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Exact work distribution and Jarzynski’s equality of a relativistic particle in an expanding piston
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We study the nonequilibrium work in a pedagogical model of relativistic ideal gas. We obtain the exact work
distribution and verify Jarzynski’s equality. In the nonrelativistic limit, our results recover the nonrelativistic
results of Lua and Grosberg [J. Phys. Chem. B 109, 6805 (2005)]. We also find that, unlike the nonrelativistic
case, the work distribution no longer has zeros and the number of collisions in this relativistic gas model is
finite. In addition, based on an analysis of the experimental parameters, we conclude that it is difficult to detect
the relativistic effects of the work distribution of the ideal gas in a piston system with the current experimental
techniques.
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I. INTRODUCTION

Jarzynski’s equality (JE) [1] is one of the most elegant
results in the field of nonequilibrium statistical physics. While
it is a direct result from Liouville’s theorem and is supposed
to hold in arbitrary Hamiltonian systems including relativistic
systems, the work distribution of a relativistic system under
an arbitrary work protocol has not been explored so far. In this
article we study the work distribution of a simple relativistic
model consisting of only a one-dimensional cylinder, a piston,
and relativistic ideal gas. Previous work on this model has
been done and the JE verified, but in a very limited range of
parameters [2] such that the collision only happens no more
than once for all particles. Moreover, we still lack detailed
information of the work distribution of the system giving rise
to various fluctuation theorems, which plays a fundamental
role in nonequilibrium statistical physics. A Newtonian ap-
proximation of our model [3], however, has yielded analytic
results for both the JE and the work distribution, suggest-
ing the solvability in the relativistic regime. Relevant to the
nonrelativistic ideal gas in a piston, the nonequilibrium work
distribution of quantum gas in an expanding piston [4,5] has
been studied and the JE verified. It is desirable to extend those
studies to the relativistic regime. In this article we analytically
compute the work distribution and verify the JE in this simple
setup. Our model can be viewed as a relativistic generalization
of the one in Ref. [3] and recovers it in the low-speed and
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low-temperature limit. Such a toy model would be helpful for
understanding more complicated and more realistic systems’
behavior under relativistic conditions. As we will see in this
paper, although the work distribution changes drastically in
the extreme relativistic regime, the equality itself is indepen-
dent of the microscopic dynamics. In the following, we will
study the nonequilibrium work distribution of relativistic gas
in an expanding piston. The results can serve as a pedagogical
example and provide intuitive insights into the robustness of
the JE. Also, we will show that it is difficult to detect the
relativistic effect of the work distribution with the current
experimental techniques.

The article is organized as follows. In Sec. II we analyti-
cally calculate the work distribution of a relativistic particle in
an expanding piston system and verify the JE. In the nonrela-
tivistic limit, we recover the results in Ref. [3]. In Sec. III we
discuss the main results and summarize our work.

II. RELATIVISTIC PISTON MODEL

The model we consider here is nothing more than some
ideal gas consisting of N molecules inside a one-dimensional
cylinder. Suppose initially the length of the vessel is L and the
gas is initially at the inverse temperature β, where β = 1/kBT ,
with kB the Boltzmann constant and T the temperature. We
now expand the piston outward at the speed vp and stop it
after a time interval τ .

Under the assumption that the gas is ideal, all particles
contribute to both the work Wτ done by the system up to time τ

and the difference between the final and the initial free energy
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�F independently. Consequently, the JE can be rewritten as

(〈eW1/kBT 〉)N = (e−�F1/kBT )N , (1)

where W1 and �F1 denote the work and the change of the free
energy per particle, respectively. We can now see that for the
ideal gas, the single-particle quantities W1 and �F1 also satisfy
the JE. Thus, we limit our ideal gas to just a single particle,
and from now on we omit the subscript 1 for the discussion of
the single-particle quantities.

A. Trajectory of a single particle

To calculate the trajectory work as a function of the initial
state, we must first determine the trajectory of a single par-
ticle. Let us denote the velocity of the particle after the nth
collision with the moving piston by vn. Following the moving
of a particle, we find out that after the (n + 1)th collision with
the moving piston, the speed of the particle is reduced to

vn+1 =
(
c2 + v2

p

)
vn − 2vpc2

c2 + v2
p − 2vpvn

. (2)

This result can be derived simply by performing Lorentz
transformation twice, noting that the piston is an inertial
reference frame during the whole process and the collisions
are elastic collisions. When vn, vp � c, vn+1 = (vn − 2vP +
vnv

2
p/c2)/(1 + v2

p/c2 − 2vnvp/c2) ≈ vn − 2vp, which is the
result in the nonrelativistic limit. The solution to the recur-
rence relation of the particle’s speed vn after the nth collision
can also be derived as

vn = (c + v)α2n
p − c + v

(c + v)α2n
p + c − v

c, (3)

where v is the initial speed of the particle and αp is a parameter
pertaining to the velocity vp of the moving piston,

αp = c − vp

c + vp
. (4)

Another thing we must figure out is the time tn when the
nth collision with the moving piston takes place. We have the
recurrence relation

tn+1 = 2L + (vp + vn)tn
vn − vp

, (5)

from which we can derive the expression of tn,

tn = 2L

vn−1 − vp

⎛
⎝1 +

n−1∑
i=2

n−1∏
j=i

v j + vp

v j−1 − vp

⎞
⎠

+
⎛
⎝n−1∏

j=1

v j + vp

v j−1 − vp

⎞
⎠ (L ± x)

vn−1 − vp
. (6)

Here x denotes the initial position of the particle. The sign of
x is positive if the initial velocity is towards the moving piston
and negative if the initial velocity is away from the moving
piston. So from now on we simply extend the range of x from
[0, L] to [−L, L] to remove the negative sign (for details, see
Appendix A). With the expression of vn, the product of a

sequence can be simplified as

n∏
j=1

v j + vp

v j−1 − vp
= 2αn

p

(
1 + α2n

p + (− 1 + α2n
p

)v
c

)
. (7)

Finally, we have

tn =
((− α2n

p − αp + αn+1
p + αn

p

)v
c

+ (− αn+1
p + αn

p

) x

L
+ (

αp − α2n
p

))

×
(

− αp + α2n
p + (

αp + α2n
p

)v
c

)−1 L(1 + αp)

c(1 − αp)
, (8)

which is the time of the nth collision between the particle and
the moving piston.

The speed of the particle cannot be larger than c. Therefore,
during a finite period τ , n cannot take an arbitrarily large
number and the nth collision is guaranteed if and only if both

tn � τ, vn−1 > vp (9)

are fulfilled.
The first requirement ensures that the collision happens

before the ending time τ and the second that the particle
can catch up with the moving piston. The particles with the
initial velocity v → c and initial position x = L undergo the
maximum number of collisions. With these conditions and
letting tn � τ in Eq. (8), we find the maximum number of
collisions

n � N =
[
− log

(
1 + vpτ

L

)
log αp

]
+ 1, (10)

where [· · · ] denotes the integer part of · · · . Having obtained
the number of collisions of every trajectory, we are able to
calculate the trajectory work which is a functional of the tra-
jectory and can be determined by the difference of the initial
and the final energy of the system.

B. Direct verification of Jarzynski’s equality
in the expanding relativistic piston model

Jarzynski’s equality, as a result of Liouville’s theorem,
should be directly generalized to any Hamiltonian systems. In
Appendix B we give a proof of the JE in a relativistic system.
It is worth emphasizing that the model we consider here is
not characterized by a time-dependent Hamiltonian, but by a
parametrized boundary condition [6]. Thus the proof of the JE
in Appendix B is inapplicable to the expanding rigid piston
system. Still, we can demonstrate that the JE is valid in the
expanding rigid piston system. In order to do so, we focus on
the Jacobian determinant between the initial and the final state
and show it to be unity.

Unlike the case of the low-speed limit, where the initial
state satisfies the classical Maxwellian distribution, now the
initial state distribution (Maxwell-Jüttner distribution [7]) at
the temperature T = 1/kBβ is

f (x, p) = 1

2K1
(

mc2

kBT

)
mcL

e−(mc2/kBT )
√

1+(p/mc)2
, (11)
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where K1 is the modified Bessel function of the second kind,
(x, p) are the initial position and the initial momentum, and
m is the static mass of the particle. This distribution can also
be expressed in the position-velocity space, with the initial
velocity denoted by v, as

F (x, v) = 1

2K1
(

mc2

kBT

)
cL

e−(mc2/kBT )(1−v2/c2 )−1/2

(
1 − v2

c2

)−3/2

.

(12)

The exponential work can be averaged over the initial distri-
bution

〈eW/kBT 〉 =
∫ L

0 dx
∫∞
−∞ dp e−(mc2/kBT )

√
1+(p/mc)2

eWτ /kBT

2K1
(

mc2

kBT

)
mcL

.

(13)

Here Wτ can be uniquely determined by the initial state (x, p).
What can be easily derived from our analysis is that a

particle with an initial momentum p can hit the moving piston
for n times and its momentum diminishes to

pn = mvn√
1 − (

vn
c

)2
. (14)

It is clear to see that the initial state (x, p) turns into the final
state

(xτ , pτ ) = (|L − vnτ + (vn + vp)tn|, pn) (15)

at time τ . With Eqs. (3), (8), and (14), the Jacobian determi-
nant can be directly computed from Eq. (15) (for details, see
Appendix C), ∣∣∣∣∂ (pτ , xτ )

∂ (p, x)

∣∣∣∣ = 1, (16)

and thus the JE can be verified in this expanding piston model.

C. Distribution of work

There are three dimensionless parameters in our model:
βmc2, L/cτ , and vp/c. Therefore, it is convenient to set m =
c = kB = L = 1, leaving only vp, τ , and β as free parameters.

Using the probability distribution (12), we can evaluate the
distribution of work W ,

P(W ) =
∫ 1

−1
dx
∫ 1

0
dv

e−β/
√

1−v2
δ(W − Wτ (x, v))

2K1(β )(1 − v2)3/2
, (17)

where Wτ = 1/
√

1 − v2 − 1/
√

1 − v2
n is the work done by

the particles that have experienced n collisions. After some
tedious calculations (see Appendix D for details), the distri-
bution function of W can be analytically expressed as

P(W ) = P0δ(W ) + 1

2K1(β )

N∑
n=1

ϕn(vn(W ))

× e−β/
√

1−vn (W )2(
α−n

p − 1
)[

1 + αn
p − vn(W )

(
1 − αn

p

)] . (18)

Here the overlap factor ϕn(v) is a trapezoid-shaped function

ϕn(v) =

⎧⎪⎪⎨
⎪⎪⎩

1 − ξn(v), Xn−1
Tn

< vn(W ) � Xn+1
Tn

2, Xn+1
Tn

< vn(W ) � Xn+1−1
Tn+1

1 + ξn+1(v), Xn+1−1
Tn+1

< vn(W ) � Xn+1+1
Tn+1

,

(19)

where vn as an inverse function of Wτ can be expressed as

vn(W ) =
(
1 − αn

p

)3(
1 + αn

p

)+ 4W
√

α3n
p

[(
1 − αn

p

)2 + αn
pW

2
]

(
1 − α2n

p

)2 + 4α2n
p W 2

(20)

and

ξn(v) = −Tnv + Xn, (21)

with

Tn = α−(n−1)
p − 1 − αp + αn

p

1 − αp
+ α−(n−1)

p + αn
p

1 + αp
τ, (22)

Xn = α−(n−1)
p − αn

p

1 − αp
+ α−(n−1)

p − αn
p

1 + αp
τ. (23)

Here ξn(v) is a function of v and denotes the initial position
of the particles that happen to collide with the moving piston
exactly n times within time τ with the initial velocity v. For
a pictorial explanation, see Appendix D. Note that ξn(v) is a
linear function of v. This is not as obvious as in the nonrela-
tivistic regime. For an intuitive explanation, see Appendix A.

Just like the case in Newtonian mechanics, we expect the
work distribution to have a Dirac δ peak at W = 0. Its ampli-
tude can be simply evaluated as

P0 =
∫ 1

0
dv

ϕ0(v)e−β/
√

1−v2

2K1(β )(1 − v2)3/2
, (24)

where the overlap function ϕ0(v) is piecewise linear. It can be
evaluated analytically, although it is quite involved.

D. Nonrelativistic limit

In the nonrelativistic limit, we expect our results to recover
those in Ref. [3]. Here it is convenient to restore the speed
of light c, and the nonrelativistic limit thus corresponds to c
approaching infinity.

To restore c one needs to do some dimensional analysis.
With the presence of c, the dimensions of the relevant physi-
cal quantities are [W ] = T−2, [vn(W )] = T−1, [P(W )] = T2,
[β] = T2, [τ ] = T, and [c] = T−1, where T denotes the di-
mension of time. We see that to restore c one only needs
to make the substitutions W 	→ W/c2, vn(W ) 	→ vn(W )/c,
β 	→ βc2, and P(W ) 	→ P(W )c2. We then have

P(W ) = P0δ(W/c2)

c2
+ 1

2K1(βc2)c2

N∑
n=1

ϕn

(
vn(W/c2)

c

)

× e−(βc2 )/
√

1−vn (W/c2 )2/c2(
α−n

p − 1
)[

1 + αn
p − vn(W/c2)

(
1 − αn

p

)
/c
] .

(25)
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We will deal with the exponential part in Eq. (18) sep-
arately. For now we can expand the rest part of the work
distribution except the exponential and the normalization con-
stant at c around infinity. We have

1 − ξn[vn(W/c2)/c](
α−n

p − 1
)[

1 + αn
p − vn(W/c2)

(
1 − αn

p

)
/c
]

= − (n − 1)c

2nvp
− (n − 1)cτ

4n
+ cτW

8n2v2
p

+ O(1), (26)

2(
α−n

p − 1
)[

1 + αn
p − vn(W/c2)

(
1 − αn

p

)
/c
]

= c

2nvp
+ O(1), (27)

and

1 + ξn+1[vn(W/c2)/c](
α−n

p − 1
)[

1 + αn
p − vn(W/c2)

(
1 − αn

p

)
/c
]

= (n + 1)c

2nvp
+ (n + 1)cτ

4n
− cτW

8n2v2
p

+ O(1) (28)

as all pieces of the trapezoid-shaped function ϕn.
The exponential term in Eq. (18), together with the normal-

ization constant K1(β ), needs to be treated with extra care. We

start by taking the limit c → ∞ of the exponential

− βc2√
1 − vn(W/c2)2/c2

= −βc2 − β

2

(
W

2nvp
+ nvp

)2

+ O(c−2), (29)

where a temperature-dependent constant e−βc2
appears as the

leading term. The limit of c → ∞ also affects the constant
factors, yielding

e−βc2

K1(βc2)
≈
√

2β

π
c, (30)

which is exactly the Maxwellian normalization constant mul-
tiplied by c. Multiplying all pieces together, we see that the c
dependence cancels, which agrees with the physical intuition
that the low-speed physics is independent of the speed of
light.

To conclude, we are able to recover the nonrelativistic re-
sults in Ref. [3] (τ = 1 is chosen in accordance with Ref. [3]),

P(W ) =
√

β√
2πnvp

e−(β/2)(W/2nvp+nvp)2
f (W ), (31)

with

f (W ) =

⎧⎪⎪⎨
⎪⎪⎩

−(n − 1)
(
1 + vp

2

)+ W
4nvp

, (n − 1)(vp + 2) < W
2nvp

� (n − 1)(vp + 2) + 2

1, (n − 1)(vp + 2) + 2 < W
2nvp

� (n − 1)(vp + 2) + 2 + 2vp

(n + 1)
(
1 + vp

2

)− W
4nvp

, (n − 1)(vp + 2) + 2 + 2vp < W
2nvp

� (n + 1)(vp + 2)

(32)

as a low-speed limit.
In Figs. 1(a)–1(c) we plot the work distributions of the ex-

panding relativistic piston model and its nonrelativistic limit.
The deviations of the relativistic results from the nonrelativis-
tic ones with different choices of parameters are shown. One
can see that, as expected, the relativistic results deviate more
prominently from the nonrelativistic results at high tempera-
ture and fast speed.

E. Limit of a fast-moving piston

We already know that in Newtonian mechanics, at a very
large vp, the validity of the JE relies on the far tails of the
Maxwellian distribution [3]. It is thus intriguing to also think
of this problem in special relativity, where every speed has the
speed of light c as its upper bound. The main obstacle to the
application of the JE is that to measure the average of expo-
nential work, one must repeat the experiment a certain number
of times. The exponent makes sure that the contribution of the
tail of the distribution, while its probability goes to zero, is
nonvanishing [8]. Specifically in our model, when the speed of
the moving piston approaches the speed of light, the fraction
of particles that can collide with the piston approaches 0. In

such a case an experiment with nonzero work is of probability

P(W > 0) =
∫ 1

vp

dv
ϕ1(v)e−β/

√
1−v2

2K1(β )(1 − v2)3/2
. (33)

The expectation value of the exponential work is

〈eβW 〉 = P0eβ·0 +
∫ 1

vp

dv
ϕ1(v)e−β/

√
1−v2

2K1(β )(1 − v2)3/2
eβW . (34)

The first term is approximately equal to 1 [P(W > 0) � 1 and
P0 ≈ 1]. From the value of exp(−β�F ) = 1 + vpτ , one can
expect that, although the probability P(W > 0) is vanishingly
small, the contribution of the second term is nonzero. This re-
sult can be demonstrated transparently in the low-temperature
limit. Noticing that

e−β(1−v2 )−1/2
eβW = e−βHλ(0) eβ(Hλ(0)−Hλ(τ ) )

= e−βHλ(τ )

= e−β(1−v2
1 )−1/2

, (35)
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FIG. 1. Relativistic and nonrelativistic work distribution with
different parameters. We use hydrogen atoms as an example and
suppose that the length of the cylinder is L = 1 cm (which is much
larger than the thermal length of the atoms). The parameters are
chosen to be (a) τ = 0.3 ns, vp = 3 × 107 m/s, T = 3 × 1012 K,
and β = 3; (b) τ = 3 ns, vp = 3 × 106 m/s, T = 1 × 1012 K, and
β = 10; and (c) τ = 30 ns, vp = 3 × 105 m/s, T = 3 × 1011 K, and
β = 33.

with v1 derived from Eq. (3), the particles with small v1

after one collision contribute the most to the exponen-
tial work. When v1 = 0, the corresponding initial velocity
is 2vp/(1 + v2

p).

When β → ∞, e−β[1−v2
1 (v)]−1/2 ≈ e−β[1+v2

1 (v)/2], and this
term becomes a Gaussian peak, which is a δ distribution

around v = 2vp/(1 + v2
p),

e−β[1−v2
1 (v)]−1/2 ≈ e−βe−(β/2)v2

1 (v)

≈ e−β

√
2π

β
δ(v1(v))

= e−β

√
2π

β

⎡
⎣1 −

(
2vp

1 + v2
p

)2
⎤
⎦δ

(
v − 2vp

1 + v2
p

)
.

(36)

Together with Eqs. (30) and (19), the second term in Eq. (34)
becomes

∫ 1

vp

dv
e−β

√
2π
β

[
1 − ( 2vp

1+v2
p

)2]
δ
(
v − 2vp

1+v2
p

)
2e−β

√
π
2β

ϕ1(v)

(1 − v2)3/2

=
⎡
⎣1 −

(
2vp

1 + v2
p

)2
⎤
⎦

−1/2

ϕ1

(
2vp

1 + v2
p

)

= vpτ. (37)

This result demonstrates that when the piston moves at a
very large vp, particles with high initial velocities around
2vp/(1 + v2

p) contribute most significantly to the exponential
work even though the probability is extremely small. Note
that in Newtonian mechanics particles with initial velocities
around 2vp contribute most significantly to the exponential
work [4,8], even though the probability is extremely small.
It can be seen that the results of the relativistic piston model
recover those of the nonrelativistic piston model, as expected.

III. CONCLUSION

Let us look further into the main results we have obtained.
We see that, as a consequence of the relativistic energy-
velocity relation, the trapezoid-shaped work distribution no
longer has a series of zeros.1 Moreover, the number of peaks
becomes finite because the speed of light places an upper
bound on all speeds. The apparent paradox of the fast-moving
piston in Ref. [3] can be reformulated as when the piston is
moving at the speed of light instead of infinity. No particle
would be able to catch up with the piston and the average
exponential work is unity whereas the free energy change is
nonzero. We would like to point out that although lightlike
world lines exist, we cannot make it stop before and after the
moving time period, because such a world-line configuration
would violate causality. The best we can do is to take the
limiting process of letting the speed of the piston approach
the speed of light. Then the order of limit becomes crucial,
as we have to integrate out the work W to infinity and then

1In fact, in the nonrelativistic regime, vn(W ) and vn+1(W ) never
overlap, that is, there is only one collision number n corresponding
to a particular value of W . However, with the relativistic energy-
velocity relation, a single value W may correspond to different
collision numbers.
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take the speed limit [4]. This limiting procedure ensures the
validity of the JE.

In order to observe a distinct deviation of the relativistic
work distribution from its nonrelativistic limit, the speed of
the piston should be large enough and the temperature of the
ideal gas should be extremely high. Taking hydrogen atoms
as an example, to observe the features of the relativistic work
distribution, the piston should be as fast as about 3 × 106 m/s
and the temperature of the atoms should be about 1012 K.
When the speed of the piston is about 3 × 105 m/s (faster than
the Parker Solar Probe, which is the fastest object human ever
built) and the temperature of the atoms is 1011 K (104 times
hotter than the central temperature of the sun), the deviation of
the relativistic work distribution from the nonrelativistic result
becomes barely detectable. Even in such a circumstance, the
boundary condition is still difficult to realize. Because the
energy scale of the kinetic energy of the atoms is much larger
than the energy scale of the chemical bond, the boundary
cannot be built by any materials we have already discovered.
Based on these facts, we conclude that it is difficult to detect
the relativistic effects of the work distribution of ideal gas in
a piston system with the current experimental techniques.

In summary, we have studied a simple model of a piston
and ideal gas in the framework of the special theory of relativ-
ity. We obtained an analytical result of the work distribution
(18) and verified the JE. Using our result, it was possible to
see the deviation of relativistic work distribution (18) from
the nonrelativistic one (31) [3]. In principle, these relativistic
corrections become non-negligible in the high-temperature
and fast-speed limit. However, the range of parameters where
relativistic effects are observable would already be far beyond
the current experimental techniques. Our results show that the
JE holds true in a wide range of systems with generality and
serve the pedagogical purpose.
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APPENDIX A: COVARIANT DESCRIPTION
OF THE TRAJECTORY

In Eq. (6) we extended the range of the initial position x
from [0, L] to [−L, L] in order to remove the negative sign
related to the direction of v. We also notice that in Eq. (21),
when tn happens to be τ , the critical initial position and the
initial velocity satisfy a linear relation. Here we introduce a
coordinate transformation method to describe the trajectory
of a particle, which will provide pictorial intuition of the two
facts.

To begin with, let us consider the collision between the
particle and the fixed boundary. In the reference frame of the
fixed boundary (which is the same as the laboratory frame),
the coordinate frame consists of an x axis and a t axis, and the
world line of the moving piston is l [see Fig. 2(a)]. We could
draw an auxiliary world line of the moving piston, named l ′.
The auxiliary world line l ′ and the real world line l are mirror
symmetric about the t axis. The world line of the particle

FIG. 2. Transformation of a world line. For details see the text in
Appendix A.

is a polyline I-A-B. Point I denotes the initial condition of
the particle, point A denotes the collision event between the
particle and the fixed boundary, and point B denotes the next
collision event between the particle and the moving piston.
Transformation of the particle’s world line works as follows.
The auxiliary event of event B is point B′. Points B and B′ are
mirror symmetric about the t axis. The auxiliary world line
of the particle is I-A-B′. The real world line’s AB part and
the auxiliary world line’s AB′ part are also mirror symmetric
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about the t axis. As a result of such a transformation, the
auxiliary world line I-A-B′ of the particle is a straight line,
which eliminates the world line’s direction change during a
collision. Meanwhile, in the frame of the fixed boundary, the
auxiliary collision event B′ has the same time coordinate as
event B. Therefore, we could use an auxiliary event to evaluate
the time when a real collision takes place.

We may also map the initial condition I (x,−v) to an
auxiliary initial condition I ′(−x, v), which is the same as the
treatment for Eq. (6). The real motion is that a particle starts
from the initial position I with a positive initial position x but
a negative initial velocity −v (the particle moves away from
the moving piston) and then the particle collides with the fixed
boundary at event A. Meanwhile, the auxiliary motion is that
a particle starts from I ′ with a positive initial velocity v but
a negative initial position −x. The auxiliary particle passes
through the fixed boundary at event A without any collision.
After event A, both the particle and the auxiliary particle move
towards the moving piston and finally collide with the piston
at the same event B. The rest trajectories are equivalent for
both the particle with the initial condition (x,−v) and the aux-
iliary particle with the initial condition (−x, v). Because there
is no work done during the collision event A, it is convenient
to extend the range of x from [0, L] to [−L, L] while limiting
the range of v from [−c, c] to [0, c] in the calculation of the
work distribution.

After explaining the treatment in Eq. (6), we now continue
to the understanding of Eq. (21). Similar to the mirror-
symmetric operation in the laboratory reference frame, we
could deal with the collision between the particle and the
moving piston by carrying out a mirror-symmetric operation
in the reference frame of the piston. After a Lorentz trans-
formation back to the laboratory reference frame, the result
is shown in Fig. 2(b). Points I , A, and B denote the initial
state of the particle, a collision between the particle and the
moving piston, and the next collision between the particle and
the fixed boundary. Point B′ is the auxiliary event of B. Just
like the case in Fig. 2(a), in the reference frame of the moving
piston, the auxiliary world line of the particle is a straight line.
Therefore, after a Lorentz transformation, the auxiliary world
line of the particle is still a straight line I-A-B′. The auxiliary
world line of the fixed boundary is denoted by t ′. The velocity
of t ′ is 2vp/(1 + v2

p), according to the Lorentz transformation.
The intercept of the line t ′ can be determined as follows. The
world line of the fixed boundary and moving piston intersect
at point R with space and time coordinate (0,−L/vp). In the
reference frame of the moving piston, the auxiliary world line
of the fixed boundary and the moving piston intersect at the
same point R. Therefore, in the laboratory reference frame,
the auxiliary world line of the fixed boundary t ′ also passes
through R, and the intercept of t ′ must be −L/vp.

The mirror-symmetric operation transforms not only the
world lines, but also the coordinate frames. In the reference
frame of the fixed boundary, the t axis is the world line of the
boundary itself. After a coordinate transformation related to a
collision with the moving piston, the auxiliary world line of
the fixed boundary represents the auxiliary t ′ axis. The auxil-
iary x′ axis should be orthogonal to the t ′ axis, and the origin
of coordinates (point O) should be transformed accordingly:
The x axis and l intersect at P0 and thus the x′ axis also passes

FIG. 3. Transformation of the coordinate frame and the complete
world line. For details, see the text in Appendix A.

through P0 [see Fig. 3(a)]. The intersection of the auxiliary x′
axis and the t ′ axis is the auxiliary origin O′. If we denote the
time coordinate of event B in the coordinate frame xOt by tB
and the time coordinate of event B′ in the coordinate frame
x′O′t ′ by t ′

B′ , then, as a result of such coordinate transforma-
tion, t ′

B′ = tB. The method that we evaluate the time coordinate
of a real event with the help of an auxiliary event is still valid
when dealing with the collision with the moving piston.

By performing the coordinate transformation repeatedly,
we could figure out the complete auxiliary world line of
the particle and every auxiliary coordinate frame. The pos-
sible space-time region is S0 = {(x, t ) | 0 � t � τ, 0 � x �
L + vpt}, and the auxiliary regions can be determined ac-
cordingly: Each gray line segment represents ti = 0 or ti = τ ,
where ti is the time coordinate of an auxiliary event in the ith
auxiliary coordinate frame. In Fig. 3(b), regions between gray
line segments are possible auxiliary regions. The red dot C
represents the event that a particle happens to collide exactly
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i + 1 times when t = τ . The position and time coordinate of C
in the initial coordinate frame xOt is denoted by (xC, tC ). Ev-
ery auxiliary world line IC with the initial condition I (xI , vI )
that passes through C satisfies the critical condition

xI = xC − vI tC, (A1)

which is the same as Eq. (21) when n = i + 1. Such world
lines lie between the two orange dashed lines L−C and L+C,
where L− and L+ denote the particles with the initial positions
−L and L, respectively. It is clear that the initial positions
and velocities of auxiliary world lines satisfy a linear relation
if every world line passes through a fixed point C, which
explains the pictorial intuition mentioned above.

APPENDIX B: JARZYNSKI’S EQUALITY UNDER THE
FRAMEWORK OF RELATIVISTIC MECHANICS

The original proof of the JE was based mainly on the clas-
sical Hamilton mechanics and its corollary, i.e., Liouville’s
theorem [1]. In this Appendix we extend the proof to the
framework of relativistic mechanics. We take the space-time
dimension to be 1 + 1 to suit our model. Note that the gener-
alization to higher space-time dimensions is straightforward.
The manifestly covariant dynamics for a particle of the static
mass m can be formulated as

f μ = m
duμ

dζ
, (B1)

where f μ, uμ, and ζ denote the 2-force, 2-velocity, and proper
time, respectively. To be clear, we fix our frame of reference
to the laboratory frame, where the relativistic dynamics can be
expressed more conveniently in the form of a 1-vector,

−∂V

∂q
= d

dt

(
mu√

1 − u2/c2

)
, (B2)

where V denotes the potential, c is the speed of light, and q,
u, and t are the position, velocity, and time, respectively, mea-
sured in the laboratory frame. With this form of dynamics, we
can easily construct the Hamiltonian of a system of N particles
of mass m1, m2, . . . , mN . Furthermore, we let the Hamiltonian
be controlled by an external agent via the parameter λ = λ(t )
of the potential Vλ. The Hamiltonian reads

Hλ =
N∑

i=1

√
m2

i c4 + p2
i c2 + Vλ(q1, q2, . . . , qN ), (B3)

where qi is the position of the ith particle and pi its conjugate
momentum. The canonical equations are

dqi

dt
= ∂Hλ

∂ pi
= pic2√

m2
i c4 + p2

i c2
, (B4)

dpi

dt
= −∂Hλ

∂qi
= −∂Vλ

∂qi
, (B5)

which is exactly the relativistic velocity-momentum relation
that reproduces Eq. (B2).

As long as the canonical equations are formulated, one
can easily generalize Liouville’s theorem to relativistic regime
[9]. The theorem states that the Jacobian determinant of the
canonical coordinates (pi,t , qi,t ) at time t as functions of the
initial canonical coordinates (pi,0, qi,0) at time 0 is

∣∣∣∣ ∂ (pi,t , qi,t )

∂ (pi,0, qi,0)

∣∣∣∣ = 1. (B6)

The initial equilibrium state of the inverse temper-
ature β is determined by a probability distribution
ρ(pi,0, qi,0) = exp[−βH (pi,0, qi,0)]/Z0, with Z0 = ∫

dpi,0

dqi,0 exp[−βHλ(0)(pi,0, qi,0)] the initial partition function.
We saw in Sec. II B that for ideal gas the distribution is
the so-called Maxwell-Jüttner distribution [7]. The proof of
the JE follows by calculating the expectation value of the
exponential work exp[W (pi, qi, τ )] done by the system along
the trajectory up to time τ . By definition we have

W (pi,0, qi,0, τ ) = Hλ(0)(pi,0, qi,0) − Hλ(τ )(pi,τ , qi,τ ). (B7)

Note that our definition is different from the usual one by a
minus sign. So

〈eβW 〉 =
∫

dpi,0dqi,0 ρ(pi,0, qi,0)eβW (pi,0,qi,0,τ )

= 1

Z0

∫
dpi,0dqi,0 e−βHλ(τ ) (pi,τ ,qi,τ )

= 1

Z0

∫
dpi,τ dqi,τ e−βHλ(τ ) (pi,τ ,qi,τ )

= Zτ

Z0
, (B8)

where Liouville’s theorem is used for the third equality and
Zτ denotes the final equilibrium state partition function. The
partition functions can be expressed in the form of free energy
(see, for example, [10]), resulting in

〈eβW 〉 = e−β(Fτ −F0 ), (B9)

where Fτ and F0 are the free energies of the equilibrium states
corresponding to λ(τ ) and λ(0). Thus, we demonstrate the va-
lidity of the JE under the framework of relativistic mechanics.

APPENDIX C: DERIVATION OF LIOUVILLE’S THEOREM
IN THE RELATIVISTIC PISTON MODEL

Here we explain the derivation of Eq. (16) from Eq. (15).
The Jacobian determinant is∣∣∣∣∂ (pτ , xτ )

∂ (p, x)

∣∣∣∣ =
∣∣∣∣∂xτ

∂x

∂ pτ

∂ p
− ∂xτ

∂ p

∂ pτ

∂x

∣∣∣∣
=
∣∣∣∣∂xτ

∂x

∂ pτ

∂ p
− ∂xτ

∂ p
0

∣∣∣∣
= (vn + vp)

∂tn
∂x

dpn

dp
,

(C1)
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where

dpn

dp
= dpn

dvn

dvn

dv

(
dp

dv

)−1

=
(

1 − v2

c2

1 − v2
n

c2

)3/2
4α2n

p c2[
c − v + α2n

p (c + v)
]2

= α−n
p

[
c − v + α2n

p (c + v)
]

2c
. (C2)

Noting that vp = (1 − αp)c/(1 + αp), we finally get∣∣∣∣∂ (pτ , xτ )

∂ (p, x)

∣∣∣∣ =
(

vn + 1 − αp

1 + αp
c

)
∂tn
∂x

× α−n
p

[
c − v + α2n

p (c + v)
]

2c

= 2
[
(c + v)α2n

p − αp(c − v)
]

(αp + 1)
[
(c + v)α2n

p + c − v
]

× (1 + αp)
(
αn

p − αn+1
p

)
c

(1 − αp)
[
(c + v)α2n

p − (c − v)αp
]

× α−n
p

[
c − v + α2n

p (c + v)
]

2c

= 1, (C3)

which demonstrates that the Jacobian determinant is equal to
unity.

APPENDIX D: DETAILS OF INTEGRATION

Here we explain the computational details of deriving
Eq. (18) from Eq. (17) and give a pictorial explanation for
the overlap factor ϕn. The integration

P(W ) =
∫ 1

−1
dx
∫ 1

0
dv

e−β/
√

1−v2
δ(W − Wτ (x, v))

2K1(β )(1 − v2)3/2
(D1)

can be separated into parts

P(W ) =
∑

n

∫
Dn

dxdv
e−β/

√
1−v2

δ(W − Wτ (v))
2K1(β )(1 − v2)3/2

, (D2)

where Dn is the domain of integration for all the (x, v) values
that the particle collide n times. Note that within each domain
Dn the trajectory work becomes independent of x. Recall that
those particles that collide exactly n times lie in a straight line
on the x-v plane, with the equation

ξn(v) = −Tnv + Xn, (D3)

where

Tn = α−(n−1)
p − 1 − αp + αn

p

1 − αp
+ α−(n−1)

p + αn
p

1 + αp
τ (D4)

and

Xn = α−(n−1)
p − αn

p

1 − αp
+ α−(n−1)

p − αn
p

1 + αp
τ (D5)

FIG. 4. Division of the domain of integration into parts. The
overlap factor can be explained by the length of the red dashed line
being the value of ϕn at the same v.

are the slopes and the intercepts of the lines, respectively.
The separation of the domain of the integration is depicted
in Fig. 4.

We see that, since in each part the integrand is independent
of x, we can integrate it out first, giving rise to

∫
Dn

dx dv
e−β/

√
1−v2

δ(W − Wτ (v))
2K1(β )(1 − v2)3/2

=
∫

dv
e−β/

√
1−v2

δ(W − Wτ (v))
2K1(β )(1 − v2)3/2

ϕn(v), (D6)

where the value of ϕn(v) is the length of the line segment
shown in Fig. 4. With the equation of all the lines known, we
can compute the overlap factor as Eq. (19).

What is left involves integrating a Dirac δ function. We
have∫

dv
e−β/

√
1−v2

δ(W − Wτ (v))
2K1(β )(1 − v2)3/2

ϕn(v)

= e−β/
√

1−v2

2K1(β )(1 − v2)3/2
ϕn(v)

(
dWτ

dv

)−1
∣∣∣∣∣
Wτ (v)=W

= ϕn(vn(W ))
e−β/

√
1−vn (W )2(

α−n
p − 1

)[
1 + αn

p − vn(W )
(
1 − αn

p

)] .
(D7)

The n = 0 case should be treated separately. This is be-
cause all particles that cannot catch up with the piston
contribute to the probability at W = 0, resulting in a δ peak
with the amplitude

P0 =
∫ 1

0
dv

ϕ(v)e−β/
√

1−v2

2K1(β )(1 − v2)3/2
. (D8)

Summing up all the pieces at hand, we have the result (18).
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