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Uncovering nonequilibrium from unresolved events
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Closely related to the laws of thermodynamics, the detection and quantification of disequilibria are crucial in
unraveling the complexities of nature, particularly those beneath observable layers. Theoretical developments in
nonequilibrium thermodynamics employ coarse-graining methods to consider a diversity of partial information
scenarios that mimic experimental limitations, allowing the inference of properties such as the entropy produc-
tion rate. A ubiquitous but rather unexplored scenario involves observing events that can possibly arise from
many transitions in the underlying Markov process–which we dub multifilar events–as in the cases of exchanges
measured at particle reservoirs, hidden Markov models, mixed chemical and mechanical transformations in
biological function, composite systems, and more. We relax one of the main assumptions in a previously
developed framework, based on first-passage problems, to assess the non-Markovian statistics of multifilar
events. By using the asymmetry of event distributions and their waiting times, we put forward model-free tools to
detect nonequilibrium behavior and estimate entropy production, while discussing their suitability for different
classes of systems and regimes where they provide no new information, evidence of nonequilibrium, a lower
bound for entropy production, or even its exact value. The results are illustrated in reference models through
analytics and numerics.
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I. INTRODUCTION

Built upon firm phenomenological roots, the celebrated
theory of thermodynamics describes energy exchanges be-
tween systems, finding applications across a plethora of
fields, from the scales of single particles to that of black
holes. In contrast to statistical mechanics, it finds its merit in
coarse-graining microscopic degrees of freedom, which leads
to macroscopic descriptions that require the monitoring of
promptly accessible quantities.

Developed in the past 30 years, stochastic thermodynamics
applies a thermodynamic interpretation to Markov processes,
energetically characterizing jumps between mesostates. While
“traditional” thermodynamics works at thermal equilibrium,
formalized by the detailed balance condition, the stochastic
version distinguishably does not. A thermodynamic treatment
of nonequilibrium systems is much needed to understand
nature since living systems constantly dissipate energetical
resources to generate order, and technological applications
leverage them to output work. Detecting disequilibria is
revealing; witnessing broken detailed balance becomes ev-
idence for energy dissipation, which possibly points out
the consumption of resources, production of waste, constant
exchanges of matter, and might unfold in thermodynamic
implications regarding control, optimization, presence of
hidden pathways, adaptation, and more. It probes the in-
tricacies of internal arrangements and force balances, and
thus is the focal point of many theoretical and experimental
developments [1–5].

Entropy production rate (EPR), a paramount quantity of
nonequilibrium thermodynamics, does precisely the detec-
tion and quantification of distance to equilibrium and is

present in stochastic thermodynamics’ own prominent re-
sults: fluctuation theorems [6–8], thermodynamic uncertainty
relations [9,10], speed limits [11,12], nonequilibrium re-
sponses [13,14], to name a few. Beyond the violation of
fluctuation-dissipation relations, measuring a nonzero EPR is
clear evidence of nonequilibrium. Notably, the nonnegativity
of the mean EPR generalizes the second law, lifting it to a
status similar to that of entropy in traditional thermodynamics.

More akin to statistical mechanics than to traditional ther-
modynamics, stochastic thermodynamics struggles when the
said mesoscopic states are coarse-grained; for instance, there
is no obvious path to EPR when measurements are not
performed at the level of individual edges. Resolving in-
dividual edges and requiring visibility of all of them is a
major setback for the application of stochastic thermody-
namics to systems beyond toy models or specifically tailored
experiments. Very recently, different methods have been ex-
plored to infer its value in a variety of scenarios, usually
providing lower bounds. Some methods involve: an inte-
gral fluctuation theorem for hidden EPR due to variable
separation [15,16], thermodynamic uncertainty relations for
current precision [17–20], numerically solving an optimiza-
tion problem [21] or establishing masked dynamics [22–25],
which can involve quantifying asymmetries in forward and
backward waiting-times distributions [26,27], timescale sep-
aration [28–30], the statistics of transitions when states are
hidden [31–36], and others [37–52]. See also a more detailed
overview of recent approaches to nonequilibrium detection in
Ref. [53].

Although the dynamics of mesoscopic systems is typically
observed through changes in the environment, “from outside,”
many of the mentioned methods fall short since a change
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FIG. 1. Exchanges between a system and reservoirs are moni-
tored rather than the internal transitions of the system itself, yielding
a trajectory that still carries thermodynamic information about the
system. The squiggly arrows represent the monitored interactions
that provide a trajectory composed of multifilar events, represented
as circles on a timeline.

in configuration is not necessarily associated with a unique
change in the environment. As a paradigmatic example, con-
sider a system in contact with many reservoirs driving it away
from equilibrium through the exchange of physical quanti-
ties; some examples are transport problems [54–56], photon
detections [57], Maxwell demons [58,59], and chemical re-
action networks [60]. Also, consider that the experimenter
does not directly monitor the system, since it might be beyond
the experimental limitations or too sensitive to perturbations.
See Fig. 1 for an illustration. The measurements open the
possibility of inferring system properties, such as the dis-
tance to equilibrium, but they pose additional challenges.
Several distinct transitions between system mesostates usually
give rise to the same event in a reservoir, and thus we dub
them multifilar (in contrast to the unifilar case in which an
observable event is composed of a unique transition), ren-
dering the trajectories non-Markovian. In this case, some of
the previously known results do not apply, and the problem
quickly becomes numerically expensive. Some other exam-
ples of systems whose observables have multifilar nature are
molecular motors with distinct pathways causing mechan-
ical movement [61–63], jumps between metastable states,
the composite operation of identical indistinguishable subsys-
tems, chemical reaction networks, and the observation of state
occupancy in systems that can have more than one transition
between the same pair of states.

In this contribution, we extend the framework for the statis-
tics of a partial set of observable transitions [31,32] to the
more wide-ranging case of multifilar events and develop paths
to detect and quantify nonequilibrium behavior in distinct
scenarios using minimal assumptions. We start by formalizing
the mathematical framework, obtaining analytical expressions
for sequences of multifilar events and waiting times based
on first-passage problems, both in the semi-Markov approach
and the fully non-Markovian case. We proceed by showing
that the probabilities of each individual event compared to
its time reverse bounds the EPR from below, this can be
done with no prior knowledge of the system itself and can

be applied to situations where the physical characteristics
of the system and reservoirs are unknown or inaccessible.
Second, we still do not require prior knowledge and consider
a semi-Markov approach that uses conditional probabilities
and waiting-time distributions to bound the EPR from below,
which can be viewed as the generalization of the EPR esti-
mation in Refs. [31,32]. Stemming from the latter, we put
forward quantities that can detect the presence of nonequi-
librium behavior in sequences of multifilar events, including
their waiting times. These model-free estimators are partic-
ularly relevant to assess the nonequilibrium thermodynamics
of partially observed systems since they do not include the
restrictive assumption that each observable is generated by a
single transition. Third, if some prior knowledge of the system
model and topology is present, which can come in the form of,
e.g., possible chemical reactions or physical structure of a de-
vice, then we put forward a simple method that measures the
affinity and consequently provides the exact EPR, bypassing
the need for establishing a model and quantifying its transition
rates. We describe scenarios to decide the suitability of each
estimator and the conditions that hinder their relevance. The
results are illustrated in relevant models, and we conclude by
discussing the results and open questions.

II. FRAMEWORK FOR MULTIFILAR EVENTS

We consider a continuous-time Markov chain defined
over an irreducible state space whose dynamics is captured
by time-independent transition rates, establishing a master
equation

dt p(t ) = Rp(t ), (1)

here R is the rate matrix with entries Ri j being the transition
rate from state j to i if i �= j, or minus the exit rate Rii =
−∑

j R ji otherwise. A pair of states i �= j can be connected
by more than one transition, rendering the state space a multi-
graph, which can be expressed as

Ri j =
∑

�

r�δi,t(�)δ j,s(�), (2)

with the sum spanning over the set L of all possible transi-
tions. In our notation, � ∈ L is a transition from source state
s(�) to target state t(�), and its rate is rate r�. The probability
distribution will reach a unique stationary value at long times
that will be, for simplicity, referred to as p since hereafter we
assume stationarity.

In this work we consider that a subset of all transitions
can be detected, namely the observable transitions Lobs ⊆ L.
We assume microreversibility of all possible transitions L,
i.e., if � ∈ L, then �̄ ∈ L. This assumption can be relaxed by
considering “hidden irreducibility” [34], which ensures that
any two observable transitions can occur consecutively, and
preserving the thermodynamic consistency of all observables.

A crucial step for this work is accounting for multifilar
events: events that immediately emerge from the occurrence
of more than one transition. As yet another example, consider
a three-level system that exchanges matter with a lead; when
an electron is transferred to the system, a jump can occur from
the ground to the first excited state, or from the first to the
second excited state, but the same increment is observed in
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FIG. 2. Example of multifilar events: Whenever a three-level
system exchanges electrons with a metallic lead, a pair of transitions
from space L is involved with a single event observed on the lead in
X . The map θ relating both is noninjective.

the current system-lead in both cases. If energy exchanges are
monitored, then the multifilar character is present if the energy
gaps between the three states are the same; otherwise, it would
be possible to distinguish the internal transitions. See Fig. 2.

The relation between observable transitions and their re-
spective multifilar events is given by the map θ : Lobs → X ,
supported by the subset of all observable transitions. This map
is noninjective; otherwise, it would not establish multifilar
events. We also assume that each transition is associated with
at most one multifilar event; otherwise, θ would not be a
map. Since the reverse of an observable transition is also
observable, the reverse of an element x ∈ X is also a multifilar
event x̄ ∈ X . As should, the coarse-graining map commutes
with time reversal: θ�̄ = x̄ for θ� = x. If the timeseries of
observable transitions is

�0
t1−→ �1

t2−→ · · · tn−→ �n, (3)

then the observation of multifilar events yields

θ�0
t1−→ θ�1

t2−→ · · · tn−→ θ�n. (4)

In principle, a multifilar event is a label given to one or more
observable transitions produced by the Markov process.

A. Semi-Markov

Even though the sequence of events is non-Markovian,
a semi-Markov treatment is relevant for practical purposes.
Empirical estimation of the statistics of more than two events
often becomes computationally challenging or requires the
acquisition of a lot of data. For this reason, we start exploring
the statistics between a pair of events, which can be later
used to probe collected data or to evaluate quantities under
the semi-Markov assumption.

Immediately after a multifilar event x, the probability dis-
tribution in the state space is a statistical mixture of all
possible targets of transitions in the subset θ−1x ⊆ Lobs. The
non-δ distribution after an event introduces non-Markovianity
in the sequence of multifilar events. By comparing the rates at
which transitions occur, this distribution can be expressed as

p|x = �xp, (5)

where we define the event-propagating matrix

�x := 1

Kx

∑
�∈θ−1x

r���. (6)

We also define �� as a square matrix of size equals to the
cardinality of the state space and whose elements are zeros
but for 1 in the element of row t(�) and column s(�) [64], and
Kx := ∑

�∈θ−1x r� ps(�) as the traffic rate of event x (also known
as its dynamical activity, a time-symmetric observable). The
observable traffic rate, which measures the number of all
events per unit time, is then Kobs := ∑

x Kx � K, where K is
the total traffic rate that also includes the hidden transitions.

The state space propagation between two observable multi-
filar events can be obtained by solving a first-passage problem
in an auxiliary dynamics [31,65]. Let S := R − ∑

�∈L r��� be
the survival propagator, then exp(tS) propagates the probabil-
ity distribution for a duration t conditioned on the absence of
observable transitions and r�[exp(tS)p]s(�) is the probability
of performing transition � after time t starting from any p.
The survival matrix can also be expressed in terms of Eq. (6):

S = R −
∑
x∈X

Kx�x. (7)

At the level of observable transitions, we can now obtain
the probability of transition � occurring after time t has passed
since the multifilar event x,

P(�, t |x) = r�[etS�xp]s(�). (8)

Finally, the probability of another event occurring after time t
can be obtained by another usage of the matrix �,

P(x′, t |x) = Kx′1�x′e
tS�xp, (9)

with 1 being a row vector of ones. See Appendix A for a proof.
As proven in Ref. [34] and with an alternative approach

in Appendix B, the survival matrix is invertible. Therefore,
marginalizing the waiting time leads to the probability of one
event x′ conditioned on the previous event x:

P(x′|x) = −Kx′1�x′S
−1�xp. (10)

Although this equation is only conditioned on the last multi-
filar event x, it does not mean the process is Markovian. The
probability of a long sequence of events cannot be expressed
by the multiplication of probabilities similar to Eq. (10).

Equations (9) and (10) represent the statistics of pairs of
multifilar events that will be used for thermodynamic in-
ference in the following sections. They can be empirically
estimated from experiments or numerical simulations. The
transition-based coarse-graining framework is recovered from
these equations by choosing an injective map θ . In this case,
all matrices � are single-entry, px has only a single entry 1,
leading to Markovian sequences of observable transitions.

B. Non-Markov

The more general non-Markovian probability of a se-
quence of multifilar events can also be estimated using the
introduced tools. The sequence of transitions and intertran-
sition times, which is Markovian, is obtained by the path
probability

P(��, �t ) = P(�0)
n∏

i=1

P(�i, ti|�i−1), (11)
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for �� = {�0, . . . , �n} and �t = {t1, . . . , tn}. An expression anal-
ogous to Eq. (11) for �x would represent the semi-Markov
approximation. The path probability of multifilar events can
be obtained from all possible sequences of observable transi-
tions that map onto the sequence of events, i.e.,

P(�x, �t ) =
∑

��∈Ln+1
obs

P(��, �t )
n∏

i=0

δθ�i,xi , (12)

where δ is the Kronecker δ function.
Using the event-propagating matrix �x defined in Eq. (6),

this probability can be obtained by

P(�x, �t |x0) =
(

n∏
i=1

Kxi

)
1

(
1∏

i=n

�xi e
tiS

)
�x0 p, (13)

where the product
∏1

i=n is ordered with larger i on the left,
i.e., �xn exp(tnS)�xn−1 exp(tn−1S) · · · . This equation provides
the joint probability density of a non-Markovian sequence of
events �x and their waiting times �t . As in the previous case, this
probability can be marginalized by integration of all waiting
times and the matrix exponentials will be replaced by −S−1.

Equation (13) captures the path probability of each in-
dividual sequence of transitions that is compatible with the
considered sequence of events. Intuitively, exp(tS) captures
the propagation through hidden pathways interspersed by
multifilar events captured by �.

III. DETECTING AND QUANTIFYING NONEQUILIBRIUM

The EPR of a continuous-time Markov chain is

σ =
∑

i j

R ji pi ln
Rji pi

Ri j p j
= K

∑
�∈L

P(�) ln
P(�)

P(�̄)
(14)

in units of the Boltzmann constant [66]. The quantities in-
volved are transition rates and probability mass functions,
and measuring EPR requires a method for their inference.
Establishing a model involves the definition of the possible
states and the transition rates between them, thus solving the
master equation yields the probabilities and EPR is obtained.
If no model is available, but all states can be observed, then
transition rates can be empirically obtained by the frequen-
cies of each transition and probabilities are obtained from
residence times. If there is a model but missing information,
such as some inaccessible transition rates due to hidden states,
then many of the methods mentioned in Sec. I can be used to
estimate the EPR. Alternatively, it is also possible to devise
model-free estimators that make no assumptions regarding the
topology, existence of hidden states and their number, values
of some transition rates, or more. These model-free estimators
are invaluable for applying nonequilibrium thermodynamic
methods to assess energetic interchanges, physical limitations,
and the arrow of time in natural systems. When a model-free
estimator is employed, its result is not conditioned on the
validity of model assumptions. In the context of observing
multifilar events, we discuss two model-free estimators and
one that uses additional information to assess the distance
to equilibrium; beyond accounting for multifilar events that
cannot be resolved into individual transitions, all estimators
can be applied in scenarios of partial information.

A. Zero-knowledge

The first model-free estimator considers the (uncondi-
tioned) probability of each event,

P(x) =
∑

�∈θ−1x

P(�) =
∑

�∈θ−1x

r� ps(�)

Kobs
, (15)

which can also be empirically obtained from frequencies.
With no requirements beyond the already announced assump-
tions, the log-sum inequality applied to Eq. (14) establishes
the lower bound

σzk := Kobs

∑
x∈X

P(x) ln
P(x)

P(x̄)
� σ. (16)

If the multifilar events are associated with currents, then it can
be convenient to define jx := Kobs[P(x) − P(x̄)] and

σzk = 1

2

∑
x∈X

jx ln
P(x)

P(x̄)
, (17)

where ln P(x)/P(x̄) acts as the effective affinity of each mul-
tifilar event.

Recall that the value of Kobs is context-dependent, it is the
traffic rate of all observable multifilar events. Therefore, it can
always be measured by counting their number and dividing by
the time span. The occurrence of hidden transitions does not
contribute to its value.

With the estimator in Eq. (16), it is possible to bound
the EPR from below using the statistics of each event in the
absence of any knowledge about the exchanged quantities, the
system topology, or physical characteristics such as the chem-
ical potentials or temperatures of reservoirs. This quantity was
sometimes referred to as a “local” entropy production and
employed as an approximate measure. As will be illustrated,
the bound can be tight even in the presence of θ−1x with
infinite cardinality, as in chemical reaction networks.

For each pair {x, x̄}, the sum of terms in Eq. (16) is non-
negative, and thus σzk still constitutes a lower bound if some
events are hidden.

B. Waiting times

When all transitions in a process are visible and distin-
guishable, waiting-time distributions generally do not play
a role in entropy production [31,32], since all are Poisson
distributions of respective exit rates. The same is not valid
for events due to their multifilar nature; thus, waiting-time
distributions can entail additional thermodynamic informa-
tion. Therefore, a very natural extension lies in considering
the statistics of pairs of transitions, in which a semi-Markov
approximation would be performed on the non-Markovian
trajectories of events. Since it constitutes an approximation,
the expressions may overestimate the real EPR, which is
fundamentally a problem when the goal is to estimate ther-
modynamic costs and limits of a given process. Similarly,
it has recently been suggested that waiting times have to
be disregarded in the semi-Markov approach [25]. We now
show that waiting-time distributions between multifilar events
establish a lower bound for EPR and serve as a nonequilibrium
indicator.
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Consider a subset Lobs of all possible transitions, which
is the set of visible transitions. When the occurrence of all
elements of Lobs is distinguishable (unifilar), the EPR is bound
from below in the transition-based framework by

σ � Kobs

∑
�′,�∈Lobs

∫ ∞

0
dtP(�, �′, t ) ln

P(�′, t |�)

P(�, t |�′)
, (18)

where P(�, �′, t ) is the joint probability density function for
the occurrence of two consecutive transitions � and �′ sepa-
rated by a time interval t [31]. If the log-sum inequality is
applied to make sums of multifilar events pop out, then the
result is

σ � Kobs

∑
x,x′∈X

∫ ∞

0
dtP(x, x′, t ) ln

P(x′, t |x)

P(x, t |x′)

+ Kobs

∑
x∈X

P(x) ln
P(x)

P(x)
− Kobs

∑
�∈Lobs

P(�) ln
P(�)

P(�)
.

(19)

Notice that the first term on the right-hand side only depends
on the statistics of multifilar events, which we consider as
the only available quantities, the second term is the zero-
knowledge estimator, and the negative of the last term is
smaller than or equal to the EPR. Therefore, we define a
second-order estimator that leverages pairwise probabilities
and waiting-time statistics to establish the lower bound:

σso := 1

2
Kobs

∑
x,x′∈X

∫ ∞

0
dtP(x, x′, t ) ln

P(x, x′, t )

P(x′, x, t )
� σ,

(20)

which was first proven by Ertel and Seifert in the coeval
contribution [44]. The inequality in Eq. (20) bounds the EPR
from below using the available statistics of observable events
and, importantly, accounts for their multifilarity.

Comparing the second-order with the zero-knowledge es-
timator, we see that σso has a contribution from waiting times
that is nonnegative due to its Kullback-Leibler divergence
structure, thus any asymmetries in waiting times can only
contribute positively to the observable EPR. Furthermore, it
is possible to show that

σso � σzk, (21)

even when waiting times are fully symmetric, evidencing
that the inclusion of conditional probabilities improves the
estimation.

Beyond the estimation of EPR, the detection of nonequi-
librium behavior is also valuable in many instances, it reveals
a constant consumption of free energy and the presence of
forces. Since the discussed estimators are nonnegative and
smaller than or equal to the EPR, they vanish at thermal
equilibrium, thus constituting nonequilibrium detectors. Ad-
ditionally, it is convenient to decouple the contributions of the
statistics of multifilar events and their waiting times, since in
some instances one of them might resemble equilibrium or
be much more challenging to estimate from data, which is
usually the case for the latter. Finally, we put forward two
nonequilibrium detectors, stemming from the occurrence of

events and their waiting times:

Dx :=
∑

x,x′∈X
P(x, x′) ln

P(x, x′)
P(x′, x)

(22)

and

Dt :=
∑

x,x′∈X
P(x, x′)DKL[P(t |x, x′)||P(t |x′, x)], (23)

where we denote as DKL[P(t )||Q(t )] the Kullback-Leibler
divergence for continuous variables (see Ref. [67] for practical
considerations) between P(t ) and Q(t ), which is the relative
entropy of both distributions, and vanishes if and only if
the distributions are the same. Equations (22) and (23) are
therefore relative entropies between a pair of events and its
time-reversal analog, with the former accounting for pairs of
multifilar events and the latter for the waiting time between
them. Both detectors are nonnegative and vanish at equilib-
rium, satisfying minimal conditions to be used as indicators
of nonequilibrium behavior.

Importantly, the values of Eqs. (22) and (23) are nonneg-
ative for any choice of X , and therefore are nonequilibrium
detectors even if some events are hidden or there exist transi-
tions not associated with events. Once again, we recall that if
x ∈ X then x̄ ∈ X . In summary, a positive value of Dx or Dt

for any set of visible multifilar events X is enough evidence
for an underlying nonequilibrium process.

If the only observables are one event and its reverse,
X = {x, x̄}, then irreversibility can be detected by comparing
(x, x) and (x̄, x̄), while the contribution from alternated terms
(x, x̄) and (x̄, x) vanish. Therefore, even if P(x) = P(x̄), which
represents apparent equilibrium due to a stalled observable
current, irreversibility can still be detected. Another simple
example worth mentioning is the case of a system that only
has two observable configurations {0, 1} with many path-
ways connecting them. The sequence of events will be trivial:
{0 → 1, 1 → 0, 0 → 1, . . .}, indistinguishable from equilib-
rium behavior; however, the waiting times can still reveal
nonequilibrium by a nonvanishing Dt .

C. Topology-informed

Additional information opens the possibility of analyzing
the event statistics through a more informed lens and obtain-
ing better bounds or estimators. We now consider the case
of knowledge about the model in question and its state space
topology, without the need for numerical values of transition
rates or population probabilities. In general, this would not
suffice to measure the EPR since it usually requires dynamical
information in the form of transition rates.

A few classes of systems present a particular symmetry in
the state space: more than one cycle sharing the same affinity,
potentially an infinite number of them. In systems satisfying
local detailed balance (LDB), which is a condition for ther-
modynamic consistency [28,68], the affinity reduces to a sum
over the entropy fluxes generated by each transition along the
cycle that involves physical properties such as temperatures,
energy exchanges, and chemical potentials, but not local state
probabilities [69], and can result in the same value for fami-
lies of cycles due to conservation laws [70,71]. Also, this is
ubiquitous in systems driven by reservoirs, when the affinities
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are independent of local configurations and only expressed in
terms of the intensive properties of reservoirs [71,72]. Notice
that these are common mechanisms giving rise to said symme-
try, but not necessary conditions. Examples include chemical
reaction networks [73,74], stochastic models for electronic
circuits [75], isothermal driven collective engines [76], and
more. More specifically, in Sec. V, we explore in detail a
double quantum-dot model [56,59,77] and a simplified Brus-
selator [78–80], both of which fall into the said class.

For the next estimator, we assume the following: There
exists a finite number of families of cycles of the same affinity
and, for each family, there is a unique minimal sequence of
observable events �xα univocally defining the completion of a
cycle �Cα from this family.

Network theory [66] says that the affinity of a cycle is given
by the product of the rates of all edges involved, according to
their convention orientation,

Aα = ln

∏
�∈ �Cα

r�∏
�∈ �Cα

r�

. (24)

Next, we turn to the probability of observing a sequence �xα ,
which is given by the sum of the probabilities of all transition
sequences associated with �xα:

P(�xα ) =
∑

��:θ ��=�xα

P(�� ) =
∑

��:θ ��=�xα

r�0 ps(�0 )

Kobs

| ��|−1∏
i=1

r�i

exit(s(�i ))
,

(25)

where exit(•) := −[R]•,• is the exit (or escape) rate of a
state. Equation (25) can be explicitly obtained using Eq. (13).
Since we assumed a one-to-one connection between a family
of same-affinity cycles �Cα and a sequence of transitions �xα ,
Eq. (24) can be plugged in the right-hand side of Eq. (25),
making the factor exp(Aα ) appear, and the log-ratio with the
time-reversed sequence simplifies to

ln
P(�xα )

P( �xα )
= Aα. (26)

�xα is defined as the time-reversal of the original sequence and
can be obtained by reversing the order of the sequence and the
direction of each individual event: x ↔ x. This time-reversal
is nothing but the result of coarse-graining the time-reversed
state space trajectory. For clarity, if �xα = {x0, . . . , xn}, then
�xα = {x̄n, . . . , x̄0}.

The entropy production can be expressed as a bilinear
product of affinities and currents. If all affinities that con-
tribute to the EPR are estimated using Eq. (26), then it is
a matter of finding the cycle currents jα . Depending on the
model, they can be obtained from reservoir fluxes or by the
flux over chords (edges removed from the network to define
a spanning tree that forms the cycle in question when reintro-
duced). Given that the topology is known, defining this flux
is most likely immediate. Bringing all together, we have the
topology-informed estimator

σti :=
∑

α

jα ln
P(�xα )

P( �xα )
= σ, (27)

which is exactly the EPR. It is important to note that there
exists some freedom in the definition of cycles, hence if the
family of cycles that meet the requirements is not known, the
following recipe can be followed for systems with finite state
space: (i) choose a spanning tree (cf. [66]), (ii) identify cycles
that share the same affinity and can be univocally defined
by a sequence �xα , (iii) measure the current at the chords of
these cycles and the affinity using Eq. (26). The method does
not necessarily satisfy the assumption for every choice of
spanning tree, so it might need to be repeated. For infinite state
spaces, such as the concentration space of chemical reaction
networks, the definition of a same-affinity cycle family usually
comes from the list of reactions and chemostatted species.

We recall that the sequence of multifilar events is
non-Markovian, the probabilities P(�xα ) can be empirically ob-
tained or calculated by the path probability of events, Eq. (13).
However, if a semi-Markov approximation is performed, then
the estimator can be employed to obtain an approximated
value of the EPR that might be more feasible, since assessing
the statistics of long sequences often becomes challenging.

For the topology-informed estimator σti, a partial sum of
Eq. (27) will not lead to an EPR lower bound since some
terms might be negative, which is usually the case in heat
engines, for example. Therefore, all families of cycles must be
considered. Notice that not necessarily all system transitions
are involved, thus the method can hold in partial information
scenarios when the hidden transitions are not contained in
{�xα}. In other words, hidden transitions do not immediately
rule out the assumption herein.

D. Connection to previous results

Before the establishment of the present results, the most
appropriate alternative to estimate the EPR from partial ob-
servation of transitions is that of Refs. [31,32], which form
a strict lower bound for the unifilar case. If unifilarity cannot
be assumed, then the estimators therein would represent an
approximation and not a strict lower bound. Although obtain-
ing an approximation is a valid method, especially if the goal
is to capture qualitative features, it is key to have a robust
inequality in many tasks, such as in assessing energetics.
Suppose an experimenter is observing the exchanges between
a cell and its environment, it is crucial to obtain the minimal
amount of kB dissipated per time to keep its function rather
than just an approximation; an overestimation might lead to
incorrect assessment of properties such as energetic efficiency
and the cost to sustain a process.

More precisely, the estimator for unifilar transitions is

σunifilar = Kobs

∑
�,�′∈L

∫ ∞

0
dtP(�, �′, t ) ln

P(�′, t |�)

P(�̄, t |�̄′)
, (28)

which is not equivalent to Eq. (20). If multifilar events x ∈
X are monitored and interpreted as unifilar transitions � ∈ L,
regardless if as an approximation or a mistaken interpretation,
and the values are fed into the estimator Eq. (28), then this
will no longer satisfy an inequality with the EPR and we will
denote it σapprox in this section.

Considering the minimal example of a unicyclic net-
work with four states {1, 2, 3, 4}, we define one multifilar
event x1 that occurs when transitions 3 → 4 or 4 → 1 oc-
cur, i.e., θ−1x1 = {3 → 4, 4 → 1}, and also x2 such that
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FIG. 3. Distinct entropy production estimators in a unicyclic
four-state network, with observable multifilar events such that
θ−1x1 = {3 → 4, 4 → 1} and θ−1x2 = {3 → 2}. All transition rates
are randomized in [0,1] for each dot.

θ−1x2 = {3 → 2}. Recall that if θ� = x, then θ�̄ = x̄. In
Fig. 3, we plot the values of σzk, σso, and σapprox normalized
by the EPR for randomized rates in [0,1]. We observe that
using σapprox can indeed overestimate the EPR, while the other
two estimators specialized for multifilar events are strict lower
bounds.

IV. THE CASE OF RESERVOIRS: A CAUTIONARY TALE

A quintessential problem in nonequilibrium thermodynam-
ics consists of a system placed in contact with more than one
reservoir with which it can exchange energy and/or matter.
This is used to model electronic devices between leads, quan-
tum transport problems, chemostatted chemical reactions, and
the historical problem of a heat engine working between a hot
and a cold reservoir. The events occurring at the reservoirs are
usually multifilar and can be used to obtain entropy production
through integrated currents if the physical quantities of all
reservoirs are known. Let F denote the fundamental forces, a
set of nonconservative forces obtained by combining the phys-
ical properties of reservoirs and conservation laws [70,71], the
EPR is

σ = j · F (29)

in the long-time limit and in units of the Boltzmann constant,
where j are physical currents associated with each force.
Therefore, if fundamental forces are known, then it is only
required to measure values of currents, ruling out the need for
inference schemes that employ, e.g., waiting-times analysis
or semi-Markov approximations. It is worth pointing out that
conservation laws might render some reservoirs futile, thus the
number of fundamental forces can be smaller than the number
of reservoirs, and the currents from futile reservoirs need not
be monitored.

Fundamental forces are composed of quantities such as
temperature, energy gaps, charges, and chemical potentials,
but they may not be known or measurable with the desired
accuracy. In these situations, specialized estimators provide

tools to assess EPR or the presence of nonequilibrium be-
havior. The inverse problem is also relevant; once the EPR is
estimated and the currents are known, something can be said
about the fundamental forces. Now, we discuss how the results
of previous sections can contribute to the case of observ-
ing events in reservoirs without knowing the thermodynamic
forces.

In the case of reservoirs, the multifilar events are often
increments ±1 of a counter that monitors the number of ex-
changed quantities. If energy exchanges are also monitored,
then it might be possible to further resolve some events in
terms of the energy they displace, enlarging the space of mul-
tifilar events and potentially resolving at the level of individual
transitions and, naturally, improving the estimations. Without
loss of generality, let us briefly assume that all transitions
between states are mediated by reservoirs. If some transitions
are hidden, then we imagine an extra reservoir mediating all
of these transitions, so this scenario is always covered by the
case of hidden reservoirs. The quantities σzk, σso, Dx, and
Dt are obtained as a sum of nonnegative terms, hence they
can be used even when some reservoirs are hidden. Their
values increase with the number of monitored reservoirs, thus
the bounds due to σzk and σso get tighter, and it becomes
increasingly easier to determine whether Dx or Dt are nonzero
from finite data. Last, the estimator σti requires visibility of all
the reservoirs involved in the completion of cycles �Cα , which
does not necessarily include all reservoirs.

The relation between fundamental forces and affinities, if
the local detailed balance condition is satisfied, is given by a
“M-matrix” [70] that captures the state space topology and the
physical exchanges with each reservoir along all transitions.
In some problems, it might be possible to relate the inde-
pendent left-null vectors of this matrix and establish a direct
connection between the affinity estimator in Eq. (26) and
fundamental forces. However, we recall that if the M-matrix
is known, then it is possible to obtain forces and currents
analytically.

V. ILLUSTRATIONS

A. Double quantum-dot

Motivated by Refs. [56,59,77], we consider a model for
two quantum-dots (two-level systems), each coupled to two
reservoirs, whose interaction occurs by Coulomb repulsion.
See Fig. 4(a) for the model scheme. We assume that all four
reservoirs have the same temperature T = β−1 but different
chemical potentials μν , the quantum-dots when occupied have
energies εu and εd, and the interaction between occupied dots
carries energy �ε. Transition rates satisfy LDB and thus the
same affinity is present in distinct cycles as in Fig. 4(b).

If μ1 �= μ2 and μ3 �= μ4, then the system is out of equi-
librium and currents are established between each pair of
reservoirs, passing through the quantum-dot between them. If
�ε �= 0, then both quantum-dots interact, and the currents are
the result of every parameter of the system. Let ν be the index
representing each reservoir, we consider transition rates for
ν = {1, 2}:

R(ν)
01,00 = �ν f (εu − μν ),

R(ν)
00,01 = �ν[1 − f (εu − μν )],
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FIG. 4. (a) Scheme of the double quantum-dot with four reservoirs and Coulomb repulsion; (b) state space with degenerate affinities A12

and A34 and the label/color of each edge represents the reservoir mediating the transitions and, therefore, its associated multifilar event observed
from the reservoirs; (c) example trajectory γ of electron exchanges and the respective observable trajectory θ ◦ γ of multifilar events; (d) in
terms of affinity A12 and normalized by the EPR, the exact estimator σti, and the estimators σzk and σso evaluated from the events of reservoirs 1
to 3; (e) nonequilibrium detectors Dx (left axis) and Dt (right axis) evaluated from the events of only reservoir 1. In the last two panels, T = 1
and all other parameters are randomly chosen in [1,5].

R(ν)
11,10 = �ν f (εu + �ε − μν ),

R(ν)
10,11 = �ν[1 − f (εu + �ε − μν )], (30)

where �ν is the coupling strength to the reservoir and f (ε) =
[1 + exp(βε)]−1 is the Fermi-Dirac distribution. For ν =
{3, 4} they are

R(ν)
10,00 = �ν f (εd − μν ),

R(ν)
00,10 = �ν[1 − f (εd − μν )],

R(ν)
11,01 = �ν f (εd + �ε − μν ),

R(ν)
01,11 = �ν[1 − f (εd + �ε − μν )]. (31)

The state space presents many cycles and some share the
same affinity due to LDB and isothermality. An analysis of
the fundamental forces [70,71] reveals that only two affinities
contribute to the EPR:

σ = β(μ1 − μ2)J1 + β(μ3 − μ4)J3 = A12J1 + A34J2, (32)

where J1 := R(1)
01,00 p00 − R(1)

00,01 p01 + R(1)
11,10 p10 − R(1)

10,11 p11 is

the flux from reservoir 1 t the system, and J3 := R(3)
10,00 p00 −

R(3)
00,10 p10 + R(3)

11,01 p01 − R(3)
01,11 p11. These affinities are univo-

cally related to the occurrence of some cycles, as highlighted
in Fig. 4(b).

We consider electrons hopping into each reservoir as the
observable multifilar events, which can be caused by distinct
transitions and detected as increments in the voltage or a
monitored current. For example, when a particle is provided
by the first reservoir, we observe +1, and it can be similarly

associated to either 00
1−→ 01 or 10

1−→ 11. See Fig. 4(c) for
an example of a time series of this model and the associated
multifilar events that can be observed from the reservoirs.

Figures 4(e) and 4(f) show the values of all quantities
developed in Sec. III evaluated for the double quantum-dot
model, all dots represent exact values obtained using the ana-
lytical expressions in Sec. II.

Notice that this model satisfies the condition of sequences
of transitions univocally defining a family of cycles with
the same affinity, they are {+1,−2} and {+3,−4}, and the
affinities are obtained by A12 = ln[P(+1,−2)/P(+2,−1)] =
β(μ1 − μ2) and A34 = ln[P(+3,−4)/P(+4,−3)] = β(μ3 −
μ4), hence the topology-informed method can be carried out
to obtain these affinities and, consequently, the EPR even
when the chemical potentials and temperature are not known.
The currents are evaluated by J1 = K[P(+1) − P(−1)] and
similarly for reservoir 3. The value of σti is shown in Fig. 4(d),
exactly obtaining the EPR from the statistics of events col-
lected from the reservoirs.

The estimators σzk and σso are model-free, therefore is not
necessary to identify cycles or make physical considerations
about the processes involved, they can be obtained from the
statistics of events regardless of what they are. In particular,
Fig. 4(d) shows the case of observing when reservoirs 1, 2, and
3 provide or remove an electron from the pair of quantum dots.
We observe that indeed both are nonnegative and bound the
EPR from below. The estimator σzk is interestingly tight, given
that it only considers absolute probabilities of events that are
not observed at the state space level and one of the reservoirs
is hidden. Due to the inclusion of conditional probabilities and
the contribution of waiting times, the second-order estimator
σso improves the estimation by making the bound tighter.

The nonequilibrium detectors Dx and Dt evaluated at reser-
voir 1 are shown in panel (e), with a positive value indicating
the nonequilibrium character of the underlying process in
state space. Notice that for A12 = 0, the affinity between
reservoirs 1 and 2 vanishes and their currents stall since
no particles are exchanged between the two quantum-dots;
hence the statistics of sequences of multifilar events collected
at reservoir 1 is of apparent equilibrium and the detector
Dx fails to detect nonequilibrium, even though A34 is not
necessarily zero. However, due to the repulsive interaction
and the nonzero affinity A34, the waiting-time distributions
become asymmetric and Dt is able to reveal nonequilibrium
using only the statistics of reservoir 1. The values shown in

024122-8



UNCOVERING NONEQUILIBRIUM FROM UNRESOLVED … PHYSICAL REVIEW E 110, 024122 (2024)

FIG. 5. Zero-knowledge estimator σ
(n)
zk for the observation of the

n first reservoirs. Inverse temperature β2 has values in [0,31], and the
other parameters are {�1, �2, �3, �4} = {11, 5, 7, 13}, {μ1, μ2, μ3,

μ4} = {5, 1, 6, 1}, β1 = β3 = β4 = 1, and {εu, εd, �ε} = {2, 1, 3}.

Fig. 4 are exact and, even though Dt is usually small, it is
possible to decide whether they are zero or not by looking
at the fluctuations with respect to many realizations of the
process. In the case of reservoirs with different temperatures,
the nonisothermal scenario, the affinities will not be the same
throughout the distinct cycles and the method of σti does
not apply. For instance, the cycle between 00 and 01 will
have affinity εu(β2 − β1) + β1μ1 − β2μ2, while between 10
and 11 it is (εu + �ε)(β2 − β1) + β1μ1 − β2μ2. It is evident
that the same affinity case is recovered when β1 = β2. Each
affinity cannot be measured since the occurrence of individual
cycles cannot be resolved from the multifilar events of particle
exchanges, although it would be possible if energy transfers
were also monitored. Also, there is an affinity �ε(β1 − β3)

related to the cycle 00
1−→ 01

3−→ 11
1−→ 10

3−→ 00 that con-
tributes to the EPR and cannot be obtained from multifilar
events. Figure 5 shows the EPR lower bound using the zero-
knowledge estimator. Changing one of the temperatures has a

nontrivial influence on the estimators, but the main features
are preserved: It is still a lower bound and the addition of
reservoirs makes it tighter.

In the presence of transitions not mediated by any of the
reservoirs, such as in the possibility of electron hops between
quantum-dots 01 ↔ 10, the estimators σzk and σso would still
provide a lower bound, and the detectors Dx and Dt would
still be nonnegative and vanish at equilibrium. The sequence
of some particular events would still measure the affinities
using Eq. (26); however, the currents will change and there
will be an additional contribution to the EPR, thus considering
a partial set of affinities in σti does not provide the exact EPR
and might even overestimate it, witnessing the need to be
aware of all the affinities at play when using this estimator.

B. Brusselator

The second model considered is composed of three chem-
ical reactions, two fluctuating chemical species X and Y , and
two species whose concentrations are fixed by chemostats
[see Fig. 6(a)]. It is a simplified version of the Brusselator
model [78–80] that is largely studied due to its nontrivial
behavior, such as the presence of a limit cycle and chemical
oscillations emerging through a phase transition [80,81]. The
state space is the infinite 2D lattice of concentrations of X
and Y with reactions translating into horizontal (k±1), vertical
(k±2), and diagonal (k±3) transitions. The affinity is given by
�μ = ln([B]k2k−1k3/[A]k−2k1k−3) and the entropy produc-
tion is σ = J�μ, with J being the current from reservoir B
to the system (or minus the current from A to the system).
The kinetic constants k±ρ are translated into transition rates
according to the rule of mass-action kinetics:

r1 = k1[A], r−1 = k−1[X ],

r2 = k2[B], r−2 = k−2[Y ],

r3 = k3
[X ][X − 1][Y ]

V 2
, r−3 = k−3

[X ][X − 1][X − 2]

V 2
,

(33)

FIG. 6. (a) Reactions of the considered Brusselator model and reservoirs chemostating species A and B; (b) state space with degenerate
affinities �μ and highlighted multifilar events that can be observed from the chemostats and the internal event; (c) example trajectory γ of
chemical reactions and the respective observable trajectory θ ◦ γ of multifilar events; (d) In terms of affinity �μ and normalized by the EPR,
the exact estimator σti, the estimator σ

(A)
zk evaluated from reservoir A, and σ

(A)
zk from reservoirs A and B; (e) Nonequilibrium detectors Dx and Dt

evaluated from the events of only reservoir A. In the simulations, V = 5, [A] and [B] are randomly drawn in [5,10], and the rates k±i in [1,3];
each dot represents the average value of the estimator evaluated from 100 trajectories of tmax = 104 and error bars are shown.
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where V is the volume of the vessel where reactions take
place.

As seen in Fig. 6(b), the state space has an infinite number
of cycles, all with affinity �μ that can be univocally related to
the sequence of reactions {−A,+B,+I}. The first two types of
reactions give rise to multifilar events that can be monitored
as exchanges of chemostatted species between system and
reservoir. If we assume that the internal reactions ±I are also
monitored, then the affinity can be empirically estimated by
ln P(−A,+B,+I )/P(−I ,−B,+A); then the EPR is obtained
by multiplying the estimated affinity by the current from one
of the reservoirs to the system. This result is shown in Fig. 6(d)
through numerical simulations for randomized parameters and
in agreement with the exact EPR. For larger values of �μ, the
error bars are smaller and the inference more precise. Close
to equilibrium, the error bars get larger since it is harder to
pinpoint the exact value when the EPR itself is very small; for
aesthetic purposes, we have removed the points of smallest
�μ since the error bars can overextend the size of the plot.
This discussion considers that the internal transitions are vis-
ible but, in general, they do not give rise to observables, thus
we now turn to the other estimators.

When the only observables are changes in the chemostats,
the zero-knowledge estimator σzk and the second-order esti-
mator σso can be used to bound the EPR from below. The
former is shown in Fig. 6(d) for the probabilities of events
observed at reservoir A through σ

(A)
zk , estimating about half

the EPR for distinct sets of parameters. When reservoir B
is also observed, the estimator σ

(AB)
zk yields an even tighter

bound for the EPR. We remind that they require no knowledge
about rates k±ρ or the chemostatted concentrations [A] and
[B], and they also do not involve assessment of the affinity
�μ, these bounds only concern the promptly accessible statis-
tics of changes in the chemostats and directly measure the
irreversibility of individual multifilar events.

Since �μ is the only affinity of the model, the system is
in equilibrium when it vanishes and all estimators/detectors
vanish for �μ = 0. Figure 6(d) shows the nonequilibrium de-
tectors Dx and Dt evaluated from the statistics of chemostat A
only. The values of Dx indicate the presence of nonequilibrium
behavior when �μ �= 0 and vanish otherwise. Interest-
ingly, its waiting-times counterpart Dt fails in detecting
nonequilibrium behavior even in the presence of a nonzero
affinity, being always compatible with zero with large error
bars for the same simulations that are enough for the other
estimators. Due to this behavior of the waiting-time distribu-
tions, σso does not represent an improvement over σzk and has
error bars too large to contribute to the estimation.

C. Paradigmatic four-state system

One common scenario that gives rise to multifilar events
is the lumping of states, where all transitions between two
lumped states become indistinguishable. For instance, this
scenario can arise in the double-quantum dot of Sec. V A
when the charge is measured, but the detector cannot de-
termine which quantum dot is occupied if the charge is
compatible with a single electron. In this case, the measure-
ment can only inform if there are 0, 1, or 2 electrons inside

FIG. 7. Detection of nonequilibrium from waiting-time dis-
tributions via Dt for a four-state model where two states are
indistinguishable, hence the observable multifilar events are θ−1R1 =
{00 → 01, 00 → 10}, θ−1R2 = {10 → 11, 01 → 11}, L1 = R̄1 and
L2 = R̄2. All transition rates are randomized in [0,3] for each marker
and A is the affinity in the clockwise direction.

the system. Other examples are a ligand that binds to a macro-
molecule while the specific receptor remains unresolved [82],
and a passive mode experiment of two DNA hairpins in series,
which has the potential to be used as a Szilard engine [83].

Inspired by these examples, we explore a model with states
{00, 01, 10, 11} and consider the scenario of 01 and 10 being
indistinguishable, which is also a minimal model to study the
effects of state lumping. In this case, the transitions 00 → 01
and 00 → 10 give rise to the same multifilar event R1, and
their time reversal yields L1. Similarly, 01 → 11 and 10 → 11
are associated with R2. See the inset of Fig. 7. The single affin-
ity A of this system can be evaluated as the natural logarithm
of the product of rates in the clockwise direction divided by
the product of those in the counterclockwise direction.

Since probability is conserved, there cannot be a net flux
of probability from state 00 to {01, 10}, therefore P(R1) =
P(L1). This property can also be seen as the vanishing flux
over a cocycle [84]. Similarly, P(R2) = P(L2). Notice that
this does not imply that the system is at thermal equilibrium
since there can be a net flux over 00 ↔ 10 and so on. This
equivalence of multifilar event probabilities implies that σzk is
always zero and does not suffice to estimate/detect nonequi-
librium.

Further, the joint probabilities P(R1, R2) and P(L2, L1) are
equal again by conservation of probability. Therefore, Dx

also vanishes and the only contribution to σso is due to the
waiting-time distributions. The statistics of individual events
or pairs in X = {R1, L1, R2, L2} are always compatible with
equilibrium and, for the purpose of detecting nonequilibrium
behavior, the detector Dt emerges as the only resource from
the tools developed herein. Figure 7 illustrates the perfor-
mance of this detector through analytical calculations, which
can reach 10−1 for higher affinity values.

VI. DISCUSSION

In summary, we extend the framework of transition-
based coarse-graining to the case of multifilar events, which
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represents a large class of systems and is commonplace in
experiments. We also develop methods to detect and quan-
tify nonequilibrium behavior from the statistics of multifilar
events: the zero-knowledge estimator that uses the proba-
bilities of each event, the second-order estimator that also
includes conditional probabilities and waiting-time distri-
butions, the topology-informed that considers model and
topological information to exactly obtain the affinities and
consequently the full EPR, and two detectors of nonequi-
librium behavior. Importantly, σzk, σso, Dx and Dt are
model-free quantities, they can be applied to sequences
of multifilar events of any nature and do not require fur-
ther assumptions. Similarly, σti uses topological and model
information, bypassing the need to know or estimate tran-
sition rates, chemical potentials, or any other quantities
that are often difficult to measure. Therefore, they are rel-
evant for bridging experiments, where partial information
is the rule, to the toolbox of nonequilibrium thermody-
namics. Similarly, they can be used to validate proposed
models.

We have seen that Dt can detect nonequilibrium behavior
through asymmetries in waiting-time distributions even when
the current of the monitored reservoir vanishes, at the same
time this estimator is always compatible with zero for the
simplified Brusselator model, a behavior that also renders
σso unreliable when compared to σzk. It would be interesting
to understand the mechanisms behind its behavior and the
classes of systems in which Dt becomes ineffective, which
is possibly related to the number of chemical reactions, the
topology of its state space, or properties such as deficiency
and emergent cycles.

As illustrated by the double quantum-dot model, only
two reservoir currents must be monitored if the affinities
are known but, when they are not, σzk becomes tighter
when more than two reservoirs are monitored. This is due
to the lack of physical information in this bound. Another
possible extension of the present results is to account for
possible physical symmetries owing to known conservation
laws. Also, to move from the detection of cycle affinities to
thermodynamic forces, to understand the role of conserved
quantities in identifying detectable families of cycles, and
to explore the case of continuous multifilar events where
position or energy exchanges are detected under limited
resolution.

Further examples of setups where the present results can be
relevant include pulling experiments involving more than two
DNA hairpins in series, emission of photons without detecting
which atoms are in the excited state, observed RNA elonga-
tion from unresolved transcription loci, molecular motors with
many mechanisms driving the mechanical steps, more convo-
luted chemical reaction networks, and an unknown electronic
device between two monitored leads. Also, in setups where
there is no assumed Markov model or the model is under
question, employing the developed model-free estimators can
reveal otherwise hidden properties of the system from experi-
mentally accessible data.

The codes and data used to generate the analytical and nu-
merical results of the present work are available and described
in the repository [85].
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APPENDIX A: AUXILIARY PROCESS
WITH MULTIFILARITY

The joint probability density of the next multifilar event
and its waiting time, conditioned on the previous event, can
be obtained by solving a first-transition time problem. The
solution is a simple extension of the proof in Appendix A
of Ref. [31], but the matrix L defined therein now has the
contribution of more than one transition per element. The
proof sketch is similar, and we present it here for consistency.

For a Markov process with generator R, we define multifi-
lar events x that immediately occur when a transition � ∈ θ−1x
is performed. The auxiliary process is established by the intro-
duction of an absorbing state for each event, and all transitions
that generate these events are redirected towards its respective
absorbing state [65]. The generator of the auxiliary process is
the block matrix

Raux =
(

S 0
L 0

)
, (A1)

where S is the survival matrix in Eq. (7) and

[L]x, j :=
∑

�∈θ−1x

r�δ j,s(�) (A2)

with each row x representing one of the events. Notice that
their order is not relevant. The formal solution of the master
equation, p(t ) = exp(tR)p(0), requires the matrix exponen-
tial of the generator, the propagator, that for the auxiliary
dynamics reads

exp(tRaux) =
(

exp(tS) 0
LS−1[exp(tS − 1)] 0

)
. (A3)

The probability that the process evolves during time t with-
out reaching a particular absorbing state associated with x is
known as its survival probability. Conditioning on a particular
initial distribution p0

aux, the survival probability is

S
(
t, x

∣∣p0
aux

) = 1 − [
exp(tRaux)p0

aux

]
x. (A4)

Assuming that the initial distribution has entries zero in the
rows associated with sinks, which is the relevant case here,
it is a vector with first entries p0 that is a valid distribution
in the original state space. Hence, the only elements that will
be relevant come from the bottom-left block of Eq. (A3). The
first-passage time is obtained as minus the time derivative of
the survival probability, and the joint probability we aim at is
precisely the first-passage time distribution; therefore,

P
(
x, t

∣∣p0
aux

) =
∑

�∈θ−1x

r�[exp(tS)p0]s(�). (A5)

Now, if the process is conditioned on the previous multifilar
event, then p0 → p|x. Finally, the joint probability density to
perform an event x′ after waiting time t becomes equivalent to
Eq. (9).
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FIG. 8. Gershgorin discs (black) and eigenvalues (red dots) for
the rate matrix R (left) and the survival matrix S (right). The state
space has five states and is fully connected; to construct S we con-
sider two visible transitions.

APPENDIX B: INVERTIBILITY AND CONVERGENCE
OF THE AUXILIARY PROCESS

Here, we prove that the propagator of the survival process
exp(tS) is finite at long times, and that S−1 exists. First, we
note that, since probabilities have to be preserved, 1 · p = 1,
the columns of a continuous-time Markov chain generator
R sum to zero. It can be seen as a property of the master
equation’s formal solution; consider a small enough δt , then

1 · [p(t + δt )] = 1 · [eδtRp(t )]

= 1 · [(I + δtR + O[δt2])p(t )]

= 1 + δt (1 · R)p(t ) = 1, (B1)

where we dropped the higher-order contributions. Second, if
the process is supported by an irreducible network, then the
generator R has a nondegenerate eigenvalue equal to zero,
and its respective eigenvector has nonzero entries describing
the stationary distribution. This is a consequence of applying
the Perron-Frobenius theorem to a discretized version of the
Markov chain.

The Gershgorin circle theorem [86] states that all eigenval-
ues λ of a matrix R lie within at least one disk Di(R) ⊆ C

in the complex plane, where each disk is centered at the
diagonal element Rii and has a radius equal to the sum of the
nondiagonal elements

∑
j �=i R ji. Since every diagonal element

of a generator is equal to minus the sum of nondiagonal entries
in its column, every Di(R) is contained in the nonpositive side
of the real axis. Therefore, the real part of all eigenvalues is
nonpositive, in agreement with Perron-Frobenius.

By construction, matrices R and S share the same diagonal
elements (exit rates), but the columns of S will sum to a value
smaller than or equal to the sum of those of R. Therefore, one
or more of the Gershgorin discs Di(S) are shrunk versions of
Di(R); see Fig. 8. Hence, the real part of all eigenvalues of S
are also nonnegative.

Notice that the eigenvalues are functions of the matrix ele-
ments. The process of constructing S from R involves reduc-
ing some of its values and therefore changing the eigenvalues.
Since the new eigenvalues have to fall in one of the Gershgorin
discs, which are all in the nonpositive side, the eigenvalue with
the largest real part will acquire a negative real part, which
is a sufficient condition for the invertibility. It is worth com-
menting that there are characteristic polynomial-preserving
transformations, such as swapping rows or columns, which
are not involved in the survival matrix. In addition, similarity
transformations would leave the eigenvalues unchanged, so if
there exists an invertible P such that S = P−1RP, then S will
not be invertible. However, it would require a very particular
symmetry to achieve such a similarity relation, which is un-
likely to be possible under the condition of irreducibility.

Finally, Sylvester’s formula states that for a diagonalizable
matrix S,

lim
t→∞ etS = lim

t→∞

∑
k

Aketλk = lim
t→∞ Ak̃etλk̃ , (B2)

where the sum spans through all eigenvalues and k̃ indexes
the eigenvalue with largest real part. When the largest eigen-
value of S is negative, Eq. (B2) vanishes. In contrast, if the
largest eigenvalue is zero, then etS → Ak̃ , which means that
the propagation through hidden pathways does not leak all its
probability and the system can get stuck in a hidden part, never
performing a new visible transition.
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