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Performance at maximum figure of merit for a Brownian Carnot refrigerator
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This paper focuses on the coefficient of performance (COP) at maximum χR figure of merit for a Brownian
Carnot-like refrigerator, within the context of the low-dissipation approach. Our proposal is based on the
Langevin equation for a Brownian particle bounded to a harmonic potential trap, which can perform Carnot-like
cycles at finite time. The theoretical approach is related to the equilibrium ensemble average of 〈x2〉eq which
plays the role of a statelike equation, x being the Brownian particle position. This statelike equation comes
from the macroscopic version of the corresponding Langevin equation for a Brownian particle. We show that
under quasistatic conditions the COP has the same expression as the macroscopic Carnot refrigerator, while
for irreversible cycles at finite time and under symmetric dissipation the optimal COP is the counterpart of
Curzon-Ahlborn efficiency as also obtained for irreversible macroscopic refrigerators.
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I. INTRODUCTION

In his 1824 celebrated paper, Carnot proposed that the
efficiency of any heat engine has an upper bound [1,2], known
as the Carnot efficiency, given by ηC = 1 − Tc/Th, where Tc

and Th are respectively the temperatures of the cold and hot
thermal baths with which the thermal engine can operate. The
value of ηC is achieved when the engine operates quasistati-
cally, resulting in zero power output. To provide a framework
for the operation of thermal engines capable of producing
power, an extension of thermodynamics known as finite time
thermodynamics (FTT) emerged. This theory incorporates
sources of irreversibility and finite operation time into the
models, consequently resulting in power production. Cham-
badal [3] and Novikov [4] proposed an initial engine model
equivalent to the one later introduced by Curzon and Ahlborn
(CA) [5]. This model relies upon an internal Carnot cycle but
includes entropy production during the isothermal processes.
CA optimized their model using power output as the objective
function. By applying a linear law to the heat transfers, the
authors concluded that the efficiency of a heat engine oper-
ating at maximum power satisfies ηCA = 1 − √

Tc/Th � ηC .
Subsequently, other objective functions, such as the ecological
function, the omega function, and efficient power [6,7], were
proposed.

One of the tasks within FTT has been the introduction
of an objective function for optimizing refrigerator perfor-
mance. Specifically, Yan and Chen [8] proposed an objective
function called the χR figure of merit to optimize the opera-
tion of an endoreversible refrigerator. When there is a linear
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heat transfer between the thermal reservoirs and the work-
ing fluid, the COP of a refrigerator at maximum χR fulfills
εCA = [1/

√
1 − Tc/Th] − 1 � εC , where εC is the Carnot COP

for refrigerators, given by εC = [1/(1 − Tc/Th)] − 1.
In 2010, Esposito et al. [9] proposed an idea within the

context of finite time energy conversion called the low dissipa-
tion (LD) approach. The authors start with a Carnot-like heat
engine that operates reversibly and then consider that during
the isothermal branches the working fluid is in contact with
the cold (hot) reservoir for a finite time tc (th). Hence, the
amount of heat exchanged (per cycle) between the system and
the cold (hot) reservoir is given by Qc = Tc(−�S − �c/tc)
(Qh = Th(�S − �h/th)), with Qc

∞ = −Tc�S (Qh
∞ = Th�S),

which is the heat exchanged with the cold (hot) reservoir
under reversible conditions (tc, th → ∞).

The quantity �c/tc (�h/th) represents the entropy pro-
duction for the cold (hot) isothermal branch. The parameter
� accounts for irreversibilities present along the isothermal
branches due to coupling with the thermal baths over finite
time. In this approach, the adiabatic processes are considered
instantaneous, and their entropy production is zero. Esposito
et al. [9] found that the efficiency at maximum power output
depends not only on Tc and Th, but also on �c and �h. In the
particular case where �c = �h, known as symmetric dissipa-
tion, the CA efficiency, ηCA, is recovered. The symmetric LD
condition means that the irreversibilities are the same in both
isothermal processes. The equivalence between the LD and
CA methodologies has been studied in [10–12].

Two years after the paper by Esposito et al. [9], the LD
model was successfully extended to the study of macro-
scopic Carnot-like refrigerators under both symmetric [13]
and asymmetric [14] conditions. In [13], the authors pro-
posed a unified optimization criterion for both Carnot-like

2470-0045/2024/110(2)/024123(7) 024123-1 ©2024 American Physical Society

https://orcid.org/0009-0009-4992-7281
https://orcid.org/0000-0001-7453-5794
https://orcid.org/0000-0002-5641-9594
https://ror.org/059sp8j34
https://ror.org/01tmp8f25
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024123&domain=pdf&date_stamp=2024-08-12
https://doi.org/10.1103/PhysRevE.110.024123


O. CONTRERAS-VERGARA et al. PHYSICAL REVIEW E 110, 024123 (2024)

heat engines and refrigerators. This criterion defines a fig-
ure of merit as χ = zQin/tcycle, where z represents the
performance quality of the converter, Qin denotes the heat
absorbed by the working fluid, and tcycle = tc + th represents
the total cycle time, following a similar concept to Yan and
Chen [8]. When the thermal engine operates as a refrigerator,
Qin = Qc is the heat exchanged with the cold reservoir, z =
ε = Qc/W represents the coefficient of performance (COP),
and W denotes the amount of input work. Thus, the figure of
merit becomes χR = εQc/tcycle. The main conclusion in [13]
is that under symmetric LD conditions the optimal COP at
maximum χR aligns with the Curzon-Ahlborn efficiency for
an endoreversible refrigerator model.

Shortly after, in [14], the study of optimal COP was ex-
tended to the case of asymmetric LD conditions. It was also
shown that under symmetric LD conditions the CA efficiency
is recovered. The optimal COP, denoted by ε∗, is bounded as
0 � ε∗ � (

√
9 + 8εC − 3)/2. Due to these reasons, the effi-

ciency and performance of the Curzon-Ahlborn model turn
out to be exact properties for Carnot devices operating under
conditions of low symmetric dissipation.

Following a similar strategy to [15], in this paper, we
study the asymmetric low-dissipation approach for Brownian
Carnot-like refrigerators. Our system consists of a Brownian
particle confined in an optical trap (represented by a harmonic
potential), performing finite time Carnot-like cycles between
two thermal baths at time-dependent temperature Th(t ) and
Tc(t ), externally controlled. The adiabatic processes are as-
sumed to be instantaneous, and the irreversible effects are
present only in the two isothermal branches. This means that
the Brownian particle’s relaxation time is much faster than
the quenching time of the internal temperature [15,16]. While
Brownian refrigerator models have been optimized before
[17–21], the LD approach has not been applied until now.

Our theoretical analysis relies on the overdamped Langevin
equation associated with a Brownian particle bound to a
harmonic trap. The strategy also involves transforming the
Langevin equation into a macroscopic one for the average
value 〈x2(t )〉, which, in the long-time limit, plays the role
of a statelike equation. This allows us to obtain all the
thermodynamic quantities under quasistatic conditions, with
irreversible effects accounted for using the LD approach. Both
the potential stiffness κ (t ) and the temperature T (t ) of the
surroundings are time-dependent parameters. For a stochastic
Carnot-like refrigerator, we are interested in calculating the
corresponding energetic quantities, such as the average COP
defined as 〈ε〉 = 〈Qc〉/〈W 〉, where 〈W 〉 = 〈Qh〉 − 〈Qc〉 is the
total amount of input work. The χR figure of merit is given
by 〈χR〉 = 〈ε〉〈Qc〉/tcycle, with tcycle = tc + th. In this paper,
we study the COP at maximum χR figure of merit [8] under
both asymmetric and symmetric low-dissipation conditions.
Notably, an analysis under symmetric LD conditions allows
us to obtain the same expressions for the optimal CA’s COP
as for macroscopic cases [8,13,14]. As mentioned above, the
LD approach starts by describing the reversible model of the
device, in this case, a refrigerator. Then, the irreversible model
is established by accounting for additional entropy production
in the isothermal branches of the cycle.

Our paper is structured as follows: In Sec. II, we provide
a review of the harmonic oscillator Langevin equation to

establish the statelike equation for 〈x2〉. Additionally, we
propose a brief study on how to obtain the efficiency of a qua-
sistatic Carnot-like refrigerator. The main content of our paper
is presented in Sec. III, where the optimal COP at maximum
χR figure of merit for a Brownian Carnot-like refrigerator
is obtained. This COP is calculated under asymmetric LD
conditions but reduces to the CA efficiency under symmet-
ric conditions. We also examine the behavior of the cooling
power and dissipation function, both of which have typically
been studied within the context of FTT. Conclusions are given
in Sec. IV, and at the end of our paper two Appendixes are
included for explicit calculations.

II. REVIEW OF LANGEVIN DYNAMICS

To characterize the dynamics of a stochastic heat engine
we considered a Brownian particle bounded to a harmonic
potential trap U (x) = 1

2κx2, with stiffness κ , in contact with a
thermal bath at temperature T . In the overdamped regime the
Langevin equation associated is

γ
dx

dt
= −κx + ξ (t ), (1)

where γ = 6πζa is the friction coefficient, ζ the viscosity,
and a the radius of the particle assumed to be a sphere. The
thermal noise ξ (t ) satisfies the properties of a Gaussian white
noise, that is, 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = 2γ kBT δ(t − t ′).
The macroscopic equation associated with 〈x2〉 is straightly
obtained from Eq. (1), where

γ
d〈x2〉

dt
= −2κ〈x2〉 + 2〈xξ (t )〉. (2)

From (1), we also obtained that 〈xξ (t )〉 = kBT , and thus

γ
d〈x2〉

dt
= −2κ〈x2〉 + 2kBT . (3)

From this, it is clear that in the equilibrium stationary state
〈x2〉eq = kBT/κ . From the experimental point of view, the
stiffness as well as the temperature are externally controllable
time-dependent parameters [16,22]. In this case, we consid-
ered that stiffness depends on time, and then the macroscopic
equation for 〈x2〉 can be obtained from

γ
dx

dt
= −κ (t )x + ξ (t ). (4)

From Eq. (4), we obtain the next macroscopic equation:

γ
d〈x2〉

dt
= −2κ (t )〈x2〉 + 2kB T (t ). (5)

Also in the equilibrium stationary state, κ (t ) and T (t ) both
become constants, and therefore 〈x2〉eq = kBT/κ . In princi-
ple, given a particular expression for κ (t ) and T (t ), one can
solve Eq. (5) and calculate the energetics [23–26]. Instead
of following this route, we take advantage of LD strategy
to calculate the COP at maximum χR figure of merit of a
refrigerator operating with a stochastic system, in a similar
way as proposed in [15].
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FIG. 1. -κ cycle of a Brownian Carnot-like refrigerator with (i)
an isothermal expansion (A-B path), (ii) an adiabatic compression
(B-C path), (iii) an isothermal compression (C-D path), and (iv) an
adiabatic expansion (D-A path).

A. Quasistatic Brownian Carnot-like refrigerator

As is well known, a macroscopic Carnot refrigerator oper-
ates following a Carnot cycle, but in the opposite direction its
objective is to extract heat from a cold thermal bath, using
an amount of work, and deliver an amount of heat into a
hot thermal bath. In this regard, the quasistatic version of the
Brownian refrigerator cycle is shown in Fig. 1, once the Brow-
nian Carnot engine was previously studied [15]. To obtain
all the thermodynamic quantities along the cycle’s paths, the
total amount of energy E is required. This energy is related
to the amount of work and heat exchanged by a Brownian
particle with its surroundings (heat bath), and can be calcu-
lated from the law of energy balance along a single stochastic
trajectory. According to Sekimoto [27] (chapter 4) this energy
balance reads dE = d ′Q + d ′W . Also in Sec. 4.1.3.2 of Seki-
moto’s book it is shown that, in the overdamped regime of
the Langevin equation, the average of heat d ′Q between t and
t + dt for a harmonic potential is given by

〈d ′Q〉 =
[
−κ2

γ
〈x2〉 + κ

γ
kBT

]
dt . (6)

Upon substitution of the solution of Eq. (3) into Eq. (6), it is
shown that the average of the total heat exchanged with the
surroundings reads 〈Q〉 = 1

2 kBT , and therefore in the over-
damped regime the total thermodynamic energy becomes E =
〈U 〉 + 〈Q〉 = 1

2κ〈x2〉 + 1
2 kBT , or E = kBT (from now on we

will identify any thermodynamic quantity as y ≡ 〈y〉). From
the definitions of the total work Wab and heat Qab, the amounts
exchanged with the surroundings along a quasistatic trajectory
from a state a to another state b are given by

Wab = 1

2

∫ b

a
〈x2〉 dκ, Qab = 1

2

∫ b

a
κd〈x2〉 + 1

2
kB (Tb − Ta).

(7)
The variable  has been introduced as an auxiliary variable in
the differential form of the free energy dF = −SdT + dk,
analogous to the one given for an ideal gas in thermodynamics
[15]. From this equation it is easy to show that  = ( ∂F

∂k )T =
kBT/2 = 〈x2〉/2, which is related to the statelike equation.

It is straightforward to show that the COP of a Brown-
ian Carnot-like refrigerator, defined as εc = Qc/(Qh − Qc),

becomes

εC =
kB Tc ln

(
κ2
κ1

)
kB

[
Th ln

(
κ4
κ3

)
− Tc ln

(
κ2
κ1

)] = Tc

Th − Tc
, (8)

where κ2/κ1 = κ4/κ3 due to the adiabatic equation. Equa-
tion (8) is the same obtained for a macroscopic Carnot
refrigerator, where it only depends on the temperatures of the
thermal baths.

B. Irreversible Brownian Carnot-like refrigerator

If the cycle is no longer reversible but irreversible at finite
time, then the dissipative processes play an important role.
In this case, it has been shown that a suitable theoretical
approach used to characterize out of equilibrium macroscopic
heat engines and refrigerators is the low-dissipation approach
[9,13,14]. To study the model of a Carnot-like cycle at finite
time for a Brownian refrigerator, we adopt a similar idea as in
[14] for an engine, as enumerated in the following.

1. Isothermal expansion

The cycle stars when the Brownian particle (working fluid)
is in contact with a cold thermal bath at temperature Tc;
during the interval 0 < t < tc, the expansion process means
that the control parameter decreases from κ2 to κ1(< κ2),
while T (t ) = Tc. In this finite process an amount of heat Qc

is absorbed by the particle (it is assumed that Qc > 0 and
Qh < 0). Here, the variation of entropy can be written as

�Sc = Qc

Tc
+ �Sir

c , (9)

where �Sir
c � 0 is one part of the inner entropy change and

fulfills �Sc � �Sir
c .

2. Adiabatic compression

In a similar way as done with the heat engine, this adiabatic
process occurs instantaneously, that is, the particle suddenly
decouples from the cold thermal bath at Tc and then comes
into contact with the hot one at Th. The compression means
that during this transition process the potential stiffness sud-
denly is increased from κ1 to κ3(> κ1). This physically means
that the relaxation time of Brownian particles is much faster
with respect to the quenching time of the temperature. In this
path Q2 = 0 and thus the entropy change �S2 = 0.

3. Isothermal compression

In this process, the Brownian particle is in contact with the
hot thermal bath at temperature Th, and the potential stiffness
is increased from κ3 to κ4 for tc < t < tc + th, while T (t ) =
Th. In this finite process the heat Qh is released by the particle
to the hot bath. The variation of entropy is now

�Sh = −Qh

Th
+ �Sir

h , (10)

and �Sir
h � 0 is the other part of the inner entropy change.
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4. Adiabatic expansion

In this last branch, the Brownian particle again suddenly
decouples from the hot thermal bath at Th and then comes
into contact with the cold one at Tc. During this transition,
the potential stiffness is decreased from κ4 to κ2(< κ4). In this
branch, Q4 = 0 and �S4 = 0.

III. OPTIMIZATION AT MAXIMUM χR FIGURE OF MERIT

As stated above, in this paper the χR figure of merit is used
to study the optimal COP of a Brownian refrigerator model.
This criterion was previously applied to macroscopic refriger-
ators both endoreversible [8] and within the LD scheme [14].
Using Eqs. (9) and (10) the figure of merit, χR = εQc/tcycle,
reads

χR = T 2
c

(
�S − �Sir

c

)2[
(Th − Tc)�S + Tc�Sir

c + Th�Sir
h

]
(tc + th)

. (11)

χR reaches its maximum value when �Sir
c and �Sir

h fulfill a
minimum value with respect to the protocols κc(t ) and κh(t ).
We express the min{�Sir

c } ∝ Lc(tc) and min{�Sir
h } ∝ Lh(th),

which are expected to be monotonous decreasing functions of
tc and th, respectively, because the larger the time for complet-
ing the isothermal steps the closer these steps are to quasistatic
processes so that the irreversible entropy production �Sir

c and
�Sir

h becomes smaller. In this case, Lc(tc) ≈ 1/tc ≡ xc and
Lh(th) ≈ 1/th ≡ xh, or Lc = �cxc and Lh = �hxh, �c and �h

being two quantities related to the irreversibilities. Thus, when
times tc → ∞ and th → ∞, the entropy productions �Sir

c and
�Sir

h should vanish, and therefore

Qc = Tc[�S − Lc], (12)

Qh = Th[�S + Lh], (13)

and thus the COP for the Brownian refrigerator becomes

ε = Qc

Qh − Qc
= Tc(�S − Lc)

(Th − Tc)�S + TcLc + ThLh
. (14)

We now proceed to calculate the optimum COP at maximum
χR. Equation (11) can be written as

χR = Q2
cxcxh

Qhxh + Qhxc − Qcxh − Qcxc
. (15)

The optimization criterion leads us to calculate ∂χR

∂xh,c
= 0. And

so, with respect to variables xc and xh, the following two
equations arise:

xh(Qh − Qc) =
(

2Qh

Qc
− 1

)
xcTcL′

c(xh + xc), (16)

xc(Qh − Qc) = ThL′
hxh(xh + xc), (17)

where L′
c and L′

h are the derivatives of Lc and Lh associated
with xc and xh, respectively. Dividing Eqs. (16) and (17), we
show that the COP ε∗ at maximum χR figure of merit fulfills

ThL′
hx2

h =
(

2Qh

Qc
− 1

)
TcL′

cx2
c . (18)

The optimal COP also reads as ε∗ = Qc/(Qh − Qc), and thus

ε∗ThL′
hx2

h = (ε∗ + 2)TcL′
cx2

c . (19)

On the other hand, adding Eqs. (16) and (17), it is possible to
show that

1

ε∗
= Th − Tc

Tc
+ Th(Lh + Lc)

2TcL′
cxc + ε∗ThL′

hxh + ε∗TcL′
cxc

, (20)

which can be rewritten as

1

ε∗
= 1

εC

+ 1 + εc

Nε∗(1 + εC ) + (2εC − ε∗)M
, (21)

where M = L′
cxc

Lc+Lh
= �cxc

�hxh+�cxc
and N = L′

cxc+L′
hxh

Lc+Lh
= 1.

A. Optimum performance: Symmetric case

When �c = �h ≡ �, we have the symmetric case, that is,
equal dissipation occurs in both isothermal branches. In this
case the M parameter reads M = xc/(xh + xc), and after some
algebra we show that the optimal COP at maximum figure of
merit becomes (see Appendix A 1)

ε∗ ≡ εCA = √
1 + εC − 1 = 1√

1 − θ
− 1, (22)

where θ = Tc/Th. This COP is the counterpart of Curzon-
Ahlborn efficiency for refrigerators. This result was first
derived by Yan and Chen for the particular case of an endore-
versible Carnot-like refrigerator [8]. Also, it can be shown
that the critical values of times t∗

c and t∗
h are given by (see

Appendix A 2)

t∗
c = 2�

�S

(
1 + 1√

1 − θ

)
= 4�

kB ln(κ1/κ2)

(
1 + 1√

1 − θ

)
,

(23)

t∗
h = 2�

�S

(
1√

1 − θ

)
= 4�

kB ln(κ1/κ2)

(
1√

1 − θ

)
, (24)

both of which were obtained in [13] for macroscopic re-
frigerators. However, in the particular case of this Brownian
refrigerator, the entropy change at equilibrium reads �S =
(kB/2) ln(κ1/κ2). In addition to the COP, it is useful to ob-
serve the evolution of other energetic quantities linked to this
device as cooling power (R ≡ Q̇c) and dissipation function
(R ≡ Th�Ṡtot); at maximum χR, from Eqs. (23) and (24),
it follows that the absorbed and transferred heat fluxes are,
respectively,

Q̇∗
c = Q∗

c

t∗
h + t∗

c

= Th[ln(κ1/κ2)]2

16�

(
θ
√

1 − θ

1 + √
1 − θ

)
(25)

and

Q̇∗
h = Q∗

h

t∗
h + t∗

c

=
(

Th[ln(κ1/κ2)]2

16�

)√
1 − θ. (26)

According to the second law of thermodynamics, if the total
entropy change (�S∗

tot) under this regime can be written as

�S∗
tot = Q∗

h

Th
− Q∗

c

Tc
= �

(
1

t∗
h

+ 1

t∗
c

)
> 0, (27)
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FIG. 2. Graphs of dimensionless functions q̇∗
h (squares), q̇∗

c

(dots), φ∗
R (dashed line), and εCA (solid line) at maximum χR figure of

merit as a function of θ .

then the total entropy production of the cooling process is
�Ṡ∗

tot = (Q̇∗
h/Th) − (Q̇∗

c/Tc). From the dissipation function
definition, ∗

R reads

∗
R = Q̇∗

h − 1

θ
Q̇∗

c = Th[ln(κ1/κ2)]2

16�

(
1 − θ

1 + √
1 − θ

)
. (28)

Figure 2 shows the dimensionless functions q̇∗
c , q̇∗

h , and
φ∗

R, where q̇∗
h ≡ 4Q̇∗

h/(Th�S2), q̇∗
c ≡ 4Q̇∗

c/(Th�S2), and φ∗
R ≡

4∗
R/(Th�S2). It can be observed that, as θ increases, the

optimum COP of the refrigerator increases but the dissipated
energy decreases. From Eqs. (23) and (24), the ratio t∗

c /t∗
h , for

critical values of the times in the regime of optimal function
χR, can be expressed as t∗

c /t∗
h = 1 + √

1 − θ , which only
depends on the temperatures of the thermal baths.

B. Optimum performance: Asymmetric case

In the asymmetric case �h �= �c (there are different
amounts of dissipation in the isothermal branches); there is no
specific expression for ε∗, as the one obtained in the symmet-
ric case. However, Eq. (21) can be reduced into an appropriate
expression to see its behavior as a function of εC , given a value
of the ratio �c/�h. This can be done if we notice that the M
parameter can be written as M = 1

1+(�hxh/�cxc ) , and therefore
ε∗ given by Eq. (21) also depends on the ratio (�hxh/�cxc). To
achieve the goal we eliminate the ratio (xh/xc) from Eqs. (19)
to show that the optimal COP at maximum χR figure of merit
under asymmetric LD condition reads (see Appendix B)

2εC z2 − 3z − 1 = α
√

1 + 2z, (29)

where α = √
Th�h/Tc�c and z = 1/ε∗. In this case, it can be

seen that α → 0 when �c/�h → ∞, and that α → ∞ when
�c/�h → 0. For α → 0 the solution of Eq. (29) becomes
z0 = (

√
9 + 8εC )/4εC . Then, ε∗ → 0 when �c/�h → 0, and

ε∗ → 1/z0 = (
√

9 + 8εC − 3)/2 when �c/�h → ∞. There-
fore the lower bound is ε− = 0 and the upper one ε+ =
(
√

9 + 8εC − 3)/2.
In Fig. 3, the optimal COP given by Eq. (29) is plotted as

a function of εC for different values of the ratio �c/�h. As
can be seen, the plot shows that, when �c/�h → 0, ε∗ tends

FIG. 3. The COP ε∗ given by Eq. (29), as a function of εC , given
a specific value of the ratio �c/�h. This plot validates the conse-
quences derived from Eq. (29), under asymmetric LD conditions,
between lower ε− = 0 and upper ε+ = (

√
9 + 8εC − 3)/2 bounds.

to lower bound ε−, which means that the dissipation is greater
along the hot isothermal branch than that generated along the
cold one. In contrast, when �c/�h → ∞, ε∗ tends to upper
bound ε+; now, it is on the cold isotherm where dissipation
dominates over that of the hot branch. And, when �c/�h = 1,
the irreversibilities are the same in both isothermals, and thus
ε∗ = εCA is recovered, as expected.

In Fig. 4 the upper and lower bounds of the COP are plotted
as a function of θ = Tc/Th. The black line is CA’s COP and
red diamonds correspond to the numerical calculations of the
COP obtained in [21], for a Brownian refrigerator. As can
be seen, the results follow within the asymmetric region of

FIG. 4. Plot of optimum COP (ε∗) as a function of θ . The CA’s
COP is denoted by the solid line. Diamonds represent the numerical
evaluations in [21]. The upper and lower bounds for the asymmetric
case are marked by a dot dashed line and a dashed line, respectively.

024123-5



O. CONTRERAS-VERGARA et al. PHYSICAL REVIEW E 110, 024123 (2024)

LD, and also as θ increases it tends to the CA result. This
comparison shows the robustness of the LD approach.

IV. CONCLUSIONS

In this paper, a Carnot-like Brownian refrigerator is pre-
sented by performing a cycle in the reverse direction of
a previously published stochastic Carnot engine. For the
Brownian Carnot-like refrigerator, we have calculated the
optimal COP, ε∗, at maximum χR figure of merit when
the LD asymmetry conditions are considered. It has been
shown that the optimal COP is bounded, such that 0 � ε∗ �
(
√

9 + 8εC − 3)/2, with ε− = 0 and ε+ = (
√

9 + 8εC − 3)/2
being the lower and upper bounds, respectively, similar to
the macroscopic refrigerator model. In the particular case
of symmetric dissipation, ε∗ reduces to the Curzon-Ahlborn
efficiency, as given by Eq. (22). Figure 3 shows the con-
sequences derived from Eq. (29) for different values of the
ratio �c/�h. With this contribution, the special status of CA
performance is clarified: it turns out to be an exact property of
Brownian Carnot-like refrigerators operating under symmet-
ric low-dissipation conditions.

The key of our proposal relies on the statelike equation as-
sociated with the average 〈x2〉, similar to what was done in
[15] for three stochastic thermal engine models. Our paper
suggests the construction of a Carnot-like refrigerator at the
microscopic level, in a manner similar to the implementations
by Blickle and Bechinger [16] and Martínez et al. [22] for
stochastic heat engines.
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APPENDIX A: ε∗ AT MAXIMUM FIGURE OF MERIT

1. Symmetric case

To obtain the COP ε∗ given in Eq. (21) we proceed as
follows: we define X = xh

xc
, which according to Eq. (19) can

be written as

X = xh

xc
=

√(
1

1 + εC

)(
2εC

ε∗
+ εC

)
, (A1)

where we have used the identity εc = Tc/(Th − Tc). However,
because M = 1/(X + 1), thus Eq. (21) is the same as

εC

ε∗
= 1 + εC (1 + εC )(X + 1)

ε∗(1 + εC )(X + 1) + 2εC − ε∗
. (A2)

If we define y = εC
ε∗

, we get

y = 1 + y(1 + εC )(X + 1)

(1 + εC )(X + 1) + 2y − 1
. (A3)

After some manipulations and using the expression of X , it
now reads

(y − 1)(2y − 1) − (1 + εC ) = √
(1 + εC )(2y + εC ). (A4)

Simplifying, we arrive to

(y − 1)2 − (1 + εC ) = 0, (A5)

and finally

ε∗ ≡ εCA = √
1 + εC − 1. (A6)

2. Calculation of t∗
c and t∗

h

Summing Eqs. (16) and (17), we obtain

Qh − Qc =
(

2Qh

Qc
− 1

)
TcL′

cxc + ThL′
hxh. (A7)

Using Eq. (18) and symmetric dissipation L′
c = L′

h = �, we
show that

Qh − Qc =
(

2Qh

Qc
− 1

)
Tc�xc + Th�xh, (A8)

Thx2
h =

(
2Qh

Qc
− 1

)
Tcx2

c . (A9)

From Eqs. (12) and (13), it is easy to show that

Qh − Qc

Th�
= �S

�
(1 − θ ) + xh + θxc. (A10)

On the other side, Eq. (A8) is also written as

Qh − Qc

Th�
=

(
2Qh

Qc
− 1

)
θxc + xh. (A11)

By equating both equations we arrive to

tc = 2�

�S

(
Qh

Qc
− 1

)
θ

1 − θ
. (A12)

From Eq. (A9) we get

t2
c =

(
2Qh

Qc
− 1

)
θ t2

h . (A13)

Combining Eqs. (A12) and (A13), and taking into account
when ε = ε∗ = Qc/(Qh − Qc), as well as the expression of
ε∗ given by Eq. (A6), we obtain the same optimal time t∗

h as
given by Eq. (24), and t∗

c from Eq. (A13), which will be the
same as Eq. (23).

APPENDIX B: ASYMMETRIC CASE �c �= �h

In a similar way, upon the definition of Y = �hxh
�cxc

, and z =
1
ε∗

, it can be shown that Eq. (21) reduces to

(2εC z − 1)(εC z − 1) = (1 + εC )(Y + 1) (B1)

or

2(εC z)2 − 3(εC z) − εC = (1 + εC )Y. (B2)

Using now Eq. (19) we get(
1

εC

+ 1

)
Y =

√
Th�h

Tc�c

√
1 + 2z, (B3)

and finally we obtain Eq. (29).
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