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Driven by growing computational power and algorithmic developments, machine learning methods have
become valuable tools for analyzing vast amounts of data. Simultaneously, the fast technological progress of
quantum information processing suggests employing quantum hardware for machine learning purposes. Recent
works discuss different architectures of quantum perceptrons, but the abilities of such quantum devices remain
debated. Here, we investigate the storage capacity of a particular quantum perceptron architecture by using
statistical mechanics techniques and connect our analysis to the theory of classical spin glasses. Specifically, we
focus on one concrete quantum perceptron model and explore its storage properties in the limit of a large number
of inputs.
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I. INTRODUCTION

The rapid development of machine learning algorithms
revolutionized our day-to-day lives and created novel con-
nections between such diverse fields as computer science and
neuroscience [1], physics [2], and engineering [3]. At the core
of the success of machine learning are deep classical neural
networks [4]. Whereas classical neural networks initially had
a biological motivation [5], the modern perspective considers
classical neural networks as a form of information processing
[6–9]. The building block of these networks is the neuron or
perceptron as it was initially introduced by Rosenblatt and
understanding its properties is still an active research direction
[2,10].

Nowadays, with the advent of quantum technologies even
the simple quantum analogs of classical perceptrons referred
to this work as quantum perceptrons are back in the center
of interests, due to their possible realizations with ultracold
atoms, trapped ions, Rydberg atoms, superconducting qubits,
or photonic systems (cf. [11]). This essentially opens the
road for implementing machine learning concepts directly on
quantum hardware [12,13] and potentially leveraging quan-
tum mechanics for efficient information processing.

Contrary to the classical perceptron where each physi-
cal spin encodes a classical bit, different encodings could
be used for the quantum perceptron [14]. For example, the
straightforward realization is following the standard mapping
where each classical spin is promoted to quantum spin- 1

2
Pauli operator [15]. Another approach is the binary encoding
where the binary string values of the classical spins (i.e.,
101) corresponds to the computational basis states (i.e., |101〉)
of the wave function of the quantum system [16]. Also, the
string values of the classical spins could be mapped to the

*Contact author: gratsea.katerina@gmail.com

amplitudes of the computational basis states of the wave func-
tion which is referred to as amplitude encoding [17].

Throughout this work we focus on amplitude encoding
of information which has a clear efficiency of the memory
resources used since for N classical spins only log2(N ) are
needed. But the properties of such perceptron models as gen-
eral learning machines are still an open question. To this end,
we aim to bridge the gap between quantum computation and
learning theory by applying statistical physics techniques as
used to explore the properties of classical perceptron mod-
els as well [18]. One advantage of statistical physics is the
computation of global properties of physical systems without
knowing the microscopic details.

One important application of statistical physics to informa-
tion processing concerns the storage capacity of perceptrons
and neural networks [19,20] which corresponds to the mod-
els’ ability to obtain the desired input-output relations given
a choice on the learning rules [21]. Gardner in her semi-
nal works [22,23] addressed the challenge of analyzing the
properties of such models without specifying the learning
rule, which is usually referred to as Gardner’s program. The
work of Gardner is of significant historical importance but
also sheds light on the most important questions of artificial
networks and perceptrons as general learning machines.

Moreover, Gardner’s program is extremely general, adap-
tive, and versatile and has already been applied to different
quantum information problems, such as various models of
quantum perceptrons, quantum neural networks (NN), and
more. For example, Gardner’s program inspired investiga-
tion of the relative volume of parent Hamiltonians having
a target ground state up to some fixed error ε [24]. More-
over, Gardner’s relative volume approach clearly inspired the
pioneering attempts to estimate the volume of quantum corre-
lated states, such as entangled states [25], where integration is
over the unitary group in a very high dimension. In Ref. [26]
a quantum perceptron is defined as a unitary map followed

2470-0045/2024/110(2)/024127(13) 024127-1 ©2024 American Physical Society

https://orcid.org/0000-0001-8935-796X
https://orcid.org/0000-0002-0210-7800
https://ror.org/03g5ew477
https://ror.org/0371hy230
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024127&domain=pdf&date_stamp=2024-08-20
https://doi.org/10.1103/PhysRevE.110.024127


GRATSEA, KASPER, AND LEWENSTEIN PHYSICAL REVIEW E 110, 024127 (2024)

by projective measurements in a multidimensional Hilbert
space, where the calculation of the relative volume reduces
to the calculation of the volume in the unitary group space.
Recently, Gardner’s program has been used on quantum neu-
ral network (QNN) models [27] corresponding to completely
positive trace-preserving maps (CPTP), where the relative
volume requires integration over the space of maps.

In this work, we apply Gardner’s program to a specific
quantum analog of the classical perceptron introduced in
[17] to explore its storage capacity. This quantum perceptron
model has a direct implementation on quantum hardware [17]
and uses amplitude encoding which is beneficial in terms of
memory resources as mentioned earlier. But, for this per-
ceptron model it is not clear how the storage capacity will
compare to its classical counterpart contrary to the quantum
perceptron models [15,28], which have the same storage ca-
pacity. Therefore, we aim to perform a reasonable comparison
of the maximum storage capacity of this quantum perceptron
model with its classical counterpart. This work brings us one
step closer to understanding whether they provide hope for
quantum advantage and sheds light on the most important
questions of contemporary quantum machine learning models
as general learning machines [29].

This article is structured as follows: After motivating Gard-
ner’s program in this section, we discuss Gardner’s program
in detail and apply it to a quantum perceptron architecture
in Sec. II. In Sec. III, we discuss the main result: the cal-
culation of the storage capacity of a quantum perceptron by
applying statistical physics techniques. Finally, we give the
computational details of Gardner’s program for the quantum
perceptron in Sec. IV.

II. QUANTUM PERCEPTRONS AND GARDNER’S
PROGRAM

A. Classical perceptron model

A classical perceptron is a function that maps an N-
dimensional input �iμ = (iμ1 , . . . , iμN )T of length

√
N onto an

output σμ, where the weight vector �w = (w1, . . . ,wN )T , also
of length

√
N determines the information processing. The

additional label μ ∈ {1, 2, . . . , p} denotes different pairs of
input vectors and outputs [6,18]. Moreover, we consider the
activation function

σμ = θ (�iμ · �w/
√

N − κ ), (1)

so that for the stored pattern vectors �iμ, their scalar product
with the weight vector �w must be positive. Here, θ (·) is the
Heaviside function realizing the nonlinearity of the perceptron
model [see Fig. 1(a)]. Following Gardner, we introduce the
threshold κ that measures how robust and stable are the stored
patterns. Note that storage capacity of the perceptron (see be-
low) must decrease with κ , the relative volume of perceptrons
that fulfill Eq. (1) must shrink. Note also that at κ → 0 the
relative volume does not diverge, but rather goes to a finite
value. Here we would like also to emphasize that there are
different options for the input and weight vectors, i.e., binary,
continuous, Gaussian, etc., and at each section we specify
which case we are considering.

FIG. 1. Classical and quantum perceptrons. (a) Schematic out-
line of the classical perceptron: an N-dimensional input array �i is
processed with a weight vector �w such that �i · �w enters the activation
function. (b) Schematic outline of the quantum perceptron: an m-
dimensional input array �i is processed with a weight vector �w to
produce the inner product squared of these vectors. Both cases, the
classical and the quantum, employ a nonlinear activation leading to
the output σ . (c) Quantum circuit implementation of the quantum
perceptron following the work of Tacchino et al. [17]. An encoding
unitary realizes the input state |ψ�i〉 and the processing unitary com-
putes the inner product of the input and weight vectors. The outcome
is then written on the ancilla qubit with a multi-controlled-NOT gate.
Finally, the activation is measured by the readout of the ancilla qubit.

B. Quantum perceptron model

A quantum analog of the classical perceptron [17] is de-
picted in Fig. 1(b) with the corresponding quantum circuit in
Fig. 1(c). In this quantum perceptron the connection between
the inputs, outputs, and weights is given by the activation
function

σμ = θ

(
1

m
|�iμ · �w|2 − κ

)
, (2)

where the nonlinearity of the perceptron is realized by the
measurement [see Fig. 1(b)].

In the quantum case the input vector is �iμ = (iμ0 ,

. . . , iμm−1)T and the weight vector is �w = (w0, . . . ,wm−1)T ,
both of length

√
m, where m is the dimension of the Hilbert
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space. The vectors �iμ and �w are encoded in normalized quan-
tum states

|ψ�i〉 = 1√
m

m−1∑
j=0

i j | j〉, (3a)

|φ �w〉 = 1√
m

m−1∑
j=0

w j | j〉, (3b)

respectively, with the orthonormal basis vectors | j〉 form
the computational basis and we focused on the case of bi-
nary inputs and weights. The encoding unitary U�i prepares
the input state, while the processing unitary V�w computes
the inner product between �i and �w. The precise definition of
the unitaries can be found in Appendix A.

C. Activation functions

It is important to discuss the differences between the clas-
sical activation function and the quantum (i.e., quadratic)
activation function. In the classical case, the perceptron is a
linear classifier, and its activation function depends linearly
on the weighted signal. In general, the quadratic activation
function introduces a nonlinearity to the model. We refer
here to Ref. [30], where the concept of a quadratic activation
function has already been discussed.

In general, according to Ref. [30], quadratic or, more
generally, nonlinear activation function might improve or de-
teriorate the performance of the classical perceptron. In fact,
recent works have explored a quadratic activation function of
a classical neuron. Even though their increased representation
and efficiency [31], they have increased computational costs
and restricted expressive abilities [32]. Regarding the storage
capacity, the authors in the work of [32] discuss that a two-
layer neural network with N inputs, K hidden units, binary
outputs, and a quadratic activation function results in the same
value of the storage capacity with the quantum perceptron.
Moreover, taking into account that αc,max has a finite value
for the quantum perceptron and that m equals the dimension
of the Hilbert space (m = 2N ), the number of patterns that
can be stored is exponential in the number of spins N in
agreement with recent works [33–35]. For example, in the
recent work [27] the authors applied Gardner’s program to
attractor quantum neural networks and found that the learning
of P patterns at the order of 2N/2 is possible.

The same quadratic activation function that we use for
quantum perceptron can be directly implemented in a classical
perceptron, but it does not seem to make a lot of sense. Our
activation function is directly related to quantum measure-
ment theory: it estimates how much a given set of normalized
weights can be similar (in the sense of the squared scalar
product) to a random pattern. This is in principle a geometrical
question and can be considered in a purely classical system,
but it is not the true goal for introducing nonlinear activation
functions.

At this stage it is worth evoking our recent work
[36], where we prove that regularized restricted Boltzmann
machines (RBM) can store the exponential number of pat-
terns, as large as 2V , where V is the number of visible
neurons. These properties resemble dense associative memory

networks or modern Hopfield networks [37–40]. Indeed, if
one would marginalize an RBM over its hidden neurons, the
result would be a network consisting only of V visible neurons
with multispin interactions, and nonlinear activation function
in the spirit of Refs. [38,41], and the classical book [30].
Would one marginalize a regularized RBM over hidden neu-
rons, the resulting network, at low temperatures, can have the
exponential capacity for storage and perfect retrieval of arbi-
trarily correlated patterns. In this sense, BMs with regularized
weights are related to the embeddings of dense associative
memory networks in a set of two-body interaction models
[39].

D. Gardner’s program

The correct choice of the weights results in a desired input-
output relation, i.e., a specific mapping between the input �iμ
and the output σμ. A learning rule is usually applied to find
the correct weights, such as the Hebbian rule [42]. While
the Hebbian rule has an appealing simplicity, Gardner, in her
works [22,23], was interested in the global properties of the
classical perceptron model without specifying the learning
rule. She asked the following question: What is the maximum
number of input-output patterns that the classical perceptron
can realize? Therefore, she considered the relative volume in
the space of possible weights, which realizes a given input-
output relation.

E. Storage capacity

The problem of storage capacity goes indeed back to the
theory of classical perceptrons [43]. In the “classic” paper
from 1964 [44], Cover demonstrated using simple geometrical
arguments that the separating capacities of families of nonlin-
ear decision surfaces by a direct application of a theorem in
classical combinatorial geometry. It is shown that a family of
surfaces having N degrees of freedom has a natural separating
capacity of 2N pattern vectors, thus extending and unifying
earlier results of others on the pattern-separating capacity of
hyperplanes. Thus, the critical storage capacity of a classical
perceptron is αc = 2.

The problem of storage capacity returned in 1982 in the
seminal paper of Hopfield [19], who has shown numerically
that the Hopfield model with the, so-called, Hebbian learning
rule may store 0.14N random patterns. Gardner came back
to the problem analyzing the shrinking in the volume of
perceptrons that correctly reproduce the desired input-output
relations normalized to the volume of connection vectors �w.
The advantage of the work of Gardner was that it calculated
storage capacity independently of the learning rule used. It
also reproduced correctly the classical geometrical bound of
Cover [44].

Following Gardner’s work, the storage capacity can be
obtained from the fraction of �w space which correctly and
exactly reproduces the desired input-output relations normal-
ized to the volume of vectors �w. When increasing the number
of patterns, the volume of vectors �w typically shrinks, and
the relative volume of the weights vanishes. The limit of
vanishing relative volume defines the storage capacity of the
perceptron [18].
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From the definition of the storage capacity, the difference
between the classical and quantum perceptrons results from
two aspects of to the definition of quantum perceptron pro-
posed in [17]. The classical perceptron checks whether the
signal corresponding to a given input pattern has an appro-
priate sign at the output. Quantum perceptron uses quantum
measurement principles, and checks for a given input pattern
how big are the quantum overlaps of output states. Quantum
perceptron by definition does not reproduce the input patterns
correctly and exactly; it does it with certain optimal error, or
better to say accuracy.

The other important aspect is that of the different dimen-
sionality of the input vectors, which equals N physical inputs
for the classical perceptron. In contrast, in the quantum case,
the number of inputs equals the dimension of the Hilbert space
m. Hence, for the classical perceptron we have αc = p/N (i.e.,
the capacity p is proportional to the number of spins N),
while for the quantum perceptron αc = p/m (i.e., the capac-
ity is exponential in the number of spin configurations, p ∝
m = 2N ). For the classical perceptron, the storage capacity is
known to be 2 (for κ = 0) and was calculated, for example, in
[18,22,23,30,44]. More, precisely in the classical perceptron,
when α > αc(κ ), the relative volume shrinks abruptly to zero.
In contrast, when α � αc(κ ), the relative volume is nonzero
but shrinks moderately slowly exponentially with m.

It is rather difficult to compare this situation with our re-
sults obtained for the quantum perceptron. First of all, critical
capacity and the nature of the phase transition depend on
the form of weights we use (spherical weights, Gaussian dis-
tributed inputs, Ising weights and inputs). For various cases,
capacity ranges between more than 13 and 0.125, but as noted
above it corresponds to recognition intrinsically associated
with quantum measurement errors.

Finally, we would like to mention parameter κ , introduced
by Gardner in her original paper [22]. While strictly speaking,
the classical perceptron checks whether the signal correspond-
ing to a given input pattern has an appropriate (say positive)
sign at the output, in principle one can demand that the signal
is greater than a certain parameter κ . In the case of classi-
cal perceptrons with the scaling of connections proposed by
Gardner, κ is N independent. In the more complex quantum
case, we need to scale κ appropriately as in Eq. (2), and as
discussed in the next section.

F. Calculation of the relative volume

In the following, we will focus on quantum perceptrons.
The abundance of weights, which leads to desired input-
output relations, can be treated by averaging over the weight
vectors �w. This averaging gives rise to an ensemble of quan-
tum machines, which can be analyzed with statistical physics
tools. To define a finite volume of weights [23] we constrain
the weight vector �w. Similar to Gardner’s work one can con-
sider two types of constraints: spherical weights, i.e., | �w|2 =
m, and Ising weights wi = ±1. The corresponding integration
measures [30] are

ρS[ �w] = 1

VS0

δ(| �w|2 − m), (4a)

ρI [ �w] = 1

VI0

∏
k

[δ(wk − 1) + δ(wk + 1)] (4b)

with the normalization (see Appendix B)

VS0 =
∫

w

δ(| �w|2 − m), (5a)

VI0 =
∫

w

∏
k

[δ(wk − 1) + δ(wk + 1)]. (5b)

Then the relative volume of perceptrons, which fulfill a spe-
cific input-output relation, is given by

VM =
∫

w

∏
μ

θ

(
1

m
|�iμ · �w|2 − κ

)
ρM[ �w], (6)

where the label M = S for the spherical constraint or M = I
for the Ising constraint. The threshold κ takes values in [0, m]
and in the limit κ → 0 the relative volume allows us to obtain
the maximum storage capacity of the quantum perceptron
model [18,30]. We calculate the relative volume using the
integral representation of the Heaviside function

θ (y − κ ) =
∫ ∞

κ

dλ

∫ ∞

−∞

dx

2π
eix(λ−y), (7)

which we insert into Eq. (6). In the following we outline the
calculation of the relative volume for the case of spherical
weights and present the details of the calculation in Sec. IV.

1. Spherical weights

The distribution of the spherical weights is given in
Eq. (4a) and contains a delta function, which we represent via

δ(| �w|2 − m) =
∫ ∞

−∞

dE

2π
eiE(| �w|2−m). (8)

Further, we average over the input vector �iμ to avoid bias
towards specific input vectors. The average with respect to
�iμ is denoted as 〈〈·〉〉. The expression for the relative volume
becomes

〈〈VS〉〉 = 1

VS0

∫
w

∫
λ

∫
x

∫
E

exp[iE (| �w|2 − m)]

×
〈〈

exp

[
i
∑

μ

xμ
(
λμ − 1

m |�iμ · �w|2)
]〉〉

, (9)

where the integration measure is given in Appendix B.
Similar to Gardner we make the observation that Eq. (9)

is a partition function of a classical spin glass, where 〈〈·〉〉
is interpreted as a disorder average and �w is a classical spin
variable. As for classical spin glasses [18,30] we calculate
〈〈ln VS〉〉 via the replica trick

〈〈ln VS〉〉 = lim
n→0

〈〈
V n

S

〉〉− 1

n
, (10)

which leads to the replicated variables �wα , xα , λα with the
replica index α ∈ {1, . . . , n}. Following the notation intro-
duced in [18], we would like to emphasize that the reader
should not confuse the storage capacity α with the replica
index. In addition, we introduce the spin glass order parameter
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qαβ and its conjugate Fαβ via the integral

1 =
∫ ∞

−∞
dqαβδ

(
qαβ − 1

m

∑
k

wα
k w

β

k

)

= m
∫ ∞

−∞
dqαβ

∫ ∞

−∞

dFαβ

2π
eimFαβ (qαβ− 1

m

∑
k wα

k w
β

k ) (11)

with α < β. This identity is also referred to as Hubbard-
Stratonovich transformation (see [45,46] for details).

Ising inputs. Here we assume that Ising inputs iμk = ±1.
In the next step, we perform the average over the inputs and
assume small fluctuations of xα , which leads to〈〈

V n
S

〉〉 = 1

V n
S0

∫
F

∫
q

∫
E

emG, (12)

with integration measure given in Appendix B and where we
introduced the effective potential

G=αG1[qαβ ] + G2[Eα, Fαβ] − i
∑

α

Eα + i
∑
α<β

Fαβqαβ

(13)

with the storage capacity α and the two contributions

G1[qαβ ] = ln
∫ ∞

−∞

∏
α

dxα

2π

∫ ∞

κ

∏
α

dλα

× exp

(
i
∑

α

xα (λα − 1) −
∑

α

(xα )2

− 2
∑
α<β

(qαβ )2xαxβ

)
(14)

and

G2[Eα, Fαβ] = ln
∫ ∞

−∞

∏
α

dwα

× exp

⎛
⎝i
∑

α

Eα (wα )2 − i
∑
α<β

Fαβwαwβ

⎞
⎠ .

(15)

Comparing the integrals for the effective potential reveals a
quadratic dependency on qαβ for the quantum model and a
linear dependence on qαβ for the classical model within the
exponents. The nonlinear dependence in the quantum case is
a consequence of the measuring process, which involves the
modulus square.

Note that G = G(F, E , q; α, κ) is a function of integration
variables, and depends parametrically on α and κ . The integral
over F, E , q in Eq. (13) can be evaluated using the saddle
point method, due to the exponential dependence on m. In
the replica symmetric case, one can eliminate dependence on
E , F , so that the effective potential or free energy of interest
can be defined in the limit n going to zero,

g(q; α, κ ) = lim
n→0

1

n
G(q; α, κ ). (16)

It is useful also to introduce the proper normalization for
the saddle point value of the effective potential, coming from

0 2 4 6 8 10
κ

0

2

4

6

8

10

12

14

α
c

Spherical weights

classical perceptron

quantum perceptron

0 2 4 6 8 10κ

0.125

α
c

Gaussian distributed inputs

FIG. 2. Storage properties of perceptrons for spherical weights:
storage capacity for the classical (red line with maximum value at 2)
and quantum (blue line with maximum value at 13.27) perceptrons as
a function of the threshold κ with Ising inputs. For κ = 0, the storage
capacity has a maximum, whereas the storage capacity decays for
κ 
 0. In the inset, we plot the critical storage capacity as a function
of κ for spherical weights, but with Gaussian distributed inputs.

subtracting the logarithm of n ln(VS0 ):

g̃(qs; α, κ ) = g(qs; α, κ ) − g(qs; α, κ = 0). (17)

This quantity is strictly nonpositive. If g̃ is one, then the
volume is one (as it should happen for κ = 0). If g̃ is −∞, then
the volume shrinks to zero (as it should happen for α > αc).
This may happen even for κ = 0, due to the approximate
character of our calculations. Finally, when 0 > g̃ > −∞, the
relative volume decreases exponentially with m as exp(mg̃).

After the Hubbard-Stratonovich transformation we per-
form a saddle point approximation for large m and assume
replica symmetry, which assumes that the replicas are statisti-
cally equivalent [47], i.e.,

qαβ = q, Fαβ = F, Eα = E . (18)

The saddle point equations are

∂G

∂E
= ∂G

∂F
= ∂G

∂q
= 0, (19)

which we solve and subsequently perform the limit n → 0.
Taking the derivative of G with respect to q and analyzing
the limit q → 1, we observe that it leads to the saddle point
solution for q is q = 0 for α � αc(κ ) to the maximum critical
storage capacity at κ = 0 of

αc,max = 13.27 � 2. (20)

In contrast, for α > αc(κ ), q at the minimum of the effective
potential becomes equal to 1, and the volume abruptly shrinks
to zero. The saddle point approximation allows us to study the
critical storage capacity αc(κ ) as a function of the threshold κ ,
which we depict in Fig. 2. Note, the phase transition has here
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similar nature as in the classical perceptron. For α � αc(κ ),
the relative volume is equal to 1 for κ = 0. For κ > 0, the
effective potential g̃ < 0, and the volume shrinks moderately
slowly exponentially with m as exp(mg). For α > αc(κ ), g =
−∞, and the volume is strictly equal to zero (for details see
Methods section).

Gaussian distributed inputs. In this section, we discuss
the case of inputs distributed according to a Gaussian normal
distribution. The weights in turn are distributed according to
Eq. (4a). We apply the replica trick (10), introduce the order
parameters as in Eq. (11), and average over the inputs to
calculate the effective potential G. A comparison to Eq. (12)
reveals that only the expression for G1 changes

G1[qαβ ] = ln
∫ ∞

−∞

∏
α

dxα

2π

∫ ∞

κ

∏
α

dλα

× exp

[
i
∑

α

xαλα − ln det(1 + 2iÂ)

]
, (21)

where we introduce the matrix A later in Eq. (48). Next, we
assume replica symmetry, i.e.,

qαβ = q, Fαβ = iF, (22)

where the imaginary unit i is used to ensure that the saddle
point solutions are real. Then the saddle point equations are

∂G

∂F
= ∂G

∂q
= 0, (23)

which we solve and subsequently perform the limit n → 0.
The saddle point equation given by the derivative with respect
to q leads to

α(2 + κ )2q = q

2(1 − q)2 . (24)

This equation has one trivial solution q = 0 and one nontrivial
in 0 < q < 1. The nontrivial solution exists if and only if

2α(2 + κ )2 � 1. (25)

For α � αc = ( 1
2 )(2 + κ )2 the solution is trivial, and the loga-

rithm of the relative volume is close to zero, it is proportional
to g̃ = −ακ/2, and for κ = 0 the volume is equal to one, while
for κ > 0 it decreases exponentially as exp(mg̃). Above αc, the
saddle point solution for q is nonzero, and the volume shrinks
also exponentially with m, but much faster (for details see
Methods section). We plot αc in Fig. 2 for different values
of κ and observe αc → 1

8 for κ = 0. The phase transition
has a different character in comparison to Gardner’s work
[22]. In her work, the volume decreases exponentially with
m below the critical αc (where q < 1), and strictly shrinks
to zero above the critical αc (where q = 1). In our work, the
volume is close to one below αc (although it decreases slowly
exponentially with m), and it starts to decrease much more
rapidly exponentially with m above αc. This is the result of
the approximations used (expansion in q). In Appendix D we
speculate how one could restore the “Gardner’s nature” of the
phase transition in our model with Gaussian inputs.

2. Ising weights and inputs

In the classical case the Ising weights were treated, for
example, in [18,23,30]. Here, we use the Ising weights for the
quantum case and employ Eqs. (4b) and (5) for the integration
measure and normalization of the volume, respectively. We
apply the replica trick (10), introduce the order parameters
(11), and average over the inputs to calculate the effective
potential. The contribution G1 is the same as Eq. (15), while
G2 becomes

G2[Fαβ] = ln
∑

{wα=±1}
exp

⎛
⎝∑

α<β

Fαβwαwβ

⎞
⎠. (26)

We assume replica symmetry [see Eq. (22)] and the saddle
point equations [see Eq. (23)]. Solving the saddle point equa-
tions in the limit for q → 1 we conclude that the storage
capacity is

αc(κ ) = 4

π

[∫ ∞

−κ

Dy(κ + y)2

]−1

, (27)

where we used the abbreviation∫ ∞

−∞
Dy =

√
1

2π

∫ ∞

−∞
dy e− y2

2 . (28)

We would like to emphasize that the limit κ → 0 gives the
maximum storage capacity for the quantum perceptron model
we are considering given its specific hardware implementa-
tion. At the limit κ → 0 we are including all the patterns that
could be activated, i.e., give a nonzero probability outcome
[17]. This results to the maximal value of αc(0) = 8/π . In
addition, we present the results of a Monte Carlo simulation
in Fig. 3, which shows that as m → ∞ and κ → 0, the storage
capacity is 3.55 ± 0.01 (see Appendix C for details). We
interpret this disagreement in the analytical and numerical
results as the necessity for replica symmetry breaking [48].
This analysis, however, goes beyond the scope of this paper.

III. DISCUSSION

In this work, we calculated the storage capacity of a
quantum perceptron proposed in a recent work [17]. This
implementation of a quantum perceptron uses less memory
resources compared to its classical counterpart [for N classical
spins only log2(N ) are needed] and has already been imple-
mented on IBM’s quantum devices [17,49]. Following the
seminal works of Gardner [22,23], we used statistical physics
techniques to calculate the storage capacity of this perceptron
model. In particular, we interpreted this quantum perceptron
as a classical perceptron on an extended input space with a
different activation function (see Fig. 1). This interpretation
allows us to calculate the storage capacity of a quantum per-
ceptron by computing the relative volume of weights which
fulfill a given input-output relation.

To handle the multitude of inputs and learning rules, we
integrated the input and the weights. Formally, this averaging
over input and weights maps the calculation of the relative
volume to the partition function of a classical spin glass prob-
lem. Similar to problems in classical spin glass theory, we
computed the logarithm of the partition function using the
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FIG. 3. Storage properties of perceptrons for the Ising weights.
Storage capacity for the classical (upper) and quantum (lower) Ising
perceptrons as a function of the number of inputs N−1 and m−1,
respectively. The dots are the result of the Monte Carlo simulations.
The intersection of the lines with the y axis gives the storage ca-
pacity 0.86 ± 0.01 for the classical and 3.55 ± 0.01 for the quantum
perceptron in the limits N, m → ∞. The error bars can not be seen
in this scale.

replica trick [18,30]. Further, by using the large m expansion,
we can determine the storage capacity αc in leading order,
which is the ratio of the stored patterns p over the compu-
tational resources m. Notably, the techniques presented here
are applicable to other quantum architectures.

Given the model of Fig. 1(c), we obtain a maximal critical
storage capacity of αc,max > 13 for the spherical weights and
Ising inputs (see Fig. 2). To put these results in perspective, we
compare them with the classical perceptron. In the classical
case, the maximal storage capacity is αc,max = 2 (see Fig. 2).
Therefore, the maximum storage capacity of the quantum per-
ceptron is clearly larger than the maximum storage capacity
of the classical perceptron. This result agrees with the recent
work [50] where the authors found a similar relation to the
capacity of quantum neural networks compared to the classi-
cal. Even though their definition of capacity is determined by
the effective dimension, it also exploits the model’s ability to
express different relationships between variables.

For Gaussian distributed inputs, the performance of the
quantum perceptron is quite different from the classical per-
ceptron following a related work [51]. In the classical case,
the relative volume shrinks exponentially with m below the
critical capacity, and shrinks suddenly to zero above αc (see
[52]). In this study, the volume shrinks exponentially with m,
but the rate of shrinking changes from below (“easy learning”
phase) to above αc (“hard learning” phase). The maximum
storage capacity of the “easy learning” phase is 0.125. These
results suggest that the performance of quantum perceptron
models does not always follow the behavior of their classical

counterparts. Therefore, it emphasizes the need to rigorously
study these models and explore their properties as general
learning machines.

Another example where contradictory behavior is observed
between classical and quantum perceptrons is in the case of
Ising weights. The analytical results suggest that αc,max =
8/π while the Monte Carlo simulation suggests that αc,max =
3.55 ± 0.01. The difference in the slope emphasizes that in
the quantum case the maximum storage capacity can be larger
than 1 contrary to the classical case. This is because in the
classical case the dimension of the input is equal to N , while
in the quantum case 2N . Following the analysis in the classical
case, a disagreement between the analytical and numerical
result is interpreted as the necessity of replica symmetry
breaking in the analytical calculation [18,53]. Thus, the MC
solution is more reliable and the analysis on the classical per-
ceptron suggests that the replica symmetry breaking solution
needs to be applied for the Ising weights. Therefore, a similar
approach might be necessary to tackle the difference between
the analytical and numerical result in the quantum case, i.e.
by applying replica symmetry breaking. We leave this open
for future work.

Moreover, it would be highly important for practical ap-
plications to explore the storage properties of the quantum
perceptron with correlated inputs or input-output patterns. In
a previous analysis of quantum perceptrons [26], one distin-
guished between three different phases an ignorant phase,
a random phase, and learning phase, and it would be in-
teresting to detect these phases in the quantum perceptron
architecture of [17]. Future studies should also investigate the
storage capacity away from q ≈ 1 and the dependency on κ .
Also, it will be essential to include corrections to the large
m expansion and study the stability of the replica symmetric
saddle point solution [46]. Finally, an exciting continuation of
this work would be to consider other architectures of quantum
perceptrons [14,54,55], e.g., qudit based platforms [56–58],
and analyze them with the tools presented in this work. Also,
it would be interesting to extend the analysis to a network of
quantum perceptrons.

This work studied the storage properties of different quan-
tum perceptron models with a direct hardware implementation
[17]. Importantly, inspired by the analysis of classical percep-
trons [18], we applied statistical physics techniques of spin
glasses to the studied quantum models. This also facilitated a
certain comparison between the quantum and classical mod-
els, even though such a comparison is not perfectly sound.
In particular, our work shows and validates that the number
of patterns that can be stored in the considered models of
quantum perceptrons is exponential in the number of spins N .
We defined thus and calculated the corresponding values of
the storage capacity for the studied quantum perceptrons as a
ratio of the number of patterns p and the total number of spin
configurations, α = p/m = p/2N .

IV. METHODS

In this section, we elaborate on the computational details
presented in Sec. II, i.e., the averaging over the inputs, the
calculation of the effective potential, and the saddle point
approximation.
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A. Averaging over the input patterns

We perform the average 〈〈·〉〉 and assume weak correlations between the weights. Then we can approximate〈〈∏
α,μ

e− i
m xα

μ|�iμ· �wα |2
〉〉

= e
−i
m

∑
α xκ

μ

∑
κ (ωα

κ )
∏

μ,k �=l

cos

(
2

m

∑
α

xα
μwα

k wα
l

)
. (29)

The above expressions are somewhat similar to those derived in [59], but not the exponential phase factor, effectively shifting the
values of λ’s by −1, and the prefactor 2/m, multiplying the argument of the cos(·) function. Using Eq. (29) the relative volume
becomes

〈〈VS〉〉 = 1

V n
S0

∫
w

∫
λ

∫
x

∫
E

∫
q

∫
F

exp

[
i
∑
α,μ

xα
μ

(
λα

μ − 1
)+

∑
μ,k,l

ln cos

(
2
m

∑
α

xα
μwα

k wα
l

)]

× exp

[
iEα (| �wα|2 − m) + imFαβ

(
qαβ − 1

m

∑
k

wα
k w

β

k

)]
. (30)

Next, we use the approximation ln cos x ≈ −x2/2 and use Eq. (11). In addition, we employ that the integral

I =
∫ ∞

−∞

∏
α,μ

dxα
μ

2π

∫ ∞

κ

∏
α,μ

dλα
μ exp

⎛
⎝i
∑
α,μ

xα
μ

(
λα

μ − 1
)−

∑
μ,α

(
xα
μ

)2 − 2
∑

α<β,μ

(qαβ )2xα
μxβ

μ

⎞
⎠ (31)

factorizes according to

I =
[∫ ∞

−∞

∏
α

dxα

2π

∫ ∞

κ

∏
α

dλαei
∑

α xα (λα−1)−∑α (xα )2−2
∑

α<β (qαβ )2xαxβ

]p

, (32)

which leads to Eqs. (12)–(15).

B. Calculation of G1

We assume replica symmetry of qαβ and after the integra-
tion over xμ we have

lim
n→0

1

n
G1[q] =

∫ ∞

−∞
Dy ln L(y), (33)

where we used the abbreviation (28) and introduce

L(y) = 2
√

π Erfc

[
κ − 1 + yq√

2(1 − q2)

]
. (34)

The function L(y) is the main object that distinguishes the
classical and the quantum perceptron. In the classical case we
have

L(y) = 2
√

π Erfc

[
κ + yq√
(1 − q)

]
. (35)

In the quantum case, L(y) depends on q2 since we are dealing
with squared scalar products, which leads to an additional
factor of 2 in the denominator of L(y); this factor will then
be responsible for the increase of the storage capacity for the
quantum case in comparison to the classical case.

C. Calculation of G2 for spherical weights

We also assume replica symmetry of Eα and Fαβ and
perform the multidimensional Gaussian integral in Eq. (15)
resulting in

G2[E , F ] = ln[(2π i)n/2(det M )−1/2], (36)

where we introduced the matrix

Mab = (2E + F )δab − F. (37)

The matrix M has n − 1 degenerate eigenvalues �1 = · · · =
�n−1 = 2E + F and one nondegenerate eigenvalue �n =
2E − (n − 1)F such that the determinant of the matrix M
becomes

ln det M = (n − 1) ln(2E + F ) + ln[2E − (n − 1)F ].

(38)

D. Saddle point equations of G for spherical weights

Since G1 does not depend on E and F the saddle point
equations with respect to E and F are

0 = 1

n

∂G

∂E
= −i + 1

n

∂G2

∂E
, (39a)

0 = 1

n

∂G

∂F
= i

2
(n − 1)q + 1

n

∂G2

∂F
, (39b)

with

1

n

∂G2

∂E
= (n − 1)F + 2E (n − 2)

2(2E + F )(−Fn + 2E + F )
, (40a)

1

n

∂G2

∂F
= (n − 1)F

2(2E + F )(−Fn + 2E + F )
. (40b)

Performing the limit n → 0 and solving for E and F results
in

E = i(1 − 2q)

2(1 − q)2
, (41a)

F = iq

(1 − q)2
. (41b)
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Further, we define the effective potential

g = lim
n→0

1

n
G (42)

and insert the solution of the saddle point equation into G. As
a result, we obtain

g = α

∫ ∞

−∞
Dy ln L(y) + 1

2
ln (1 − q) + 1

2(1 − q)
(43)

plus constant terms independent of q. We can interpret the
averaged logarithm of the volume g as a kind of free en-
ergy (an effective potential), which is a regular function of
0 � q < 1, but has a singularity at q = 1. To analyze the role
of this singularity, we employ the asymptotic expansion of
Erfc(x) ≈ √

πx−1e−x2
θ (x) for x → ∞. We see that

g  − α

2(1 − q)

∫ ∞

1−κ

Dy(κ − 1 + y)2 + 1

2(1 − q)
(44)

has two singular terms as q → 1.
We observe that there is here a phase transition. When α

is small the term 1/2(1 − q) is dominant at q going to 1, and
“pushes” the minimum of g to zero. For α > αc(κ ), where

αc(κ ) =
[ ∫ ∞

1−κ

Dy(κ − 1 + y)2

]−1

, (45)

the term with 1/(1 − q) is negative, and the minimum of g is
at −∞ so that in effect the relative volume shrinks to zero.
One can check explicitly that αc(κ ) is a decreasing function
of κ . The free energy at q = 0 becomes

g(q = 0; κ ) = α ln

{
2
√

π Erfc

[
κ − 1√

2

]}
+ 1

2
, (46)

or after normalization

g̃(q = 0) = g(q = 0; κ ) − g(q = 0; κ = 0). (47)

We plot the effective potential as a function of α and κ in
Fig. 4.

The above analysis implies that the critical value of the
storage capacity for κ = 1, αc = 2. Since αc(κ ) grows as κ

becomes smaller, performing the integral leads to the maximal
critical storage capacity of αc,max > 2 for κ → 0.}

E. Calculation of G1 for Gaussian distributed inputs

First, we define the matrix

Akk′ = 1

n

∑
α

xαwα
k wα

k′ , (48)

which is spanned by the vectors wα We can write its non-
trivial eigenvectors as combinations of wα . The eigenvalue
equation is

1

n

∑
α,k′

xαwα
k wα

k′
∑

β

cβw
β

k′ = �
∑

α

cαwα
k . (49)

All other eigenvectors of 1 + 2iÂ (orthogonal to the vectors
wα) are trivial: they correspond to eigenvalues 1 and do not
contribute to the ln det. Comparing coefficients, using the

FIG. 4. The effective potential for the spherical weights. We plot
the normalized effective potential g̃ of Eq. (47). It changes from finite
negative values below αc to −∞ (represented by the gray area) above
αc. The black line shows the αc curve given by Eq. (64).

definition of qαβ and assuming replica symmetry qαβ = q for
α �= β, leads to a closed equation

1 =
∑

a

xαq

� − xα (1 − q)
(50)

for eigenvalues � of Â. Using the eigenvalues of Â we can
rewrite G1 as

G1[q] = ln
∫ ∏

α

dλα

∫ ∏
α

dxα exp(i
∑

α xαλα )∏
n (1 + 2i�n)

. (51)

In order to rewrite the product of eigenvalues we transform
the self-consistent equation for the eigenvalues � into the
characteristic polynomial of Â to define the function

W (�, x) =
∏
α

[� − (1 − q)xα]

−
∑

α

qxα
∏
α �=β

[� − (1 − q)xβ]. (52)

Next, we introduce the auxiliary quantity

L(ε) = ln det(1 + 2iεÂ) =
∑

n

ln(1 + 2iε�n), (53)

where we are interested in the value of L(1). Differentiating
with respect to ε we obtain

dL

dε
= n

ε
− 1

ε

∑
�

1

1 + 2i�ε
. (54)

The sum can be rewritten by using Cauchy’s theorem and
employing an appropriate contour C. Using this integral
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representation for the sum we obtain

dL

dε
= n

ε
+ d

dε
ln W (i/(2ε), x). (55)

Integrating ε from 0 to 1 we get

L(1) = ln W (i/2, x) (56)

since L(ε) goes to zero for ε → 0. Expanding � in q, i.e.,
treating q as a perturbation, G1 becomes

G1[q] = ln
∫ ∏

α

dλα

∫ ∏
α

dxα exp

(
i
∑

α

xαλα

)

× 1∏
α

(
i
2 − xα

)
⎡
⎣1 +

∑
α,β

q2xαxβ(
i
2 − xα

)(
i
2 − xβ

)
⎤
⎦.

(57)

Performing the integration over xα and λα gives

G1(q) = −κn

2
− 1

2
nq2(2 + κ )2. (58)

Due to the perturbative expansion in q the function G1(q)
does not exhibit any singularity at q = 1, which will affect
the nature of the phase transition, as we will see below.

F. Saddle point equations of g for Gaussian distributed inputs

The effective potential of Eq. (13) becomes

g = α

[
−κ

2
− 1

2
q2(2 + κ )2

]
+ 1

2
ln (1 − q) + 1

2(1 − q)
,

(59)

plus constant terms independent of q. This function does con-
tain a singular term (1 − q)−1, which repulses the saddle point
solutions for the minimal value away from q = 1. Indeed,
taking the derivative of g with respect to q gives

α(2 + κ )2q = q

2(1 − q)2 . (60)

This equation has a trivial solution q = 0 for which g becomes
minimal, and

g̃ = g(κ ) − g(κ = 0) = −(ακ )/2. (61)

This equation has also a nontrivial solution, which exists for
2α(2 + κ )2 � 1. The critical value of the storage capacity is
given by (see Appendix D)

αc = 1

2(2 + κ )2
. (62)

Note that the phase transition, in this case, has a different
character: for both solutions g, or more importantly g̃, takes
finite negative values, but it changes from −(ακ )/2 in the
“easy to learn” phase to larger negative values in the “hard
to learn phase” (see Fig. 5). This behavior might be the result
of expansion in q that we used to obtain the effective potential.
In the easy to learn phase, the relative volume is 1 at κ = 0,
as expected, but decreases moderately slowly exponentially
with m as exp(mg̃) for nonzero κ . This exponential decrease
becomes much faster in the hard to learn phase, as illustrated
in Fig. 5. Furthermore, the effective potential might be the first

FIG. 5. The effective potential for Gaussian distributed inputs.
We plot the effective potential g at the minimum, i.e., at q = 0 for
α � αc, and q = 1 −√

1/[2(2 + κ )2α] for α > αc. It changes from
small negative values close to zero of Eq. (61) below the αc curve to
larger negative values of Eq. (59) above. The black line shows the αc

curve given by Eq. (62).

term of expansion of (1 − q2)−1 and we discuss this idea in
Appendix D, which will bring us back to the volume shrinking
phase transition in the manner of Gardner.

G. Calculation of G2 for Ising weights

Assuming replica symmetry of F ab and averaging over the
binary weights, Eq. (26) becomes

G2 = −1

2
Fn + n

∫ ∞

−∞
Dz ln[2 cosh(z

√
F )], (63)

as in the classical case [60].

H. Saddle point equations of G for Ising weights

The effective potential with replica symmetry of qab and
F ab becomes

g = α

∫ ∞

−∞
Dy ln L(y) + R(F, q) (64)

with

R(F, q) = −1

2
F (1 − q) +

∫ ∞

−∞
Dz ln[2 cosh(z

√
F )]. (65)

Then, the saddle point equation with respect to F is

−1

2
(1 − q) +

∫ ∞

−∞
Dz

z

2
√

F
tanh(z

√
F ) = 0, (66)

which is similar to equation obtained for the classical percep-
tron with binary weights [23], where it was argued that the
solution with F → ∞ as q → 1 is invalid. Instead, for the
correct solution of the classical perceptron problem, replica
symmetry breaking must be taken into account.

Here, we analyze results for the replica symmetric case and
compare them with Monte Carlo simulations. For the quantum
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perceptron, F is a well defined function of q, and it tends to
infinity as q → 1. The last equation can be solved

√
F ≈

√
2

π

1

(1 − q)
, (67)

where sign(x) = x/|x| and we approximated the tanh by
sign(x).

Comparing the leading terms when q → 1, we arrive at

g ≈ 1

(1 − q)

[
−α

4

∫ ∞

−κ

Dy(κ + y)2 + 1

π

]
. (68)

In this way we obtain the critical value

αc(κ ) = 4

π

[∫ ∞

−κ

Dy(κ + y)2

]−1

, (69)

which implies the maximal value of αc(0) = 8/π . In contrast,
the MC simulations suggest that αc(0)  3.55 as illustrated in
Fig. 3. As in the classical case, we interpret this discrepancy
as the necessity of replica symmetry breaking.

The data that support the findings of this study are available
from the corresponding author upon request.
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APPENDIX A: DETAILS ON THE QUANTUM
PERCEPTRON PROPOSED IN [17]

The first unitary U�i should fulfill

|ψ�i〉 = U�i|0〉⊗N , (A1)

and in this way encodes the information on N qubits. Partic-
ularly, any m × m unitary matrix with the first column being
identical with �i and normalized is a valid candidate for such a
unitary. The information is processed by applying the second
unitary V�w which fulfills

V�w|ψ �w〉 = |1〉⊗N = |m − 1〉. (A2)

Applying the unitary V�w on the encoded state leads to

|φ�i, �w〉 ≡ V�w|ψ�i〉 =
m−1∑
j=0

c j | j〉. (A3)

Performing multi-controlled-NOT gates with a readout qubit
leads to the state

|φi,w〉|0〉 =
m−2∑
j=0

c j | j〉|0〉 + cm−1|m − 1〉|1〉. (A4)

As a result, when measuring 1 on the readout qubit, the prob-
ability amplitude is

|cm−1|2 = |�iμ · �w|2. (A5)

APPENDIX B: ABBREVIATIONS

In this Appendix, we summarize the abbreviation used in
the main text. In Eqs. (5) and (6) we used∫

w

=
∫ ∞

−∞

∏
k

dwk, (B1)

and in Eq. (9) the measure is∫
w

∫
λ

∫
x

∫
E

=
∫ ∞

−∞

∏
k

dwk

∫ ∞

κ

∏
μ

dλμ

×
∫ ∞

−∞

∏
μ

dxμ

2π

∫ ∞

−∞

dE

2π
, (B2)

in Eq. (12) the abbreviation means∫
F

∫
q

∫
E

=
∫ ∞

−∞

∏
α<β

dqαβ

∫ ∞

−∞

∏
α<β

dFαβ

2π

∫ ∞

−∞

∏
α

dEα

2π
,

(B3)
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and in Eq. (30) we used∫
w

∫
λ

∫
x

∫
E

∫
q

∫
F

=
∫ ∞

−∞

∏
k,α

dwα
k

∫ ∞

κ

∏
μ,α

dλα
μ

∫ ∞

−∞

∏
α,μ

dxα
μ

2π

×
∫ ∞

−∞

∏
α

dEα

2π

∫ ∞

−∞

∏
α<β

dqαβ

∫ ∞

−∞

∏
α<β

dFαβ

2π
. (B4)

APPENDIX C: MONTE CARLO SIMULATION

We apply the Monte Carlo simulation of the classical per-
ceptron with Ising weights [53] to the quantum perceptron.
Here, we elaborate the details of the Monte Carlo simulation.

The first pattern iμ1 = ±1 is chosen at random and we fix a
certain threshold κ . Then, we go through all possible realiza-
tions of the weights and keep only the weights that satisfy the
given threshold κ . This forms the remaining set of the weights,
i.e., the weights that satisfy the given patterns. Then, a second
pattern is chosen at random and we go through all possible
realizations of the remaining set of the weights to keep again
only the subset of weights which satisfy the given threshold
κ . Then, we continue by choosing more random patterns and
updating the set of the weights that fulfill the given threshold.
After a certain number of P patterns that have been introduced
to the perceptron, no choice for the weights exist for P + 1
patterns. This means that for this sample the system can store
exactly P patterns.

Therefore, the value of P depends on the random choices of
the

∑
k iμk = ±1 and the threshold κ . The threshold κ in both

cases is taken to be zero. We need to average P over many
samples and define the estimate of the storage capacity for a
system of size Ns:

α(Ns) = 〈P〉
Ns

. (C1)

For the numerical simulations in Fig. 3, Ns is equal to N
and m for the classical and quantum percepton, respectively.
Moreover, we have 2N and 2m realizations of the weights
for the classical and quantum models, respectively. We used
10 000 samples for each simulation and we performed them
three times to estimate the error. In Fig. 3, we choose odd
values of N to always have ±1 for the classical output and we
use m = 4, 8, 16 since for larger m the computation becomes
intractable.

APPENDIX D: SPECULATIONS ABOUT THE GAUSSIAN
INPUTS

In the derivation of the basic expression

g = α

[
−κ

2
− 1

2
q2(2 + κ )2

]
+ 1

2
ln (1 − q) + 1

2(1 − q)
,

(D1)

where we used an expansion in q, eliminating a part of the
singular behavior at q → 1. The next order contribution in the
effective potential is presumably

[
−κ

2
− 1

2
q2(2 + κ )2

]

≈
[
−κ

2
+ 1

2
(2 + κ )2 − 1

2(1 − q2)
(2 + κ )2

]

and suggests that

αc(2 + κ )2/2 = 1,

implying maximal αc(κ = 0) = 1
2 .
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