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In one-dimensional low-density Jaynes-Cummings Hubbard (JCH) models [Phys. Rev. E 106, 064107 (2022)],
we proved that the eigenstate thermalization hypothesis (ETH) is valid when the tunneling strength and coupling
strength are of the same order. Surprisingly, at the weak tunneling limit, we observed that the entanglement
entropy and scaling law of kinetic energy operators also exhibit obvious quantum chaotic properties, this is an
unexpected result. To substantiate these findings, we further discuss their nonequilibrium dynamics in this paper.
Our analysis reveals that when the model is a weak tunneling limit after the quench and the initial state is an
equilibrium state of chaos, the system reaches an equilibrium state. This observation supports the conclusion that
the low-density JCH model at the weak tunneling limit is nonintegrable, corroborating our previous results [Phys.
Rev. E 106, 064107 (2022)]. Additionally, by discussing the validity of the fluctuation-dissipation theorem (FDT)
and the evolution behavior of entanglement entropy and fidelity, we numerically demonstrate the differences
between the one-dimensional low-density JCH model and general nonintegrable systems. Specifically, in the
low-density JCH model, when the Hamiltonian after the quench is integrable, the validity of FDT depends
on the thermal behavior of the initial Hamiltonian, and a metastable state is observed during the evolution of
entanglement entropy. Our research presents an an intriguing and unique nonintegrable model, enriching the
current understanding of nonintegrable systems.
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I. INTRODUCTION

A fundamental challenge in physics is how isolated quan-
tum systems evolve on being taken out of equilibrium. For
some complex quantum systems, research has found that they
inevitably undergo thermalization [1–7], namely, regardless of
their initial state, their dynamics all tend to relax to an equi-
librium state. This behavior is characteristic of what is known
as a quantum chaotic system. However, not all quantum sys-
tems exhibit this behavior. For example, quantum integrable
systems, which possess a rich symmetry, are incapable of
thermalizing [2,8–13].

In 2008, Rigol et al. numerically demonstrated that the
mechanism of thermalization in quantum chaotic systems
is the eigenstate thermalization hypothesis (ETH) [14–16].
When the ETH holds true, for few-body observables, the
diagonal matrix elements are smooth functions of energy
within the eigenstate of the system, while the off-diagonal
elements decrease exponentially with increasing system size.
The ETH states that the various eigenstates of a quantum
ergodic system can act as thermal ensembles, implying that
the relaxation of the system is not strongly dependent on the
initial conditions. Although the ETH has been widely applied
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in testing across different quantum systems [1,8,10–12,14,17–
30], there has been relatively little exploration of thermal
properties in coupled cavity systems [31–33]. We use the
one-dimensional JCH model within a coupled cavity system
as an case study to investigate these properties. In this model,
each cavity contains a single two-level atom, where photons
interact with the two-level atoms and form an array through
photon tunneling between cavities. We have shown that, with
the weak tunneling limit, the system is close to the integrable
model and cannot achieve thermalization [13]. However, the
one-dimensional low-density JCH model exhibits quantum
chaotic properties at weak tunneling limits, and the distribu-
tion of the majority of matrix elements indicates compliance
with the ETH. This finding has sparked significant interest,
prompting us to further explore the nonequilibrium dynamics
of the low-density JCH model under weak tunneling limits.

The fluctuation-dissipation theorem (FDT) is a pivotal con-
cept in statistical mechanics that describes the relationship
between a system’s linear response to external perturbations
and fluctuations in the equilibrium state [34,35]. Experimen-
tally, the FDT has been found to be fully applicable across
various contexts, including Brownian motion [36], electrical
currents in resistors [37], quantum gas of light [38], and
settings involving cold atomic gases [39–42]. The FDT is
one of the indicators of thermal equilibrium state [43,44], but
it is difficult to hold in nonequilibrium systems. Therefore,
it has been utilized to differentiate between equilibrium and
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nonequilibrium dynamics [45]. Recent theoretical works sug-
gest that FDT can be extended to a nonequilibrium steady
state for fluids [46], and researchers have proposed a theory-
independent method to characterize thermalization through
the observation of emerging fluctuation-dissipation relations
[47]. To explore the relationship between quantum ther-
malization, fluctuations, and dissipation in isolated quantum
systems, we have conducted numerically investigations into
the applicability of ETH and FDT within the nonequilibrium
dynamics of low-density JCH models. Our findings indicate
that the validity of FDT is contingent on the thermal char-
acteristics of the initial Hamiltonian. Furthermore, we note
that although the low-density JCH system exhibits chaotic
behavior in the weak tunneling limit, its chaotic properties are
not entirely analogous to those observed in standard chaotic
systems.

The paper is organized as follows. In Sec. II we present
the Hamiltonian and the symmetry of the low-density JCH
system. Next in Sec. III, we discuss the quench dynamics of
the normalized integrable difference. In Sec. IV, the valid of
the ETH and FDT are checked with different quench types.
In Sec. V, we present the evolution of the half-chain entan-
glement entropy and fidelity for different initial states. The
conclusion is given in Sec. VI.

II. MODEL AND SYMMETRY

In the resonant case, using the operator Û , the Hamiltonian
of a one-dimensional extended JCH model in the rotating
frame is (h̄ = kB = 1 throughout this paper) [13]

Ĥ = − J
M−1∑

j

(â†
j â j+1 + â†

j+1â j ) + g
M∑
j

(â j σ̂
+
j + â†

j σ̂
−
j )

+ V
M∑
j

n̂σ
j n̂σ

j+1, (1)

where Û = exp[i
∑M

j=1(ωcâ†
j â j + ε0σ̂

+
j σ̂−

j )t], the parame-
ters ωc and ε0 represent the frequency of the cavity field and
the transition frequency of the atom, respectively. The process
of rotating frame transformation is shown in Appendix A. In
Eq. (1), the symbol â†

j (â j ) is creation (annihilation) operator
of the photon on site j, σ̂+

j = |e〉〈g| and σ̂−
j = |g〉〈e| are

the spin-flip operators for atoms on site j. The first term
in Eq. (1) is the nearest neighbor tunneling of the photons
denoted by J , and the second term is the coupling between
photons and atoms in the same site with strength g. The
last term is the dipole-dipole interaction between atoms. We
define the total excitation number operator involved photons
and atoms is conservative and equals the number of lattice
sites M, i.e., 〈N̂〉 = ∑M

j=1〈N̂j〉 = ∑M
j=1(〈â†

j â j〉 + 〈σ̂+
j σ̂−

j 〉) =
M. But, in this paper, we mainly focus on the case that
the JCH model is excited at low-density ρ ≡ 〈N̂〉/M = 1,
where the maximum of photons is taken one in each cavity,
so (â†

j )
2 = (â j )2 = 0.

For the open boundary condition, when V = 0, the Hamil-
tonian Ĥ possesses several symmetries. The first is reflection
symmetry, which introduces extra degenerates in the energy
spectrum. The second is chiral symmetry, which ensures the

energy spectrum is symmetric about E = 0, and the diago-
nal elements are symmetric with respect to the eigenvalues.
The third is particle-hole symmetry, which also induces extra
degenerates, and results in no fluctuations in the diagonal
elements of the photon occupation operator n̂ [48]. When the
tunneling strength and the coupling strength are of the same
order, the model is nonintegrable, and the average restricted
energy gap ratio conforms to the statistics of the Gaussian
orthogonal ensemble. However, in the weak tunneling limit,
the low-density JCH model displays abnormal thermalization
indicators. The average restricted energy gap ratio then ex-
hibits an unusual statistical behavior that does not conform to
either Poisson or Gaussian orthogonal ensemble, yet the ETH
remains valid.

When V �= 0, the particle-hole symmetry is broken, the
Hamiltonian Ĥ is also nonintegrable with the same order and
the ETH is valid, but the ETH is destroyed with the weak
tunneling limit.

III. THE RELAXATION DYNAMICS OF THE KINETIC
ENERGY OPERATOR

In our previous work, we demonstrated that under the
weak tunneling limit, the level spacing distribution of the
low-density JCH model does not satisfy either the Poisson
or the Wigner-Dyson distributions. However, the finite-size
scaling of the matrix elements for the kinetic energy operator
of the photons, given by T̂ = 1

M

∑M
j (â†

j â j+1 + â†
j+1â j ), does

satisfy the ETH. This result is surprising and is opposite to that
observed in the standard JCH model under the weak tunnel-
ing limit. To further investigate this abnormal thermalization
indicator, we will discuss the nonequilibrium dynamics of the
low-density JCH system. Due to the structure of the model
and the ease of detection in experiments, the observables we
can discuss are limited to the photon number operator and
the photon kinetic energy operator. However, due to particle-
hole symmetry, the diagonal elements of the particle number
operator (photon number or atomic number) with per site are
constant [48], and there is no fluctuation in the dynamic evo-
lution of the particle number operator, thus we do not consider
this physical observable. Additionally, considering the dipole-
dipole interactions, the particle-hole symmetry is broken, we
calculated the evolution of the particle number operator and
the kinetic energy operator as observables and found that their
results are consistent (see Appendix C). Therefore, we only
present the evolution results of the photon’s kinetic energy
operator in the main text.

The means of nonequilibrium chosen here is quantum
quenches. In the following discussion, for the initial Hamil-
tonian Hi before the quench, we consider two parameter
regimes: one where the tunneling and the coupling strengths
are of the same order (J/g = 1) and another representing
weak tunneling limit (J/g = 0.001), with dipole-dipole inter-
actions are not considered. There are three parameter regimes
of the model used to denote the Hamiltonian Hf after the
quench: The tunneling and the coupling strengths are of the
same order (J/g = 1), the weak tunneling limit (J/g = 0.001)
without dipole-dipole interactions, and the weak tunnel-
ing limit with dipole-dipole interactions (J/g = 0.001,V/g =
0.5). The initial state is selected such that the total energy
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FIG. 1. Time evolution of δT after a sudden quench in low-
density JCH models with M = 6, 7, 8. Results are presented for
quenches from Ji/g = 1 to Jf /g = 0.001 (a), Ji/g = 0.001 to Jf /g =
1 (b), in these two quenches type, the dipole-dipole interactions
cannot be considered for initial and final Hamiltonians. Results
are presented for quenches from Ji/g = 0.001 to Jf /g = 0.001 and
V/g = 0.5 (c), and Ji/g = 1 to Jf /g = 0.001 and V/g = 0.5 (d),
here two quenches type, the initial Hamiltonian still does not in-
clude dipole-dipole interactions, but it is considered in the final
Hamiltonian.

Etot = 〈φi|Ĥf |φi〉 corresponds to that of a canonical ensemble
with an inverse temperature β = 0.2 for different quenches.
Here |φi〉 is a eigenstate state of the initial Hamiltonian Hi,
satisfying Etot = Tr{e−βĤ f Ĥ f }/Tr{e−βĤ f }. The analysis of dif-
ferent low temperatures revealed no significant impact on the
results in Appendix B. We calculate the normalized integrable
difference δT (t ) = |〈T̂ (t )〉−T |

T
[49], which is used to observe the

relaxation dynamics of the kinetic energy operator. In this
expression, the denominator represents the long-time aver-
age of the kinetic energy operator, and the molecule is the
absolute difference between its expected value at a certain
time and the long-time average of the kinetic energy oper-
ator. Figure 1 shows the evolution of δT in time for four
different types of quenches, which are achieved by vary-
ing the tunneling strength of the photons in finite systems.
The first two quench types do not consider dipole-dipole
interactions in Eq. (1): type (i) transitions from Ji/g = 1 to
Jf /g = 0.001 and type (ii) from Ji/g = 0.001 to Jf /g = 1.
In Figs. 1(a) and 1(b), it is observed that for type (i), the
evolution of δT towards small amplitude oscillation takes
a long time compared to type (ii). However, the amplitude
of their oscillations significantly decreases with increasing
M, which indicates that the ETH is valid under these two
quenches. This is consistent with our previous analysis [48],
indicating that both the same order and the weak tunneling
limit are nonintegrable. To explore the differences between
these two nonintegrable cases, we set them as the Hamil-
tonian before the quench, while the Hamiltonian after the
quench is considered as weak tunneling limit with the dipole-
dipole interaction: type (iii) transitions from Ji/g = 0.001 to
Jf /g = 0.001 and V/g = 0.5, and type (iv) from Ji/g = 1 to

Jf /g = 0.001 and V/g = 0.5. We have numerically predicted
that the Hamiltonian with J/g = 0.001 and V/g = 0.5 in
Eq. (1) is integrable [48], and thus the evolution of δT is
depended on the Hamiltonian before the quench, as shown
in Figs. 1(c) and 1(d). It is evident that the amplitude of
the oscillations is relatively large and does not decrease with
increasing M. Therefore, for the types (iii) and (iv), the ETH
fails. These results are consistent with the ones obtained from
the distribution of matrix elements of the observable. It should
be noted that for the weak tunneling strength J/g = 0.001
mentioned above, the evolution behaviors of δT are com-
pletely consistent with the weak tunneling strengths J/g =
0.005 and J/g = 0.01. Therefore, here we only present the
evolution result of J/g = 0.001, and the following discussion
will consider only this parametric case.

IV. FLUCTUATION-DISSIPATION THEOREM

From the point of view of thermal properties, it seems that
we cannot clearly find differences between weak tunneling
limit and the same order in the absence of dipole-dipole
interactions. Therefore, next we focus on the applicability
of the FDT in one-dimensional low-density JCH models af-
ter a quantum quench. The correlation function CFluc(t ) is
determined by the second moments of a probability distri-
bution for observable Ot , which is defined as [50] CFluc(t ) =
Ot+t ′O′

t/(Ot ′ )2. Therefore, CFluc(t ) can be written as

CFluc(t ) ∝
∑
αβ

α �=β

|cα|2|cβ |2|Oαβ |2ei(Eα−Eβ )t , (2)

where Eα and Eβ are the eigenvalues ordered in increasing
values of energy, and their corresponding eigenstates are |α〉
and |β〉. cα = 〈α|φi〉, CFluc(t ) explicitly depends on the initial
state through cα . When thermalization occurs, according to
the ETH, the correlation function can be defined as [50,51]

CAppr (t ) ∝
∫ +∞

−∞
dw| f (E ,w)|2eiwt , (3)

where E ≡ 1
2 (Eα + Eβ ), w ≡ Eα − Eβ . f (E ,w) is a smooth

function of their arguments. Equation (3) implies that CFluc(t )
does not depend on the initial state under the ETH. Here the
function f (E ,w) is replaced by the fcg(w), which is obtained
by coarse-graining the off-diagonal values. The discussions
of the off-diagonal matrix elements are limited to a narrow
energy window centered around the middle of the spectrum,
which is defined by the following expression(

1 − ε

2

)
< ε̄ <

(
1 + ε

2

)
, (4)

Here ε is defined as the width of the window, ε̄ = εα+εβ

2 ,
εα = Eα/Etot , and εβ = Eβ/Etot are reduced eigenvalues, the
corresponding eigenstates are |α〉 and |β〉. The eigenstates are
chosen within the energy window of ε = 0.1.

For t � 0, we assume that the quantum state of the system
is described by a density matrix ρ0 = |φi〉〈φi|. For t � 0, this
state evolves with the Hamiltonian Hf after a quench, the den-
sity matrix at an arbitrary time is ρt = e−iHf tρ0eiHf t . There-
fore, the time-dependent expectation value is Ot ≡ Trρt O,
assuming that the perturbation is small, then Ot = CDiss(t )O0.
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FIG. 2. The time evolution of the correlation functions CFluc(t ),
CAppr (t ), and CDiss(t ) related to the observable T̂ . Ji/g and Jf /g
represent the tunneling strength of photons before and after the
quench, respectively. The insets show normalized histograms of
CFluc(t ) (empty red bars) and CDiss(t ) (filled blue bars) calculated for
2000 data points between gt = 0 and 10000 [(a) and (b)] and between
gt = 0 and 100 [(c) and (d)]. We set CFluc(0) = CAppr (0) = CDiss(0) =
1 [53].

Through Kubo’s formula [50,52], CDiss(t ) can be written as

CDiss(t ) ∝
∑
αβ

α �=β

e−Eα/T − e−Eβ/T

Eβ − Eα

|Oαβ |2ei(Eα−Eβ )t . (5)

In Fig. 2, the time evolution of three correlation functions is
depicted by T̂ as physical observables. Figures 2(a) and 2(b)
show that for quenches type (i), the three correlation func-
tions initially exhibit significant oscillations, after a long time
evolution, the oscillation amplitude gradually decreases and
then maintains a small oscillations near zero. This behavior
of small oscillations is analogous to the evolution observed in
Fig. 1, and it is closely associated with the significant degener-
ates of the final Hamiltonian. Although it requires an extended
period for the evolution to reach dynamic stabilization, and the
fluctuations are obvious for much of this duration, the evolu-
tion trajectories of the three correlation functions can be more
consistent for M = 8, suggesting that the DFT and ETH are
valid. Moreover, the inset shows that the numerical distribu-
tion in the histograms tends to be narrower as the lattice sites
increasing. In Figs. 2(c) and 2(d), the three correlation func-
tions rapidly decrease in a short period of time and stabilize
near zero for quenches type (ii). In addition, the evolution of
the three correlation functions is completely consistent at most
times and the distribution of the histograms is more “sharp”
as M increases. Through our analysis, we have obtained im-
portant information in the low-density JCH model. Although
the correlation functions initially exhibit large fluctuations and
take a long time to reach relatively small fluctuations when the
finial Hamiltonian is a weak tunneling limit case, only from
the view of the evolution consistency of the three correlation
functions, the model under the weak tunneling limit satisfies

FIG. 3. The time evolution of the correlation functions CFluc(t ),
CAppr (t ), and CDiss(t ) related to the observable T̂ with the dipole-
dipole interaction term is only considered by final Hamiltonian. The
insets show normalized histograms of CFluc(t ) (empty red bars) and
CDiss(t ) (filled blue bars)calculated for 2000 data points between
gt = 0 and 100.

chaotic behavior. This finding is consistent with the results
obtained from finite-size scalings of the matrix elements of T̂ .

Next, for quenches type (iii), the time evolutions of three
correlation functions are shown in Fig. 3. We find the corre-
lation function CFluc clearly depends on the parity of lattice
number. In Figs. 3(a) and 3(b), the evolution behavior of
the correlation function deviates significantly on even sites,
indicating that both DFT and ETH are violated. The distribu-
tion width of the histogram is larger, and the distribution of
CFluc is more uniform than that of CDiss. Compared to even
sites, from Figs. 3(c) and 3(d), the evolution of the correlation
function on odd sites are more conventional, the evolution
behaviors of the three correlation functions are similar. With
increasing M, the CFluc and CDiss tend to match more and
more in the later period of evolution. However, with ongoing
evolution time, the deviation between them becomes more and
more obvious, thus FDT is invalid. The CFluc and the CAppr

are inconsistent, indicating that ETH is not obeyed. In short,
when the Hamiltonian before the quench is a weak tunneling
limit, we cannot obtain a very clear result. However, when
the Hamiltonian before the quench is standard nonintegrable
model, the evolution of the three correlation functions has
obvious distribution characteristics. First, the evolution of the
three correlation functions is not affected by the parity of
lattice number, so we only present the evolution on even sites.
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Second, we find that there is always perfect consistency in
the evolution of CFluc and CDiss overall evolution time, but
there is a significant deviation from the evolution of CAppr.
This indicates that FDT is strongly effective in this case,
while ETH is not valid. This outcome is in accordance with
the findings obtained from Ref. [53]. Based on the analysis
above, we can conclude that when the Hamiltonian after the
quench is an integrable model, the evolution of the correla-
tion function strongly depends on the Hamiltonian before the
quench. In addition, the results depicted in Fig. 1 indicate
that the low-density JCH model with weak tunneling limit
is nonintegrable in the absence of dipole-dipole interaction,
but when the Hamiltonian after the quench is integrable, the
evolution behavior of the correlation function is completely
different, depending on whether the initial Hamiltonian is
characterized by the weak tunneling limit (J/g ∼ 0.001) or
the standard nonintegrable model (J/g ∼ 1), as illustrated
in Fig. 3.

V. THE EVOLUTION OF THE HALF-CHAIN
ENTANGLEMENT ENTROPY AND FIDELITY

Next, we discuss the dynamic evolution of half-chain
entanglement entropy and fidelity |〈φ(t )|φi〉|2 in three ini-
tial states, which are all atomic states |φ1〉 = ∏

i |0, e〉i, all
photon state |φ2〉 = ∏

i |1, g〉i and hybrid state composed
of atoms and photons |φ3〉 = ∏

i∈odd |1, g〉i ⊗ ∏
j∈even |0, e〉 j .

The Hamiltonians of evolution are Jf /g = 0.001, Jf /g = 1,
and Jf /g = 0.001, V/g = 0.5.

The half-chain entanglement entropy is defined to be

Ŝα
M/2 = −TrA

[
ρ̂α

A lnρ̂α
A

]
, (6)

where the system is divided into two subsystems, A and B.
When the number of lattice sites is even, the length of both
chains A and B is M/2. When the number of lattice sites is
odd, one chain takes (M − 1)/2 and the other (M + 1)/2.
So the total Hilbert space is the tensor product D(M ) =
DA

⊗
DB, where DA and DB are the dimensions of the Hilbert

space in subsystems A and B, respectively. Then the reduced
density matrix for A is given by ρ̂α

A = TrB[|α〉〈α|], where TrB

denotes the partial trace over DB. For fully random states or
ergodic states, the mean von Neumann entanglement entropy
is given by the Page value [54,55]

SPage(A) = lnDA − DA

2DB
, (7)

where the horizontal line represents the random vector
average.

Figure 4 shows the time evolution of the entanglement
entropy S(t ) and the fidelity F (t ) under the three parame-
ters of the Hamiltonian for three different initial states in
the case of finite size M = 8. In Figs. 4(a) and 4(d), the
Hamiltonian after the quench is the weak tunneling limit and
without dipole-dipole interaction, the evolution of S(t ) and
F (t ) coincides completely for the initial states |φ1〉 and |φ2〉,
the reason for the coincides is that the system has particle-
hole symmetry. But S(t ) grows first and reaches saturation
value for |φ3〉. At this point, we find that F (t ) approaches
1 when S(t ) approaches zero for the initial state |φ3〉. Then,
within a very short period of time, S(t ) rapidly increases to

FIG. 4. The time evolution of the entanglement entropy S(t ) and
the fidelity F (t ) for three different parameter cases in the open
boundary low-density JCH model. The lines with different colors in
the figure represent a quench from different initial states, and the
black dashed lines represent the Page value, the number of the lattice
sites M = 8.

saturation value, while F (t ) rapidly decreases to oscillate near
zero. More interestingly, for the initial states |φ1〉 and |φ2〉,
S(t ) appears to rapidly increase from zero to saturation after
a long period of time, but F (t ) undergoes a long period of
oscillation before stabilizing around zero. During this period,
F (t ) undergoes many processes of recovering from 0 to 1,
which indicates that there is still a significant similarity be-
tween the state of the system and its initial state at some
specific moments, and this similarity is maintained for a long
time. Compared to other cases, the time evolution behavior
in the low-density JCH model with weak tunneling limits is
significantly dependent on the initial state. In addition, in this
case, although the model satisfies thermalization behavior, the
maximum values of S(t ) for the three initial states here cannot
reach the Page value. In Figs. 4(b) and 4(e), the final Hamil-
tonian is completely chaotic, the evolution of S(t ) and F (t )
for the three initial states are highly consistent. The maximum
value of S(t ) is very close to the Page value and F (t ) decreases
to zero, which indicate that the system is chaotic and can
thermalize. The final Hamiltonian in Figs. 4(c) and 4(f) is
a weak tunneling limit model with dipole-dipole interaction,
which is integrable. For the three different initial states, the
time evolution behavior of S(t ) is largely similar, here the
maximum value of S(t ) strongly deviates from the Page value
and F (t ) has been experiencing significant oscillations, which
are consistent with the the characteristic behaviors of an inte-
grable system that cannot thermalize. From Fig. 4, it can be
seen that the evolution behaviors of S(t ) for the initial states
|φ1〉 and |φ2〉 are nearly identical. Therefore, in the following
discussion, we only focus on the initial states |φ1〉 and |φ3〉.
Figure 5 shows the time evolution of S(t ) and F (t ) under three
different parameters of the low-density JCH model, where
the initial state is a fully atomic state |φ1〉. From Figs. 5(a)
and 5(d), when the final Hamiltonian is the weak tunneling
limit, we find that S(t ) increases after a long period of time
and F (t ) is also continuously restored for the finite size M.
However, Fig. 5(g) indicates that for M = 6, 8, S(t ) grows in
a power law over time until it reaches saturation, while for
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FIG. 5. The time evolution of the entanglement entropy S(t ) and
the fidelity F (t ) for three different parameter cases in the open
boundary low-density JCH model. Here the initial state is chosen as
the fully atomic state, the lines with different colors in the figure rep-
resent different lattice sites and the corresponding Page value. In the
insets, black lines are the Page values with the system size increasing.
The red dots represent the average entanglement entropy after long
times at different system sizes M.

M = 7, S(t ) remains stable for an intermediate period of time
and then increases in a power law until it reaches saturation.
Despite exhibiting power-law growth, Fig. 5(a) shows that
S(t ) cannot reach the Page value for all lattice sites. When the
tunneling and coupling strength are of the same order in the
final Hamiltonian, which represents a standard nonintegrable
model, Fig. 5(b) demonstrates that S(t ) increases rapidly in a
power law with time and reaches the Page value for different
M, which is consistent with the expected behavior of the
chaotic system, and as shown in Fig. 5(e), F (t ) rapidly drops
to zero. In this parameter regime, the rate of change for both
S(t ) and F (t ) is almost unaffected by the number of lattice
sites. In Fig. 5(c), we observe that when the final Hamiltonian
is the weak tunneling limit with dipole-dipole interaction, an
integrable model, the power-law growth behavior of S(t ) is
identical for different M, and the maximum values of S(t )
are very close to each other. However, this maximum values
significantly deviate from the Page values. Figure 5(f) also
illustrates that the oscillations in F (t ) are pronounced, which
suggests that the system cannot thermalize. In addition, the
inset in Fig. 5(g) reveals that when the final Hamiltonian
parameter is Jf /g = 0.001, the average saturation value of
entanglement entropy after a long time significantly depends
on the parity of the system size, deviating from the growth pat-
tern of Page values with increasing size. Conversely, when the
final Hamiltonian parameter is Jf /g = 1, the inset in Fig. 5(h)
demonstrates that the change in average saturation value with
size perfectly aligns with the growth pattern of Page val-

FIG. 6. The time evolution of the entanglement entropy S(t ) and
the fidelity F (t ) for three different parameter cases in the open
boundary low-density JCH model. Here, the initial state is chosen
as the hybrid state composed of atoms and photons, the lines with
different colors in the figure represent different the number of lattice
sites and the corresponding Page value. In the insets, black lines are
the Page values with the system size increasing. The red dots repre-
sent the average entanglement entropy after long times at different
system sizes M.

ues. Furthermore, when the final Hamiltonian parameters are
Jf /g = 0.001 and V = 0.5, the inset in Fig. 5(i) indicates a
significant deviation in the scaling law of the average satura-
tion value from the Page value.

In Figs. 6(a) and 6(g), when the initial state is a hybrid
state composed of atoms and photons, denoted as |φ3〉, and
the final Hamiltonian is the weak tunneling limit, the growth
trend of S(t ) no longer exhibits differences between different
finite size M. Furthermore, there is a significant recovery
observed in the fidelity F (t ), as depicted in Fig. 6(d). In
addition, the evolutions of both S(t ) and F (t ) are identical for
the fully atomic state |φ1〉 under other two parameters. From
the inset in Figs. 6(g) and 6(h), we find that when the final
Hamiltonian parameters are Jf /g = 0.001 and Jf /g = 1, the
average saturation values of entanglement entropy conform
to the growth pattern of Page values. However, when the
final Hamiltonian has integrable parameters Jf /g = 0.001 and
V = 0.5, the inset in Fig. 6(i) indicates that the scaling law of
the average saturation value still deviates significantly from
the Page value. The scaling laws of the average saturation
values in Figs. 5(g) and 6(g) once again demonstrate that,
although ETH is valid for the matrix elements of observable
in the low-density JCH model under the weak tunneling limit,
the evolution of the system remains dependent on the ini-
tial state, a behavior that does not occur in standard chaotic
models.
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In this section, we also see some notable phenomena. First,
when comparing the cases where the final Hamiltonian is
the weak tunneling limit and where it is integrable, we note
that although the entanglement cannot reach the Page value
under the weak tunneling limit, the maximum entanglement
value is significantly higher than when the final Hamiltonian
is integrable. Second, we also discover that under the weak
tunneling limit, both entanglement entropy S(t ) and fidelity
F (t ) take a longer time to reach saturation values. This implies
that the initial state information of the system is preserved for
an extended period during the evolution.

VI. CONCLUSION

In summary, we have explored the quench dynamics in the
one-dimensional low-density JCH model. We have examined
the evolution of the normalized in integral difference under
different quenching mechanisms by adjusting the tunneling
strength and increasing the dipole-dipole interaction. The re-
sults indicate that when the Ji/g ∼ 1 and the Jf /g ∼ 0.001,
the fluctuation of the kinetic energy operator decreases signif-
icantly with the increasing system sizes, which is consistent
with the properties of quantum chaos. However, when the
weak tunneling limit is considered as the initial Hamiltonian
Hi and compared to standard chaotic parameters as the Hi, the
outcomes with the evolution of an integrable Hf are obvious
different. For Ji/g ∼ 0.001, both DFT and ETH are violated.
For Ji/g ∼ 1, the system no longer obeys ETH, but DFT
remains valid. Additionally, we have observed that when the
initial state is a fully atomic state, the entanglement entropy
exhibits a significant metastable state under the weak tunnel-
ing limit, which vanishes when the initial state is a hybrid
state composed of atoms and photons. Moreover, the behavior
of entanglement entropy with the weak tunneling limit also
presents anomalies. Compared to the standard chaotic case,
the maximum value of entanglement entropy cannot approach
the Page value. However, when compared to the integrable
case, the entanglement entropy is significantly higher and
increases with a power law, which exhibits obvious ther-
mal characteristics. These findings demonstrate the unique
thermal properties and rich entanglement dynamics of the
low-density JCH model.
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APPENDIX A: ROTATING FRAME TRANSFORMATION

We rewrite the original Hamiltonian Ĥ ′ in the following
form:

Ĥ ′ =
M∑
j

(ωcâ†
j â j + ε0σ̂

+
j σ̂−

j ) − J
M−1∑

j

(â†
j â j+1 + â j â

†
j+1)

+ g
M∑
j

(â j σ̂
+
j + â†

j σ̂
−
j ) + V

M∑
j

n̂σ
j n̂σ

j+1

= Ĥfree + Ĥhop + Ĥint + ĤDDI.

FIG. 7. The time evolution of the correlation functions CFluc(t ),
CAppr (t ), and CDiss(t ) related to the observable T̂ . Ji/g and Jf /g
represent the tunneling strength of photons before and after the
quench, respectively. The insets show normalized histograms of
CFluc(t ) (empty red bars) and CDiss(t ) (filled blue bars) calculated
for 2000 data points between gt = 0 and 10 000. Where we set
CFluc(0) = CAppr (0) = CDiss(0) = 1.

Due to eABe−A = B + [A, B] + 1
2! [A, [A, B]] + · · · , then

Û Ĥ ′Û † = Û ĤfreeÛ
† + Û ĤhopÛ

† + Û ĤintÛ
† + Û ĤDDIÛ

†

= ωc

M∑
j

â†
j â j + ε0σ̂

+
j σ̂−

j − J
M−1∑

j

(â†
j â j+1 + â j â

†
j+1)

+ g
M∑
j

(â jσ
+
j + â†

jσ
−
j ) + V

M∑
j

n̂σ
j n̂σ

j+1

and idÛ/dtÛ † = −∑M
j (ωcâ†

j â j + ε0σ̂
+
j σ̂−

j ). Thus, Û Ĥ ′Û †

+ ih̄dÛ/dtÛ † = Ĥ .

APPENDIX B: THE IMPACT
OF DIFFERENT TEMPERATURES

In the first part of the paper, we consider the thermody-
namic equilibrium state of the initial Hamiltonian as the initial
state for the system’s evolution. The thermal equilibrium state
has an effective temperature which choose the inverse ef-
fective temperature β = 0.2, and the choice of the inverse
effective temperature β should ensure that the system still
exhibits quantum effects. When β = 0.2, the effective tem-
perature is T = 5. When β = 0, it implies that the system’s
temperature tends towards infinity, and such a system loses
its quantum effects, so β = 0 is not an appropriate choice.
We have verified that the dynamical evolution results at β =
0.5, 0.9 are similar to those at β = 0.2, as show in Fig. 7.
Here we only give the evolution of the correlation function for
quenches type (i). When β = 0.5, the evolutionary behavior
of the three correlation functions coincides exactly at finite
size M = 8, which is consistent with the result of the β = 0.2.
When β = 0.9, the evolution behavior of the three correlation
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FIG. 8. Time evolution of δNM/2 (t ) (photon) after a sudden
quench in low-density JCH models with M = 6, 7, 8. Results are pre-
sented for quenches from Ji/g = 0.001 to Jf /g = 0.001 and V/g =
0.5 (a), Ji/g = 1 to Jf /g = 0.001 and V/g = 0.5 (b).

functions is not in good agreement, because the temperature
of the system is very low in this case, which makes the sys-
tem more dependent on the finite size effect. However, this
does not mean that the evolution behavior of the correlation
function at β = 0.9 contradicts the results we get. As we can
see from Figs. 7(c) and 7(d), the evolutionary behavior of the
three correlation functions becomes close to each other as the
size increasing.

APPENDIX C: THE RELAXATION DYNAMICS
OF THE OCCUPATION OPERATOR OF PHOTONS

In our previous considerations, we also looked into fo-
cusing on more physical observables. Due to the structure
of the model and the ease of detection in experiments, the
observables we can discuss are limited to the photon number
operator and the photon kinetic energy operator. However,
due to particle-hole symmetry, the diagonal elements of the
particle number operator (photon or atomic) with per site are
constant [48], and there is no fluctuation in the dynamic evo-
lution of the particle number operator, thus we do not consider
this physical observable. Additionally, considering the dipole-
dipole interactions, the particle-hole symmetry is broken, we
calculated the evolution of the particle number operator and
the kinetic energy operator as observables and found that
their results are consistent, the quench dynamics results of
the photon number operator as shown in the Figs. 8 and 9.
Figure 8 illustrates the evolution of the normalized integrable

difference δNM/2 (t ) = |〈N̂M/2(t )〉−NM/2|
NM/2

after the quench, where

N̂M/2 is the occupation operator of photons in central site, the
dipole-dipole interaction is considered in the finial Hamilto-
nian. Figures 8(a) and 8(b) correspond to the different initial
Hamiltonians with reduced tunneling strengths Ji/g = 0.001
and Ji/g = 1, respectively, it can be observed that δNM/2 does
not decrease with the increase of system size, which indicates
that the evolution of particle number difference is related to

FIG. 9. The time evolution of the correlation functions CFluc(t ),
CAppr (t ), and CDiss(t ) related to the observable N̂M/2 with the dipole-
dipole interaction term is only considered by final Hamiltonian. The
insets show normalized histograms of CFluc(t ) (empty red bars) and
CDiss(t ) (filled blue bars)calculated for 2000 data points between gt =
0 and 100.

the initial Hamiltonians in these two cases. This is consistent
with the results obtained when the kinetic energy operator is
used as an observable, as shown in Figs. 1(c) and 1(d).

Figure 9 presents the time evolution of three correlation
functions is depicted by N̂M/2 in the final Hamiltonian with
the dipole-dipole interaction. Figures 9(a) and 9(b) display
the evolution of the CFluc(t ), CAppr (t ), and CDiss(t ) in the
weak tunneling limit for M = 7 and M = 8, we can see
that none of the three correlation functions agree with each
other for both sizes, which is consistent with the results ob-
tained using the kinetic energy operator as an observable,
as shown in Figs. 3(b) and 3(c). Here, when M = 8, the
normalized histograms of CFluc(t ) and CDiss(t ) exhibit diver-
gence in their distribution behavior, yet the width of the
distribution remains large, which still aligns with the evolu-
tion from an integrable to a chaotic system and is consistent
with the results obtained from the kinetic energy operator. In
Fig. 9(c), the initial Hamiltonian is a standard chaotic sys-
tem, hence the evolution of CFluc(t ) and CDiss(t ) is consistent,
while there is a significant deviation from the evolution of
CAppr (t ), indicating that the FDT is satisfied but the ETH is
violated, which is also completely with the results obtained
from the kinetic energy operator, as shown in Fig. 3(f). In
summary, the dynamical evolution results are consistent for
particle number operator and the kinetic energy operator of the
photon.
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