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Estimation of equilibration time scales from nested fraction approximations
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We consider an autocorrelation function of a quantum mechanical system through the lens of the so-called
recursive method, by iteratively evaluating Lanczos coefficients or solving a system of coupled differential
equations in the Mori formalism. We first show that both methods are mathematically equivalent, each offering
certain practical advantages. We then propose an approximation scheme to evaluate the autocorrelation function
and use it to estimate the equilibration time τ for the observable in question. With only a handful of Lanczos
coefficients as the input, this scheme yields an accurate order of magnitude estimate of τ , matching state-of-
the-art numerical approaches. We develop a simple numerical scheme to estimate the precision of our method.
We test our approach using several numerical examples exhibiting different relaxation dynamics. Our findings
provide a practical way to quantify the equilibration time of isolated quantum systems, a question which is both
crucial and notoriously difficult.
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I. INTRODUCTION

How do many-body quantum systems approach equilib-
rium? The question to quantify this behavior goes back to
the advent of quantum mechanics. Considerable progress has
been made in the past decades, with concepts like typical-
ity and the eigenstate thermalization hypothesis having been
discovered (and sometimes rediscovered) [1]. However, even
the question if an expectation value 〈O(t )〉 = Tr{O(t )ρ} will
reach a certain equilibration value after some time T and
never depart from it thereafter (until the Poincaré recurrence
time, which is usually parametrically much larger than T ), for
any concrete few-body observable O, Hamiltonian H , and an
initial state ρ, cannot currently be answered with certainty.
An often used concept in this context is the “equilibration on
average” [2]. Here, schematically, the frequency of instants in
time at which 〈O(t )〉 significantly deviates from its temporal
average is considered. There are well developed rigorous the-
orems, asserting this frequency is very small for most practical
situations. However, it is very hard (cf. below) to put a bound
on the time interval for which this frequency statement ap-
plies. Available rigorous bounds are usually too conservative,
exceeding physically observed thermalization time by many
orders of magnitude. Furthermore, very odd dynamics that
are nevertheless in full accord with the principle of equili-
bration on average have been demonstrated [3]. While it has
been shown that, for random Hamiltonians or observables,
these equilibration times are typically very short [4–11], it
is easy to construct setups for which they are exceedingly
long [4,5]. There is an extensive literature establishing bounds
on equilibration times, both upper bounds [11,12] as well as
lower bounds (often called speed limits) [13]. While these
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attempts certainly advance the field, many problems limiting
their practical applicability remain [14].

In this paper we take a different approach to estimate equi-
libration time of an isolated quantum system. We focus on the
dynamics of autocorrelation functions at infinite temperature,
i.e., C(t ) = Tr{O(t )O}. The latter is in close relation with
the dynamics of the expectation values 〈O(t )〉 for a great
variety of initial out of equilibrium states ρ [15,16]. The time
dynamics of C(t ) can be expressed using the recursion method
or in the Mori formalism. Both approaches parametrize C(t )
in terms of a sequence of positive numbers bn, called the
Lanczos coefficients, which are defined by the pair O, H . One
observes that these numbers are the same in both pictures.
We propose an approximation scheme and define CR(t ), an
approximation to C(t ), defined in terms of the first R Lanczos
coefficients. Technically, CR(t ) is defined by leaving first R
coefficients bn intact and declaring bn = bR for n � R. Strictly
speaking CR(t ) coincides with C(t ) only in the limit R → ∞,
but importantly it gives a reasonable approximation for a wide
range of times already for moderate values of R. To select
an appropriate number R we develop a criterion based on a
pertinent area measure for the area under the curve CR(t ),
which constitutes an essential part of our approach. We then
use CR(t ) to estimate the thermalization time for a number
of standard observables and Hamiltonians and find that our
method yields reasonable accuracy across the board already
with R < 10. Since computing the first 10 or so Lanczos
coefficients for local observables and Hamiltonians with local
interactions is usually a straightforward and simple numerical
task, our approach readily provides a practical way to estimate
the equilibration time for many quantum systems and observ-
ables. To summarize, our estimate is not a rigorous bound, but
turns out to be very reasonable in all considered examples.
Related approaches can be found in [1] and [5], but for in a
sense specific types of Hamiltonians and observables, and in
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[11] and [12]. Shortcomings of the approach in [11] and [12]
are pointed out in [14].

This manuscript is organized as follows. First, we present
a scheme to obtain an approximation for the autocorrelation
function within the Mori picture, define suitable equilibration
times, and establish a convergence criterion based on a perti-
nent area measure in Sec. II. Finally, we numerically test our
approach for different types of quantum dynamics in Sec. III.
Brief overviews about the Lanczos and the Mori approach to
autocorrelation functions are provided in Appendixes A and
B, respectively.

II. APPROXIMATION OF DYNAMICS

The object of interest is the infinite temperature autocorre-
lation function of the form

C0(t ) = Tr{O(t )O} (1)

with some pertinent observable O. Here, O(t ) denotes the time
dependence in the Heisenberg picture, O(t ) = eiHt O e−iHt ,
induced by the corresponding Hamiltonian H (h̄ set to 1). O
is assumed to be normalized according to Tr{O†O} = 1. The
dynamics of C0(t ) can be accessed via the recursive method
(Appendix A) or the Mori approach (Appendix B). In both
cases the autocorrelation function is determined by the Lanc-
zos coefficients bn. For a local operator O and a Hamiltonian
with local interactions, the first coefficients bn, up to n of
the order of the system size, are system size independent,
in particular b1. This is an important observation allowing
us later to estimate the thermalization time of C(t ) in the
thermalization limit, when the system is taken to infinity.

A. Memory-kernel approximation

Our main proposal is that the exact dynamics for C0(t )
may be reasonably approximated by a suitably “truncated”
continuous fraction, not in the sense that the resulting approx-
imate correlation function is very close to C0(t ) for all t , but
that it has approximately the same early t behavior and hence
equilibration time (defined below).

Our “truncation” scheme does not assume rendering the
sequence of bn finite, but rather we propose to leave the first
R coefficients bn intact, while setting all subsequent Lanczos
coefficients to be constant bn = bR for all n � R. Although
this may seem to be a radical step from the Lanczos algorithm
point of view, it yields a good approximation, as we see below.

From the Mori viewpoint, rendering all �n = bR constant
for n � R results in a successive application of the same map:

C̃n−1(ω) = 1

iω + b2
RC̃n(ω)

. (2)

Here, instead of s we used s = a + iω and note that knowing
C̃n(s) along the imaginary axis is sufficient to perform the
inverse Fourier transform and determine Cn(t ). Successive ap-
plication of the same transform makes all C̃n(ω) for n � R − 1
the same and equal to a fixed point of the map C̃n(ω) = S̃R(ω)
for n � R − 1, where

S̃R(ω) = −i
ω

2b2
R

+ 1

bR

√
1 −

(
ω

2bR

)2

(3)

for |ω| � 2bR and

S̃R(ω) = i

⎛
⎝− ω

2b2
R

+ sgn(ω)
1

bR

√(
ω

2bR

)2

− 1

⎞
⎠ (4)

otherwise. Here sgn(ω) is the sign function. This result al-
ready first appears in [17].

As a result we get the following approximation C̃R(ω) to
the original exact C̃0(ω): with all kernels C̃n(ω) being equal
to each other for n � R − 1 the continued fraction expansion
becomes finite, e.g., for R = 3,

C̃R=3
0 (ω) = 1

iω + b2
1

iω+ b2
2

iω+b2
3 S̃3 (ω)

. (5)

Overall, this approximation is expected to be more accurate as
R increases. However, our main point is that in many practical
situations it yields a reasonably accurate approximation al-
ready for small R (� 10). In such a case, the Fourier transform
of C̃R

0 (ω) can be readily evaluated numerically, giving rise to
CR(t ). The resulting approximation is therefore determined by
a very small number of Lanczos coefficients, bn with n � R,
but, as we see below, gives a good approximation to C0(t ) for
a wide range of t .

B. Equilibration time

We define the equilibration time τ as the time when the
absolute value of C(t ) drops below some threshold value g and
never exceeds it again, i.e., |C(t )| � g for t � τ , for which we
can calculate C(t ) numerically. This excludes, in particular,
the Poincaré recurrence. Similarly, we denote the equilibra-
tion time of CR by τa (approximate equilibration time) and
|CR(t )| � g for t � τa. Our definition differs from other def-
initions of equilibration time in the literate, e.g., Ref. [12].
It is best suited for situations when C(t ) decays sufficiently
fast. Physically, τ is characterizing local equilibration. Indeed
in most cases τ is finite in the thermodynamic limit, while
global thermalization time, i.e., diffusion time associated with
C(t ) ∼ t−1/2 in 1D systems, would increase indefinitely with
the system size.

Put differently, the definition above is not sensitive to
functional behavior of C(t ) for large t ; see the discussion in
[18,19]. Thus even if there is a slow decaying long tail, e.g.,
∝1/tα , α > 0, which is known to be sensitive to bn with very
large n, the equilibration time τ may still be sensitive only to
a handful of first bn.

Our approach is to estimate τ by evaluating τa. To charac-
terize the resulting discrepancy we introduce a relative error
defined as

ετ,R =
∣∣∣∣ τa − τ

min(τa, τ )

∣∣∣∣ . (6)

C. Area estimate and equilibration time

Since the evaluation of ετ,R is not possible without knowl-
edge of the exact τ , below we propose an indirect method to
control the precision. Namely, we introduce another measure
of precision to determine the minimal suitable value of R.
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To assess the precision, we introduce the “area measure”
defined as the area under CR(t ),

AR =
∫ ∞

0
CR(t )dt = C̃R

0 (0). (7)

This measure is easy to calculate analytically, yielding

AR = 1

b1
�R−1

n=1

(
bn

bn+1

)(−1)n

. (8)

In a similar way we introduce the area under the exact C(t ),
A = C̃0(0).

The approximated correlation function CR(t ) can only be
a good description of C(t ) so far as the area measures for
both are not significantly different from each other. When R
increases, AR will converge to A (this statement is intuitive but
mathematically subtle; see [20]). We intend to choose R as
small as possible, so that AR will not be too different from A.
As a measure of convergence we can use the relative error

εA,R = 1

2

( |AR − AR+1|
AR

+ |AR − AR+2|
AR

)
(9)

and choose the smallest R, for which εA,R falls below some
predefined threshold a.

We emphasize that evaluating the area measure (8) is easy
and only requires a small number of Lanczos coefficients.

As a consistency check of our proposal we note that,
for typical quantum systems satisfying the universal operator
growth hypothesis of [18] and exhibiting linear growth of
Lanczos coefficients bn = c n + d , the area measure AR con-
verges with the rate 1/R. We consider an example of a system
exhibiting such a behavior below.

There are certainly examples where the area A and hence
the approximation (8) diverges, e.g., autocorrelation functions
of on-site spin operators in a diffusive 1D spin system, which
decays as ∝1/

√
t . In this case our area-based indirect mea-

sure of accuracy is not applicable, although the approach of
estimating τ using CR(t ) may still hold.

In the following, our goal is to demonstrate that there is a
correlation between the relative area error εA,R and the relative
equilibration-time error ετ,R such that if εA,R is reasonably
small, then ετ,R is relatively small as well, which in turn
means that τa is a reasonable approximation for τ . We show
this numerically for several models with different archetypal
dynamics.

D. Example: SYK model

First, to illustrate the approach above we consider a
standard example of a quantum chaotic system—the Sachdev-
Ye-Kitaev (SYK) model describing N interacting Majorana
fermions [21]. This case can be treated semianalytically, i.e.,
in a certain limit Lanczos coefficients and correlation func-
tions can be obtained analytically. In the large q limit, where
q is the number of fermions in the interacting term, the corre-
lation function and the Lanczos coefficients can be described
analytically,

C(t ) = 1

coshη(αt )
, b2

n = α2n(n + η − 1), (10)

FIG. 1. Actual and approximated correlation functions for dif-
ferent values of R for the SYK model with η = 2. Inset shows
equilibration times of approximated correlation functions for differ-
ent values of R with equilibration-time threshold g = 0.03.

with some positive α, η. The same C(t ) and bn appear in the
context of 2D conformal field theories, with α being related
to inverse temperature and η to the operator’s dimension [22].
The correlation function (10) is decaying exponentially, with
the “area measure” (7)

A = 
(1/2)
(η/2)

2α
[(1 + η)/2]
(11)

and thermalization time τ ≈ − ln g/(αη).
Now we use our approximation scheme by changing all

bn for n � R to be bn = bR. This behavior is very accurately
describing actual Lanczos coefficients in a model of a 1D
free scalar field, with a UV cutoff of order bR; see [23]. As
one may expect, a UV cutoff does not significantly affect the
two-point function until the times inversely proportional to its
value. Accordingly, the area measure of the new correlation
function (8), which can be evaluated analytically, converges
to the true result with the 1/R rate,

AR =
√

π 

(

η

2

)√
η+R−1

R 

(

R+1
2

)



(R+η

2

)
2


(
η+1

2

)



(
R
2

)



(
1
2 (R + η + 1)

)
= A

(
1 − 1

2R
+ 2η − 1

8R2
+ · · ·

)
. (12)

This confirms that taking R ≈ 10 would provide a reasonably
good accuracy for the estimation of the area measure. Simi-
larly, τa will give a reasonable approximation to τ , as follows
from the numerical plot of CR(t ) in Fig. 1.

III. NUMERICS

In the following, we test our approach numerically for
several typical quantum models. Generally these models are
all relevant in the context of condensed matter physics and are
chosen to cover a wide range of different types of dynamics
as well as a wide range of equilibration time scales.
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FIG. 2. Numerically calculated Lanczos coefficients for the
tilted-field Ising model.

A. Tilted-field Ising model

We begin with the tilted-field Ising model, i.e., an Ising
spin chain with a tilted magnetic field that has components
along two directions (here x and z). This model is an example
for the type of models consisting of a system without a bath.
The Hamiltonian reads

H = H0 + Bx

∑
l

σ l
x , (13)

H0 =
∑

l

Jσ l
xσ

l+1
x + Bzσ

l
z , (14)

where σx,z are the respective spin components, J is the spin
coupling constant, and Bx,z are the components of the applied
magnetic field. We set J = 1.0, Bz = −1.05 and use Bx as
a tunable parameter. For Bx = 0 the magnetic field is not
tilted and the model is integrable, whereas for Bx 
= 0 the
model becomes nonintegrable. As an observable of interest,
we consider a fast mode [24]

O ∝
∑

l

cos(π l )hl , (15)

with hl being the local energy, i.e., H = ∑
l hl ,

hl = Jσ x
l σ x

l+1 + Bx

2

(
σ x

l + σ x
l+1

) + Bz

2

(
σ z

l + σ z
l+1

)
. (16)

For the calculation, we choose a system with L = 24 spins and
periodic boundary conditions. The dynamics of this observ-
able is the case of a rather fast decaying correlation function;
for a further discussion see [25]; the corresponding equilibra-
tion time is rather short. The finite length L is only relevant for
the numerical calculation of the actual correlation function.

Corresponding Lanczos coefficients are depicted in Fig. 2.
These coefficients are system size independent. Their values
are obtained by increasing the length L to be large enough
such that finite size effects vanish. (For this model the first L/2
Lanczos coefficients correspond to infinite-system values.)

FIG. 3. Numerically calculated Lanczos coefficients for σ S
z in the

model of a spin-1/2 coupled to a bath.

B. Spin-1/2 coupled to an Ising spin bath

Next, we consider a model of a single spin-1/2 coupled to
a bath, which consists of an Ising spin model with an applied
magnetic field. This model is an example for the type of
models consisting of a system and a bath. The corresponding
Hamiltonian reads

H = HS + λHI + HB, (17)

with

HS = ωσ S
z , (18)

HI = σ S
x σ 0

x , (19)

HB =
∑

l

Jσ l
z σ

l+1
z + Bxσ

l
x + Bzσ

l
z . (20)

The parameters are chosen to be

ω = 1, J = 1, Bx = 1, Bz = 0.5. (21)

The length of the bath is L = 20 and we use periodic boundary
conditions. Finite L effects are only important for the exact
C(t ); all evaluated bn are universal. Here HS is the Hamilto-
nian of the single spin, HB is the bath Hamiltonian, and HI

introduces a coupling of the single spin to the first spin of
the bath via the corresponding x components. We investigate
different scenarios for this model by varying the coupling
strength λ. As observables of interest for the correlation func-
tion, we analyze here the z component of the single spin,
O = σ S

z , and the respective x component, O = σ S
x .

The Lanczos coefficients are shown in Figs. 3 and 4. Note
that for both observables all Lanczos coefficients, except for
the first one, are very similar. For the observable σ S

z , the
first Lanczos coefficient b1 is much smaller compared to the
others bn’s. It decreases for smaller interaction strength λ.
For the observable σ S

x , similar behavior is exhibited by the
second Lanczos coefficient b2. This feature has an immediate
consequence for the value of AR. For small coupling strengths
λ, the observable σ S

z exhibits a slow exponential decay and
σ S

x exhibits a slow, exponentially damped oscillation [26]; see
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FIG. 4. Numerically calculated Lanczos coefficients for σ S
x in the

model of a spin-1/2 coupled to a bath.

Fig. 12. Both examples feature a rather large equilibration
time scale. Numerically calculated exact correlation functions
for two sets of parameters are shown further below in Figs. 12
and 13. The curves are obtained using a numerical approach
based on quantum typicality [26].

C. Numerical equilibration times

We now study how the area estimation criterion can be used
to determine the relevant R to achieve a reasonable approxi-
mation of τ . In Figs. 5 and 6 we show the relaxation-time error
ετ,R versus the area error εA,R, for the area-error thresholds
a = 0.25 and a = 0.1. In both cases, we choose g = 0.03 as
the threshold value to define equilibration times τ , τa from
the numerically calculated curves [26]. While there is no
functional dependence visible between εA,R and ετ,R, one may
conclude that, for all cases shown, whenever the area error is
below a reasonably small threshold, this assures that ετ,R is

FIG. 5. Relative area error εA,R (with threshold a = 0.25) versus
relaxation time error ετ,R (with threshold g = 0.03) for all models
considered. All R lie between 1 and 4.

FIG. 6. Relative area error εA,R (with threshold a = 0.1) versus
relaxation time error ετ,R (with threshold g = 0.03) for all models
considered. All R lie between 1 and 8.

also sufficiently small, allowing one to estimate τ from τa, at
least within an order of magnitude. (A factor 12 for a = 0.25
and factor 5 for a = 0.1.) Note that points corresponding to,
e.g., the largest R do not systematically correspond to smallest
ετ,R or εA,R. Therefore, the area estimation appears to be a
useful and easily accessible tool to determine a minimal R
for a satisfactory approximation of the correlation function in
terms of a finite fraction (B2).

Figures 7 and 8 show exact versus approximated relaxation
times for all models considered, again for the R determined by
the area threshold a = 0.25 and a = 0.1. As already visible in
Figs. 5 and 6, one finds that approximated and exact relaxation
times do not differ substantially from each other. Figures 7
and 8 also show that our models cover a quite large range
of equilibration time scales, from fast decay for the tilted
field model to slow (exponential) relaxation and oscillation
for the spin coupled to a bath model [26]. In order to relate our

FIG. 7. Correct equilibration time τ versus approximated equi-
libration time τa, with R from area threshold a = 0.25 and
equilibration-time threshold g = 0.03, for all models considered. All
R lie between 1 and 4.
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FIG. 8. Correct equilibration time τ versus approximated equili-
bration time τa, with R from area threshold a = 0.1 and equilibration-
time threshold g = 0.03, for all models considered. All R lie between
1 and 8.

approach to the literature we introduce a further equilibration
time defined by the time-averaged quantity

τ̄ =
∫ ∞

0
|C(t )|2 dt, τ̄a =

∫ ∞

0
|CR(t )|2 dt, (22)

for both the correct and the approximated correlation func-
tions. This definition essentially corresponds to the equilibra-
tion time regarded in [11]. The times (22) are less sensitive
against the detailed shape of the respective correlation func-
tion and upswings at later times than τ and τc based on
thresholds. Figures 9 and 10 show exact versus approximated
time-averaged relaxation times for all models considered,
again for the R determined by the area threshold a = 0.25 and
a = 0.1. As expected the agreement is even better than for the
relaxation times based on thresholds. To further demonstrate
the strength of our approach, we compare our approximation
of the time-averaged equilibration time with an estimate of an

FIG. 9. Correct averaged equilibration time τ̄ versus approxi-
mated averaged equilibration time τ̄a, with R from area threshold
a = 0.25, for all models considered. All R lie between 1 and 4.

FIG. 10. Correct averaged equilibration time τ̄ versus approxi-
mated averaged equilibration time τ̄a, with R from area threshold
a = 0.1, for all models considered. All R lie between 1 and 8.

upper bound of the equilibration time derived in [11], which
is depicted in Fig. 11. In [11], this bound p is specified to be
proportional to 1/

√
∂2C0(t = 0)/∂t2, which in the Lanczos

or Mori formulation amounts to ∝1/b1. (For simplicity, we
assume the proportionality constant to be 1.) We also note that
a somewhat similar approach to describe the autocorrelation
function with help of the first few coefficients bn with the
emphasis on b1 was recently undertaken in [27].

Although there are limitations to this comparison, one
may observe that our estimated time-averaged equilibration
times are systematically much closer to the solid line, which
represents the case when actual equilibration time and the ap-
proximate one coincide. For the spin coupled to a bath model,
the approximation from [11] yields a constant for the σ S

x com-
ponent and a square root dependence in the double logarithmic
plot for the σ S

z component, for the small coupling-large equi-
libration time cases. Note that the slow oscillation for the σ S

x
case [26] is basically excluded in [11], because the frequency

FIG. 11. Correct averaged equilibration time τ̄ versus bound p
from [11], for all models considered.
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FIG. 12. Actual and approximated correlation functions for dif-
ferent values of R for σ S

x , λ = 0.5 in the model of a spin-1/2 coupled
to a bath. Inset shows equilibration times of approximated correlation
functions for different values of R with equilibration-time threshold
g = 0.03.

distribution is not unimodal. Additionally, the approach in
[11] systematically fails for examples where the variance of
the Fourier transform of the correlation function does not
exist, as explained in [14], which applies for the exponential
relaxation for the σ S

z case. Along these lines the latter two
examples yield substantially worse comparisons between ap-
proximated equilibration time and bound than the others.

Beyond a mere estimation of equilibration time, we pro-
pose that the “terminated” continued fraction (5) may give a
reasonable approximation for the actual correlation function
itself. To analyze this feature, we show in Figs. 12 and 13
approximated correlation functions for different values of R
for examples that represent cases where our estimation for the
equilibration time works best and worst, i.e., σ S

x for λ = 0.5
(best) and σ S

z for λ = 1.0 (worst) for the model of a spin-1/2

FIG. 13. Actual and approximated correlation functions for dif-
ferent values of R for σ S

z , λ = 1.0 in the model of a spin-1/2 coupled
to a bath. Inset shows equilibration times of approximated correlation
functions for different values of R with equilibration-time threshold
g = 0.03.

coupled to a bath. (The examples are chosen according to the
smallest and largest relaxation time error ετ,R for area error
threshold a = 0.1 and equilibration-time threshold g = 0.03).
One finds a very good agreement even for small values of R
for the good case and there is no severe qualitative difference
in the behavior in the worst case. For both cases one may
deduce that the disagreement becomes smaller for growing
R and that there is a convergence for large R, although this
behavior is not robust for small R.

IV. CONCLUSION

We have demonstrated that descriptions of the autocorrela-
tion dynamics in the recursive (Lanczos algorithm) and Mori
formulations are equivalent and, with the help of Laplace
transforms, can be recast in terms of a continued fraction
expansion. Using this technique we introduced an approx-
imation CR(t ) to the autocorrelation function C(t ) that is
fully determined by a small number of the first R Lanczos
coefficients and therefore easy to evaluate numerically in
most situations. We have compared suitably defined equili-
bration times for an actual exact correlation function and the
approximation and found that the latter gives a reasonable
estimation for the former. In order to control the precision
of our approximation, we introduced a formalism based on
an area measure, which evaluates the area under C(t ), as an
essential part of our approach. This measure is very sim-
ple to evaluate and is considered beforehand to determine
the minimal necessary number R of Lanczos coefficients to
achieve the desired level of accuracy with great efficiency. We
have numerically validated this approach by comparing how
the quality of equilibration time estimation is correlated with
the precision in estimating the area measure. We numerically
considered several archetypal quantum models that exhibit a
variety of different relaxation behaviors and a broad range of
equilibration time scales.

We envision our approximation scheme for C(t ) in terms of
CR(t ) to be useful for various applications beyond an equili-
bration time estimation. Moreover, extending the approach to
finite temperature correlation is an interesting topic for future
research.
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APPENDIX A: RECURSIVE METHOD
AND LANCZOS COEFFICIENTS

Lanczos coefficients emerge as a part of the so-called re-
cursion method. The object of interest is the autocorrelation
function of the form

C(t ) = Tr{O(t )O} (A1)

024126-7



CHRISTIAN BARTSCH et al. PHYSICAL REVIEW E 110, 024126 (2024)

with some pertinent observable O. Here, O(t ) denotes the time
dependence in the Heisenberg picture, O(t ) = eiHt O e−iHt ,
induced by corresponding Hamiltonian H (h̄ set to 1).

In Liouville space, i.e., the Hilbert space of observables,
the elements O can be denoted as states |O). The time evolu-
tion is then induced by the Liouville superoperator defined
as L|O) = |[H, O]). A suitable inner product is given by
(O1|O2) = Tr{O†

1O2}, which in turn defines a norm ‖O‖ =√
(O|O). The correlation function C(t ) may then be written

as C(t ) = (O|eiLt |O).
Now, one may iteratively construct a set of observables

On starting with the “seed” O0 = O, where O is assumed to
be normalized, i.e., (O0|O0) = 1. We set b1 = ‖LO0‖ and
|O1) = L|O0)/b1. One can now employ the (infinite) iteration
scheme

|Qn) = L|On−1) − bn−1|On−2), (A2)

bn = ‖Qn‖, (A3)

|On) = |Qn)/bn, (A4)

where {|On)} constitute the Krylov basis and bn are the Lanc-
zos coefficients, which are real and positive and the crucial
constituent in our analysis [29].

Using the Lanczos algorithm, one may cast the time
evolution of the components of a vector �x, defined as
xn(t ) = i−n(On|O(t )), into the form

�̇x = L �x (A5)

with the matrix L,

L =

⎛
⎜⎜⎜⎝

0 −b1 0 0 · · ·
b1 0 −b2 0 · · ·
0 b2 0 −b3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ , (A6)

which is similar to the standard Schrödinger equation.
Then, the first component of �x is the correlation function of
interest, x0(t ) = C(t ). The initial condition is always given
by xn(0) = δ0n.

Note that L is here an anti-Hermitian tridiagonal matrix,
but the components xn are all real numbers which is very
convenient for the following analysis.

For clarity, the above set of equations may also be written
as

ẋ0(t ) = −b1x1(t ), (A7)

ẋn(t ) = bnxn−1(t ) − bn+1xn+1(t ), n � 1. (A8)

That is, the dynamics of the correlation function C(t ) may
be calculated as occupation amplitude of the “first” site in a
one-dimensional noninteracting hopping model without spec-
ifying any details of H and A.

In the following, we assume that the final Lanczos coeffi-
cient bm+1 is equal to 0 (for possibly large m). This is always
the case for systems with a finite-dimensional Hilbert space.
Doing so closes the infinite set of equations in the Lanczos
formulation (A5), which in turn allows us to perform the
Laplace transform of the now finite set of equations to arrive at

the following finite “continued” fraction expansion. Say, when
m = 3 and b4 = 0 we have explicitly

x̃0(s) = 1

s + b2
1

s+ b2
2

s+ b2
3
s

. (A9)

Here, x̃0(s) is the Laplace transform of x0(t ).
The continued fraction representations of the equations of

motion (A8) were given in [17].
In practice the complexity of evaluating bn numerically

quickly grows with n, such that only a handful of first bn are
usually available. For a local operator O and a Hamiltonian
with local interactions the first coefficients bn, up to n of the
order of the system size, are system size independent.

APPENDIX B: MORI FORMULATION OF DYNAMICS

In the previous section we presented the description of
the correlation function in terms of the recursive method
and the Lanczos algorithm. There is an alternative approach
of Mori [30,31], with the time evolution specified by a set
of functions Cn(t ) satisfying a coupled series of Volterra
equations,

Ċn(t ) = −�2
n+1

∫ t

0
Cn+1(t − t ′)Cn(t ′)dt ′, (B1)

where C0(t ) = x0(t ) = C(t ) is the correlation function itself.
Each function satisfies Cn(0) = 1 and �2

n+1Cn+1(t ) acts as
a memory kernel for the dynamics of Cn(t ). The value of
constants �2

n+1 defines the value of the memory kernels at
time t = 0.

Both dynamical descriptions are equivalent [32] and as we
show momentarily the constants �n are equal to the Lanczos
coefficients bn.

Within the Mori formulation (B1) the condition bm+1 = 0
is equivalent to the condition that the normalized memory
kernel Cm(t ) is a right-continuous Heaviside step function
�(t ), i.e., Cm(t ) decays arbitrarily slowly or rather not at all.
In this case, Laplace transforming (B1) [assuming m = 3 and
C3(t ) = �(t )] yields

C̃0(s) = 1

s + �2
1

s+ �2
2

s+ �2
3

s

, (B2)

where C̃0(s) = x̃0(s) is again the Laplace transform of
the autocorrelation function. Continued fraction represen-
tations in the context of the Mori approach have been
formulated in [33].

Comparing the Laplace transforms (A9) and (B2) readily
yields that both dynamical descriptions are equivalent and that
�n = bn.

The recursive and Mori methods can both be understood
from the lens of completely integrable dynamics; see [34].

As a spin-off observation, not related to the following
analysis, we note that the time evolution of Cn(t ) (n � 1)
corresponds to the time evolution of xn(t ) but with a time
evolution operator obtained by deleting the first n rows and
columns of L. [Also, the initial conditions are different:
Cn(0) = 1 and xn(0) = 0 for n � 1].
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