus-
ceptibility χ = ∂M

∂h ; the electron density ρ is determined by
ρ = − ∂�

∂μ
; and the isothermal compressibility is derived from

κ = 1
ρ2

∂ρ

∂μ
.

It is also feasible to determine other quantities using ρ

and M, which can be expressed as ρ = 〈n↑〉 + 〈n↓〉 and M =
〈n↑〉 − 〈n↓〉, leading to the expressions

〈n↑〉 = ρ + M

2
and 〈n↓〉 = ρ − M

2
. (16)

Similarly, we can also obtain the following quantities:

〈n↑n↓〉 = ∂�

∂U
, 〈nini+1〉 = ∂�

∂V
, (17)

where we define

〈nini+1〉 ≡ 〈(ni,↑ + ni,↓)(ni+1,↑ + ni+1,↓)〉. (18)

Furthermore, for a transfer matrix with a nondegenerate
and positively defined spectrum, one can easily define the
correlation length ξ as the inverse logarithm of the ratio
of the largest and the second-largest eigenvalue. Although

024130-3



ONOFRE ROJAS et al. PHYSICAL REVIEW E 110, 024130 (2024)

our transfer matrix eigenvalues spectrum is nondegenerate,
some eigenvalues could become negative. Therefore, we need
to compare the magnitude of each eigenvalue. For instance,
focusing near the pseudotransition, the eigenvalues become
λ0 > 0 and, similarly, λ1 > 0 is also positive. Nevertheless,
λ2 < 0. However, in terms of magnitude, we cannot deter-
mine whether |λ1| or |λ2| is the second largest. Depending
on the Hamiltonian parameters, we may have |λ1| > |λ2| or
|λ1| < |λ2|. Therefore, for our case, we define the correlation
length [41,42] as follows:

ξ =
[

ln

(
λ0

max(|λ1|, |λ2|)
)]−1

. (19)

Note that max(|λ1|, |λ2|) has nothing to do with exchanging
cubic root solutions but depends solely on the Hamiltonian
parameters.

Evidently the correlation length ξ becomes more intricate
due to the competition between the magnitudes of the second-
largest eigenvalues. This complexity in ξ is more pronounced
near the point where the magnitudes of these eigenvalues
compete. Far from this point of competition, the behavior of ξ

could be more straightforwardly described.

III. PHASE DIAGRAMS

In what follows, we discuss the ground-state energy, focus-
ing on peculiar regions where anomalous behavior appears.
Then, we consider the low-temperature case to discuss quasi-
phase diagrams and define a peculiar temperature.

A. Zero-temperature phase diagram

In the absence of magnetic field h, the first ground state to
consider is the frustrated phase FR1,

|FR1〉 =
N/2⊗
j=1

|0, σ2 j〉 or
N/2⊗
j=1

|σ2 j, 0〉, (20)

with the respective ground-state energy

EFR1 = − h

2
− μ

2
. (21)

Note that the frustrated ground-state energy occurs just at
h = 0. For a non-null magnetic field, the state aligns with the
magnetic field, thereby becoming nonfrustrated. The electron
density for this phase is given by ρ = 1/2, commonly known
as the quarter-filled band. The residual entropy (per site) of
this phase is expressed as S = kB ln(2)/2.

Another phase is the frustrated phase FR2 given by

|FR2〉 =
N⊗

j=1

|�〉,

= 1
√

zN

N⊗
j=1

(y|↑〉 + y−1|↓〉). (22)

The ground-state energy for this phase is

EFR2 =V − h − μ. (23)

Here again, the frustrated ground-state energy occurs only
when h = 0. However, when h = 0, the state gradually aligns
with the magnetic field, losing its frustration. The residual
entropy of this phase is S = kB ln(2), and the particle density
is ρ = 1 (half occupancy).

At a half-filling band or electron density ρ = 1, we observe
the alternation pair phase AP

|AP〉 =
N/2⊗
j=1

|0, ��〉 or
N/2⊗
j=1

|��, 0〉. (24)

The corresponding ground-state energy is

EAP =U

2
− μ. (25)

Notably, the AP phase has no residual entropy and can be
identified as a charge-density wave (CDW) [25].

The third frustrated phase FR3, with an electron density of
ρ = 3/2, in the absence of a magnetic field, is described as

|FR3〉 =
N/2⊗
j=1

|��, σ2 j〉 or
N/2⊗
j=1

|σ2 j, ��〉. (26)

The ground-state energy for this phase is

EFR3 =U

2
+ 2V − h

2
− 3μ

2
. (27)

Again, the ground state is frustrated at h = 0, whereas for h =
0 the system loses its frustration. For h = 0, the corresponding
residual entropy leads to S = kB ln(2)/2.

Lastly, in the fully filled phase FF, the ground state results
in

|FF〉 =
N⊗

j=1

|��〉. (28)

The corresponding ground-state energy is

EFF = U − 4V − 2μ. (29)

The electron density in this phase is ρ = 2, and there is no
residual entropy.

It is important to note that in all the aforementioned states,
the magnetization obviously becomes M = 0 at h = 0. Fur-
thermore, including a magnetic field h into the phase diagrams
generally results in properties similar to those observed in the
absence of a magnetic field (not illustrated). The main dis-
tinction is that the regions previously identified as frustrated
(FR) become unfrustrated in the presence of a magnetic field.
An equivalent analysis was earlier performed by Mancini and
Mancini [37,38], offering a different perspective on the phase
diagram. For example, in the FR1 (quarter-filled) and FR3

(three-quarter-filled) regions, under a sufficiently strong mag-
netic field, the spin arrangements align parallel to the external
magnetic field. In contrast, the FR2 phase, characterized by
one particle per site with randomly oriented spins, begins to
show alignment under the influence of a magnetic field. As
the magnetic field strength increases, the spins start aligning
with the external field, transitioning into a fully polarized or
paramagnetic phase PM.

For a clearer illustration, we present in Fig. 1 the phase
diagram in the h/U − μ/U plane for fixed V = 0.55. Black
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FIG. 1. Phase diagram in the μ/U − h/U plane, with solid lines,
describes the zero-temperature phase diagram for the fixed V =
0.55. Meanwhile, the background color density plot corresponds to
electron density (left) and magnetization (right), assuming the low
temperature T = 0.03.

solid lines describe the zero-temperature phase diagram, while
the red solid line delineates an unusual phase boundary where
anomalous behavior emerges. In the same plot, we also incor-
porate a color density plot corresponding to electron density ρ

(left) and magnetization M (right) in the low-temperature re-
gion T = 0.03. In the left panel, we observe a phase transition
between alternating pair (AP) and paramagnetic (PM) phases
in the half-filled region, where a constant density is clearly
visible. In contrast, we note a distinct change in magnetization
from M = 0 in the AP phase to M = 1 in the PM phase. The
half-filling band region will be our focus from now on.

Table I presents the behavior of the phase boundaries.
The second column lists the magnetic field h at each phase
boundary, and the fourth column details the residual entropy
at the different boundaries. Typically, at the interface between
two phases, the residual entropy is higher than in the adjacent
phases. However, in Table I, the phase boundary between FR2

and AP exhibits an unusual behavior: The residual boundary
entropy does not exceed the residual entropy of FR2 [43]. This
anomaly leads to unexpected behavior at finite temperatures,
as discussed in Sec. III B.

The phase diagram in the U − V plane, assuming a zero
magnetic field and considering a suitable chemical potential
(μ = 1.58) to enhance the anomalous behavior at a half-filled
band, is illustrated in Fig. 2. This phase diagram features a
fully filled band phase FF, an alternating pair phase AP, and

TABLE I. The second column provides zero-temperature phase
boundary conditions, the third column gives the chemical potential at
the phase boundary, while the fourth column reports the associated
residual boundary entropy. Note that for the FR2 − AP there is no
dependence on μ according to the second column, and therefore the
corresponding row in the third column is empty.

Boundary h μ S/kB

FF − FR3 μ − U − 2V h + U + 2V ln(2)
FR3 − AP 4V − μ 4V − h ln(3)/2
FR3 − FR2 μ − U − 4V h + U + 4V ln(1 + √

3)
FR2 − AP V − U

2 ln(2)
FR1 − AP μ − U μ + U ln(3)/2
FR1 − FR2 2V − μ 2V − h ln(1 + √

3)

FIG. 2. Phase diagram in the U − V plane under the assumption
of zero magnetic field and μ = 1.58. The solid line represents the
phase diagram at zero temperature, while the background density
plot illustrates the entropy at T = 0.01.

three frustrated phases. The first frustrated phase FR1 corre-
sponds to a quarter-filled band of electrons, with spins that can
point either up or down, an electron density of ρ = 1/2, and
a residual entropy of S = kB ln(2)/2. In the half-filled region,
there is another frustrated phase FR2 with one electron per site
and spins that can also randomly point up or down, having a
residual entropy of S = kB ln(2). The third frustrated phase
FR3 corresponds to a 3/4-filled band of electrons or a quarter-
filled band of holes, with an electron density of ρ = 3/2 and a
residual entropy of S = kB ln(2)/2. Additionally, the diagram
shows a fully filled band of electrons. All these curves can be
obtained from Table I, second column, assuming h = 0. Solid
lines delineate standard phase boundaries, while the dashed
line indicates an anomalous boundary between two half-filled
regions.

B. Anomalous behavior in low-temperature
region and quasi-phase diagram

In our exhaustive analysis, we explore a unique prop-
erty emerging in the low-temperature region, a phenomenon
not extensively observed or detailed in previous studies
[33–35,37,38]. Remarkably, our findings reveal intriguing
phenomena within such a simplistic model.

The background of Fig. 2 presents a density plot of entropy
in the V − U plane at a low temperature (T = 0.01). Our
focus is on the zero-temperature boundary between the FR2

phase and the AP phase. Given the absence of true phase
transitions, with only crossover lines occurring at finite tem-
peratures, we refer to the zero-temperature phases at finite
temperatures as quasi-phases. In this low-temperature region,
these phases are termed the quasi-frustrated qFR2 region and
the quasi-alternating pair qAP region or quasi-CDW region,
where the arrangement of most spins remains similar to their
configurations at zero temperature.

Another perspective of the background density plot il-
lustrating the entropy, as depicted in Fig. 2, can be seen
in Fig. 3 for fixed values of U = 1 and μ = 1.58, plotted
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FIG. 3. Entropy as a function of V for several values of low
temperatures, assuming fixed U = 1 and μ = 1.58.

against V . Here, it is evident how residual entropy influences
thermal entropy. The peaks at V ≈ 0.145 and V ≈ 0.29 cor-
respond to the standard interphases between FF − FR3 [with
S = kB ln(2)] and FR3 − FR2 [with S = kB ln(1 + √

3)], re-
spectively. However, in the interphase between FR2 − AP
occurring at V = 0.5, no peaks are observed, indicating
anomalous behavior. Here, residual entropy leads to S =
kB ln(2).

Further evidence of this anomaly is explored in Fig. 4.
Figure 4(a) presents the entropy (S) as a function of temper-
ature (T ) for several values of the external magnetic field, as
indicated within the panel. Here, one can clearly observe a
swift change in entropy at a specific low-temperature region.
Similarly, in Fig. 4(b), we illustrate the magnetization (M)
as a function of temperature (T ); the colored curves refer to
the same set of parameters as in Fig. 4(a). Once again, we
observe that the magnetization for all sets of parameters is
essentially null up to a certain temperature, where an unusual

FIG. 4. (a) Entropy against T for several values of magnetic
fields, assuming U = 1 and V = 0.56. (b) Magnetization as a func-
tion of T . (c) Specific heat as a function of T . (d) Magnetic
susceptibility as a function of T . All curves correspond to the legend
given in (a).
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FIG. 5. Quasi-phase diagram depicting the half-filled band in the
h/U − T/U plane, with fixed parameters V/U = 0.54 and μ/U =
1.58. The dashed curve delineates the peculiar temperature Tp. (a and
b) Density plots of magnetization and entropy, respectively.

feature arises, followed by a rapid change in magnetization.
Almost full polarization is achieved above the anomalous
temperature with increasing magnetic fields. For moderately
high temperatures, standard thermal magnetization governs.
Another quantity we examine is the specific heat as a function
of temperature under the same conditions as in Fig. 4(a).
Here, one can clearly observe very sharp peaks, with the
sharpness increasing at lower temperatures, akin to a second-
order phase transition, although it is merely a sharp peak with
no divergence. The magnetic susceptibility as a function of
temperature is depicted in Fig. 4(d), where we also observe a
very sharp peak at a certain temperature. Although it mimics
a second-order phase transition, there is no divergence that
would indicate a genuine phase transition. Therefore, we will
refer to these anomalous peaks as a “false” phase transition or
pseudotransition at a finite temperature.

In exploring another intriguing aspect of the low-
temperature region, Fig. 5(a) presents a density plot of
magnetization M in the h/U − T/U plane, assuming V/U =
0.54 and μ/U = 1.58. Here, the dashed line represents the
peculiar temperature Tp. Below a magnetic field of h/U =
0.04 at sufficiently low temperatures, the system resides in
a quasi alternating-pair qAP region, characterized by par-
ticles predominantly arranged in alternating pairs. As the
magnetic field increases within this low-temperature regime,
the system goes swiftly into a quasi-paramagnetic qPM re-
gion, where most spins, one per site, align parallel to the
magnetic field. Conversely, at very weak magnetic fields and
increasing temperatures, the FR2 frustrated system leads into
a quasi-frustrated qFR2 region. The boundary between qFR2
and qPM is marked by a standard crossover, or as visualized
in the magnetization plot, a diffuse boundary, appearing as
a fuzzy region. In Fig. 5(a), one can observe the magne-
tization shift between qAP and qPM regions, although the
boundary between qAP and qFR2 remains indistinct due to
null magnetization in both regions. Similarly, Fig. 5(b) dis-
plays the entropy S , using the same parameters as Fig. 5(a).
Here, the crossover boundary, denoted by a dashed line, out-
lines the peculiar temperature as a function of magnetic field.
In contrast, Fig. 5(b) shows that the boundary between qAP
and qPM becomes indistinguishable with almost null entropy,
while the boundary between qAP and qFR2 is sharply defined.
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This distinction is due to the residual entropy of FR2 being
S = kB ln(2). However, at temperatures above T > 0.06, the
entropy significantly increases, becoming clearly larger than
S � 0.7kB.

C. Peculiar temperature condition

This detailed analysis further explores the interesting be-
havior in the low-temperature region of the model. Previously,
the peculiar temperature was defined for models where the
free energy involved a simple square root expression [1,6,16].
Defining the peculiar temperature generally poses a challenge,
as the only available indicator is an anomalous behavior in
the low-temperature region, marked by significant changes in
entropy and magnetization, along with sharp peaks in cor-
relation length, specific heat, and magnetic susceptibility. At
very low temperatures, these peaks occur at roughly the same
temperature. However, as the anomalous behavior shifts to
higher temperatures Tp, these peaks appear at slightly different
temperatures for each quantity, complicating the definition of
the peculiar temperature.

An interesting observation is that this anomalous behavior
is evident in fundamental quantities such as the ratio between
the second-largest and the largest eigenvalues. To analyze
this more deeply, consider the temperature and magnetic field
dependence of the eigenvalues. At a fixed magnetic field h1,
there exists a special temperature, the peculiar temperature Tp,
which satisfies the relation

∂

∂T

(
λ1(T, h1)

λ0(T, h1)

)∣∣∣∣
Tp

= 0. (30)

A similar analysis can be conducted by taking deriva-
tives with respect to the magnetic field of the ratio of the
second-largest to the largest eigenvalues, assuming a fixed
temperature Tp∗ :

∂

∂h

(
λ1

(
Tp∗ , h

)
λ0

(
Tp∗ , h

)
)∣∣∣∣∣

h1

= 0. (31)

Comparing Tp∗ and Tp, we observe that this quantity becomes
slightly different as the temperature increases.

In order to explore further properties of the eigenvalues
given in (7), let us define λ̂ j (T, h) = λ jeε0(h)/kBT , where ε0(h)
represents the ground-state energy. This formulation, as dis-
cussed in Ref. [44], primarily aims to handle the ground-state
energy explicitly, thereby circumventing the issue of dealing
with extremely large numbers. Thus, Fig. 6(a) depicts the
three eigenvalues λ̂ j as functions of temperature, under the
conditions of a null magnetic field, μ = 1.58, U = 1, and
V = 0.55. Below the temperature T1, λ̂2 approaches −λ̂0,
whereas above T1, λ̂2 approaches −λ̂1 but quickly diverges
due to thermal fluctuations.

Following this, we introduce the function

g(T, h) = λ̂0(T, h) + λ̂1(T, h) + 2λ̂2(T, h). (32)

This function, g(T, h), can yield either positive or negative
values. Therefore, the condition

g(T1, h1) = 0 (33)

FIG. 6. (a) Cubic root solutions λ̂ j as a function of temperature,
under the condition of a null magnetic field (h = 0), with fixed values
of chemical potential (μ = 1.58), on-site interaction strength (U =
1), and nearest-neighbor interaction strength (V = 0.55). (b) Plot of
g(T, 0) against temperature T , using the same parameter set as in (a).

for a fixed h1 leads to the identification of a specific tem-
perature, T1. This approach provides a practical method for
examining the temperature-dependent behavior of the system
under study.

Figure 6(b) illustrates the function g(T, h) as it varies with
temperature, under the conditions of a null magnetic field,
μ = 1.58, U = 1, and V = 0.55. In this representation, one
can observe that the function g(T, h) passes through zero at
a specific temperature, denoted as T1. This provides a clear
visual indication of the peculiar point in the behavior of the
system.

Alternatively, the condition (33) can be simplified through
some algebraic manipulation, even in more general cases and
with generic coefficients of a cubic polynomial as outlined in
(5). This leads to a simple yet interesting result:

2ã3
2 + ã1ã2 + ã0 = 0, (34)

where ã j is defined as a j (T1, h1).
Furthermore, we can use the expressions defined in (6)

within the context provided by (34) to obtain, after some
algebraic manipulation, the following condition:

z2w2
1,1 + 3zw1,1 − w2

0,2 + 2 = 0. (35)

Given that zw1,1 ∼ w0,2 � 1, the dominant terms are z2w2
1,1

and w2
0,2, while linear term 3zw1,1 and 2 become negligible

and are thus omitted for simplification. Consequently, the
above expression reduces simply to

w1,1z − w0,2 = 0. (36)

Furthermore, by employing a perturbative approach, as
elaborated in the Appendix and illustrated through Eqs. (A3)
and (A4) for the unperturbed result, we reaffirm the condition
of the equation derived earlier, simplifying our findings into
this coherent expression.

In regions of low temperature, Tp ≈ Tp∗ ≈ T1, which are
very close to each other. When this occurs, we can observe
anomalous behavior, and we simply define it as the peculiar
temperature Tp.

For the present model the condition (36) provides a
sufficiently accurate condition for determining the peculiar
temperature, where Tp ≈ T1 holds. Specifically, the peculiar
temperature for a fixed magnetic field h1 can be represented
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FIG. 7. Plot of T1 (thin black line), Tp∗ (thick green line), and
Tp (thin red line) as functions of h. The curves are obtained under
the assumption of fixed parameters μ = 1.58, U = 1, and varying V
values: V = 0.54 (inner curve), V = 0.56 (middle curve), and V =
0.58 (outer curve).

using the results w0,2 = eβ(μ−U/2), w1,1 = eβ(μ−V ), and z =
2 cosh(βh), leading to the condition

2 cosh(β1h1) = eβ1(V −U/2). (37)

Assuming h1 > 0 and at very low temperatures, we deduce
that h1 = V − U

2 . Under these conditions, a pseudotransition
is observed at low temperatures.

Eventually, to refine our previous result, we can apply
a first-order perturbation approximation with respect to the
non-half-filled contribution, as detailed in the Appendix. By
using the results given in Eqs. (A9) and (A10), we arrive at
the modified condition:

w1,1z − w0,2 + 3
2 (1 + w2,2) = 0. (38)

Moreover, further corrections can be applied up to a second-
order approximation, as detailed in the Appendix.

In Fig. 7, the temperatures T1 (represented by a thin black
line), Tp∗ (depicted by a thick green line), and Tp (illustrated
with a thin red line) are shown as functions of h, under fixed
parameters μ = 1.58, U = 1, and varying V values: 0.54 (in-
ner curve), 0.56 (middle curve), and 0.58 (outer curve). For the
inner curve, T1, Tp∗ , and Tp are visually almost overlapping.
However, as we observe the middle curve, the discrepancy
between T1 ≈ Tp∗ and Tp becomes more pronounced at higher
temperatures. This discrepancy is even more significant for
the outer curve. Based on this discrepancy, we can conclude
that the peculiar transition is marked for temperatures below
Tp � 0.06, where all curves overlap (when T1 ≈ Tp∗ and Tp

start to diverge). A practical approach to observe the pecu-
liar temperature at higher temperatures is to consider when
�Tp = Tp − Tp∗ → 0. This is because when �Tp becomes
significant, it becomes less meaningful to refer to it as a
peculiar temperature.

FIG. 8. (a) Enthalpy plotted against T/Tp for various Tp values
and magnetic fields as specified in Table II, assuming U = 1 and V =
0.56. (b) Entropy shown as a function of T/Tp. (c) Magnetization
represented as a function of T/Tp. (d) Electron density depicted as a
function of T/Tp.

IV. FURTHER PHYSICAL QUANTITIES

Overall, physical quantities such as magnetic susceptibility
or specific heat play fundamental roles in thermodynamics,
which are essential for understanding the behavior of the
Hubbard model. Therefore, we explore these physical quan-
tities, focusing particularly on the anomalous properties they
exhibit.

To provide a clearer depiction of this anomaly, we divide
the temperature T by the peculiar temperature Tp listed in
Table II, where the anomaly manifests. Thus, in Fig. 8(a),
the enthalpy E is presented as a function of temperature
normalized by the peculiar temperature (T/Tp) for various
fixed magnetic fields, as described within the panel. For each
fixed magnetic field, a corresponding peculiar temperature Tp

is given in Table II. At a magnetic field of h = 0.0599, the
enthalpy E remains almost constant, but there is a notice-
able “jump” at T/Tp = 1. This indicates a change from the
quasi-alternating pair qAP region to a one-electron-per-site re-
gion (almost polarized region) or simply a quasi-paramagnetic
qPM region. As the external magnetic field decreases, this
sharp boundary becomes more gradual, although the “jump”
in enthalpy becomes larger. Similarly, in Fig. 8(b), the en-
tropy is observed under the same conditions as in Fig. 8(a),
highlighting these features. Notably, for a magnetic field
h � 0.06, the boundary between qAP and qPM regions be-
comes more distinct. As h approaches 0.06, this characteristic
resembles a first-order or discontinuous phase transition, de-
spite the absence of actual discontinuity. Figure 8(c) depicts
the magnetization M as a function of T/Tp. This allows for the
corroboration of the spin orientation in the qAP region, where
the magnetization is nearly null, while in the qPM region,
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TABLE II. Peculiar temperature for μ = 1.58, U = 1, and V = 0.56. The second column is computed using Eq. (30), the third column
utilizes Eq. (31), and the fourth column is determined by employing Eq. (33).

h Tp Tp∗ T1

0.020 0.078 915 101 328 2 0.083 114 911 512 3 0.083 131 646 791 6
0.040 0.068 880 694 156 8 0.071 119 937 000 0 0.071 127 747 147 2
0.050 0.058 243 509 164 6 0.059 124 204 425 5 0.059 126 704 736 3
0.055 0.048 934 257 149 1 0.049 208 072 655 5 0.049 208 072 655 5
0.058 0.039 245 973 681 2 0.039 291 366 939 7 0.039 291 439 519 89
0.059 0.033 681 108 445 7 0.033 691 484 433 1 0.033 691 496 636 55
0.0599 0.022 185 975 836 5 0.022 186 033 413 4 0.022 186 033 431 18

the magnetization is almost saturated. This feature is more
pronounced at weaker magnetic fields, becoming smoother as
the magnetic field decreases. Finally, Fig. 8(d) illustrates the
electron density ρ as a function of T/Tp, using the same set
of magnetic fields considered in Fig. 8(a). Here, it is observed
that the electron density remains almost constant ρ ≈ 1 (but
always smaller than 1, ρ < 1) for temperatures T/Tp < 1, cor-
responding to a half-filled band. At T/Tp = 1, there is a small
but distinct depression in electron density, which is sharper
and more pronounced at higher magnetic fields. As expected,
for lower magnetic fields, the electron density decreases with
increasing temperature.

In Fig. 9(a), the correlation length ξ is illustrated as a func-
tion of T/Tp for a fixed external magnetic field, as specified
inside the panel. It is important to note that for each fixed mag-
netic field, there is a corresponding peculiar temperature Tp, as
listed in Table II. The correlation length ξ [defined in Sec. II B,
Eq. (19), and represented by solid lines] demonstrates a

FIG. 9. (a) Correlation length plotted against T/Tp, with Tp val-
ues provided in Table II, assuming U = 1 and V = 0.56. Dashed
lines describe the function 1/ ln(λ0/λ1). (b) Specific heat variation
with T/Tp. (c) Magnetic susceptibility vs T/Tp. (d) Isothermal elec-
tron compressibility as a function of T/Tp.

decreasing function with an inflection point around T/Tp =
1. As the magnetic field decreases, the inflection curvature
vanishes. Contrary to what has been previously reported in
the literature [1,16,18,43,44], ξ does not show the typical
peak observed around the pseudotransition [1,16,18,43,44].
However, the function 1/ ln(λ0/λ1) (depicted by dashed lines)
exhibits a sharp peak as it approaches h = 0.06 at T/Tp = 1.
The peak of this function mimics a typical peak of ξ around
the pseudotransition found in Refs. [1,16,18,43,44], indicative
of a swift change between qAP and qPM regions. However,
as the magnetic field is decreased, this sharp peak becomes
more gradual. Similarly, Fig. 9(b) also illustrates the spe-
cific heat C as a function of T/Tp, using the same set of
magnetic fields. Here, we can observe a sharp peak, akin to
that seen in a second-order phase transition, although there
is no actual divergence. Furthermore, Fig. 9(c) displays the
magnetic susceptibility plotted against T/Tp, clearly showing
the sharp peak at T/Tp = 1, which mimics a second-order
phase transition. Finally, Fig. 9(d) demonstrates the behavior
of isothermal compressibility κ . As h approaches 0.06, κ

diminishes, indicating that the system becomes less compress-
ible under these conditions. Conversely, for smaller magnetic
fields, κ increases, suggesting that the system is more easily
compressible. At relatively low magnetic fields, κ exhibits a
minor peak with a maximum at T/Tp = 1, though this peak
becomes less pronounced with lower magnetic fields.

It is worth mentioning that such a quantity as the entropy
always tends to increase as T grows, in accordance with the
second law of thermodynamics, which indicates the thermal
stability of the system. Similarly, the positivity of specific heat
and isothermal compressibility around anomalous behavior
also serves as an indicator of stability.

In Fig. 10(a), the spin-up electron density 〈n↑〉 is illustrated
as a function of temperature T/Tp for several weak magnetic
fields. Notably, in the half-filled band condition, it is clear
how the spin-up averages are organized: For T/Tp < 1, the
spin-up average alternates, given by 〈n↑〉 ≈ 0.5, with the re-
maining spins arranged as spin-down. For T/Tp > 1, most
spins are upwardly arranged. The higher the magnetic field
(but h < 0.6), the stronger the curvature change at T/Tp = 1.
Similarly, in Fig. 10(b), the spin-down electron density 〈n↓〉
is reported as a function of temperature T/Tp, for the same set
of magnetic fields as in Fig. 10(a). Here, for T/Tp < 1, almost
half of the spins are arranged with spin-down on average,
while the remaining are spin-up, as illustrated in Fig. 10(a). In
contrast, for T/Tp > 1, there are nearly no spin-up electrons,
as most spins align with the external magnetic field. Another
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FIG. 10. (a) Electron density for spin-up 〈n↑〉 as a function of
temperature T/Tp across various weak magnetic fields, assuming
U = 1 and V = 0.56. (b) Electron density for spin-down 〈n↓〉 as a
function of temperature T/Tp, corresponding to the magnetic fields
used in (a). (c) On-site average 〈n↑n↓〉 as a function of temperature
T/Tp, assuming the magnetic field values from (a). (d) On-site cor-
relation function c(n↑, n↓) as a function of temperature T/Tp for the
same set of parameters as in (a).

interesting quantity is the on-site electron average 〈n↑n↓〉 as
a function of temperature T/Tp, assuming the same magnetic
field values as in Fig. 10(a). This confirms the electron ar-
rangement in the low-temperature region: For T/Tp < 1, the
average leads to 〈n↑n↓〉 ≈ 0.5, indicating that most spins are
arranged in pairs alternating with empty sites. For T/Tp > 1,
〈n↑n↓〉 → 0, as most spins are parallel and aligned with the
external magnetic field. For a very weak magnetic field, the
curvature change is evident, and it diminishes as the magnetic
field increases. Similarly, in Fig. 10(d), the correlation func-
tion c(n↑, n↓) = 〈n↑n↓〉 − 〈n↑〉〈n↓〉 is depicted as a function
of temperature T/Tp, again for the same set of parameters as in
Fig. 10(a). For T/Tp < 1, the correlation function is roughly
c(n↑, n↓) = 0.25, while for T/Tp > 1, it becomes negative, as
〈n↑n↓〉 ≈ 0, 〈n↑〉 ≈ 0.5, and 〈n↓〉 ≈ 0.5, leading to a negative
correlation function of approximately −0.25.

V. CONCLUSION

Our study has provided a comprehensive re-examination of
the one-dimensional extended Hubbard model in the atomic
limit, a subject initially explored in the 1970s. This result not
only confirms previous outcomes of the model but also reveals
other insights, especially the occurrence of finite-temperature
pseudotransitions in specific quasi-one-dimensional models.

Initially, our analysis focused on delineating the zero-
temperature phase diagram at zero magnetic field. Here, we
identified three distinct types of frustrated phases, enrich-
ing our understanding of the intricate phase structure within
the model. This phase characterization was facilitated by
the employment of the transfer matrix technique, followed
by precise numerical analyses, which unveiled anomalous
behaviors within the half-filled band of the model. These

behaviors are particularly pronounced in the low-temperature
regime, especially during the gradual shift between AP and
PM phases. The subtlety of these anomalous behaviors was
possibly overlooked in earlier studies due to the deceptively
simple numerical facade of the model, but from an alge-
braic perspective, requiring the solution of an algebraic cubic
equation introduces a level of slightly more elaborate manip-
ulation, revealing the intricate nature of the model.

Further investigations explored the low-temperature pseu-
dophase transitions at the half-filling band, where the
aforementioned anomalous behavior is predominantly ob-
served. We observed that close to this anomalous region, a
pseudotransition emerges that exhibits characteristics remi-
niscent of both first- and second-order phase transitions. This
pseudotransition is particularly fascinating, as it mimics the
intricacies of real phase transitions, adding a layer of so-
phistication to our understanding of the model. Moreover,
our exploration extended to diverse properties such as elec-
tron density, on-site correlations, and nearest-site electron
averages. In examining these quantities, we discerned the
underlying reasons for the occurrence of pseudotransitions,
thereby deepening our grasp of the model behavior. The in-
trinsic nature of the model, defined by its nearest-neighbor
interaction, precludes the occurrence of real phase transitions
at finite temperatures, thereby accentuating the distinctive
properties and behaviors inherent to the model within a low-
dimensional system and underscoring its peculiarity.

The property we have explored may not necessarily be
exclusive to one-dimensional models; however, uncovering
this anomalous residual boundary entropy could become a
challenging task in higher-dimensional systems.
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APPENDIX: TRANSFER MATRIX AROUND
PSEUDOTRANSITION

The phenomenon of pseudotransition arises near the AP
and PM phases. Although the solution of (7) is exact and
analytic, the analytical expression for finding the peculiar tem-
perature becomes a cumbersome task due to involving cubic
root expression. An alternative approach to determine this
condition is to split the transfer matrix into two terms, namely,
V = V0 + ςV1. Here, V0 represents the core structure matrix,
whose matrix elements just include the half-filled case, while
ςV1 describes a small perturbation applied to the matrix,
corresponding to the non-half-filled band. The detailed for-
mulations of these matrices are provided as follows:

V0 =
⎡
⎣ 0 0 w0,2

0 w1,1z 0
w0,2 0 0

⎤
⎦ (A1)
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and

V1 =
⎡
⎣ 1 w0,1

√
z 0

w0,1
√

z 0 w1,2
√

z
0 w1,2

√
z w2,2

⎤
⎦, (A2)

respectively. In this context, ς acts as a small formal parame-
ter that, for our purposes, is set to 1 to measure how the system
deviates from the half-filled-band limit. This approach allows
us to analyze the effects of slight perturbations on the system
by examining the changes introduced by V1 in relation to the
original matrix V0.

Therefore, diagonalizing V0, we have the following eigen-
values:

v
(0)
0 =w1,1z, (A3)

v
(0)
1 =w0,2, (A4)

v
(0)
2 = − w0,2. (A5)

From this solution one can clearly verify that v
(0)
1 > v

(0)
2 ;

however, we cannot affirm any condition between v
(0)
0 and

v
(0)
1 , since there is no restriction, so one can establish the

condition v
(0)
1 = v

(0)
0 ; this would be essential to find the pecu-

liar temperature, as discussed in Sec. III C. The corresponding
eigenvectors can be expressed by∣∣u(0)

0

〉 =|�〉, (A6)

∣∣u(0)
1

〉 = 1√
2

(|0〉 + |��〉), (A7)

∣∣u(0)
2

〉 = 1√
2

(−|0〉 + |��〉). (A8)

Now let us improve our previous result, thus the first-order
correction on the transfer matrix eigenvalues can be obtained
perturbatively, resulting in

v
(1)
0 = 0, (A9)

v
(1)
1 = 1

2 (1 + w2,2), (A10)

v
(1)
2 = 1

2 (1 + w2,2). (A11)

Here, evidently we have the condition v
(1)
0 < v

(1)
1 = v

(1)
2 , be-

cause w2,2 > 0.
Similarly, the second-order corrections of eigenvalues be-

come

v
(2)
0 = z(w0,1 + w1,2)2

2[w1,1z − w0,2]
+ z(w0,1 − w1,2)2

2[w1,1z + w0,2]
, (A12)

v
(2)
1 =1

8

(w2,2 − 1)2

w0,2
− z(w0,1 + w1,2)2

2[w1,1z − w0,2]
, (A13)

v
(2)
2 = − 1

8

(w2,2 − 1)2

w0,2
− z(w0,1 − w1,2)2

2[w1,1z + w0,2]
. (A14)

It is evident that u(2)
1 > u(2)

2 and u(2)
2 < 0.

Therefore, the corresponding eigenvalues up to order
O(ς3) are given approximately as follows:

λ j = v
(0)
j + ςv

(1)
j + ς2v

(2)
j + O(ς3). (A15)

It is evident that the eigenvalues up to second-order correc-
tion indicate that λ1 > λ2. However, we cannot affirm just
by looking at the perturbative eigenvalues which eigenvalue
is the largest, λ0 or λ1, although we have confirmed at the
end of Sec. II A that λ0 must be the largest one. Nevertheless,
our perturbative result could be useful to find the condition
of peculiar temperature up to second-order approximation.
Therefore, by using the condition given in (33) we can find
the following relation:

w1,1z − w0,2 + 3(1 + w2,2)

2
− 1

8

(w2,2 − 1)2

w0,2

− z(w0,1 − w1,2)2

2[w1,1z + w0,2]
= 0. (A16)

This result would be relevant when we look for a more accu-
rate value of the peculiar temperature.
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