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Heat capacity of periodically driven two-level systems
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We define the heat capacity for steady periodically driven systems and as an example we compute it
for dissipative two-level systems where the energy gap is time-modulated. There, as a function of ambient
temperature, the Schottky peak remains the dominant feature. Yet, in contrast with equilibrium, the quasistatic
thermal response of a nonequilibrium system also reveals kinetic information present in the transition rates; e.g.,
the heat capacity depends on the time-symmetric reactivities and changes by the presence of a kinetic barrier.
It still vanishes though at absolute zero, in accord with an extended Nernst heat postulate, but at a different rate
from the equilibrium case. More generally, we discuss the dependence on driving frequency and amplitude.
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I. INTRODUCTION

Over the last decades, dissipative aspects of driven and
active systems are intensively researched in condensed mat-
ter and chemical physics laboratories [1–9]. Nonequilibrium
calorimetry is of increasing interest there, to investigate how
heat reveals not only energetic but also kinetic and functional
characteristics of natural and artificial materials. There are
multiple ways for a system to be out of equilibrium. The sys-
tem may be transient, relaxing possibly slowly but ultimately
to equilibrium as is typical for glasses and systems with im-
portant kinetic constraints. The system may be bulk driven,
e.g., by the application of rotational forces, or boundary
driven, from having different pressures or chemical potentials
at its boundary. The system may also be active as being in
contact with internal degrees of freedom that fuel motion.
Finally, the system may also be subject to time-periodic forces
so that asymptotically there appears a steady time-dependent
condition which is not stationary but periodic. All the same,
that steady system will dissipate heat in a thermal environment
when coupled to it. In fact, the thermal properties of such
steady time-dependent systems are less explored theoretically
than their stationary (time independent but bulk or bound-
ary driven) counterparts. Nevertheless, driving at nonzero
frequency is a very common realization of a nonequilib-
rium condition, especially in experimental and computational
setups [9–11]. For a variety of science-of-life and engi-
neering purposes, it is essential to understand how heat
capacities and conductivities are affected by temporal driv-
ing. On top, it obviously constitutes a foundational question
in constructing nonequilibrium statistical mechanics as well
[12].

In the present paper, we define the corresponding nonequi-
librium heat capacity and we illustrate the procedure and
general characteristics with the simplest of systems, a dissipa-
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tive two-level system where the energy difference is varying
periodically in time. Two-level systems (2LS) are ubiquitous
ingredients of a great variety of materials, as represented
by magnetic spins, dipoles, or molecules in contact with
crystal phonons. Yet, as such, a 2LS cannot be bulk or
boundary driven. Still, they are easily driven by, e.g., time-
dependent variations of the energy gap and kinetic barriers.
In fact, artificial double-well systems imitate 2LS and are
playing an increasing role as nonequilibrium models in room-
temperature experimental soft matter physics [13,14], even
apart from their relevance for solid-state applications at low
temperatures. Moreover, as will be easily understood, the
methodology outlined below for steady periodically driven
2LS can easily be generalized to multilevel systems.

For the general theoretical background about thermal
response and heat capacities of stationary nonequilibrium sys-
tems, we refer to [3,15,16]. In particular, for nonequilibrium,
heat capacity is defined in terms of excess heat, and there is no
direct relation with entropy or entropy production, except via
the notion of expected dissipated power. As usual in thermo-
dynamics, a quasistatic setup is needed and no higher-order
corrections are considered than those needed to characterize
the excess dissipated power (to be explained in the next sec-
tion). On the other hand, the most promising experimental
setup is presented in Fig. 1 and follows the scheme of AC
calorimetry, explained in the next section. A version of it
was used before for nonequilibrium calorimetric experiment
in [11].

The paper starts in the next section with an operational
description of thermal response for periodically driven sys-
tems. It corresponds to AC measurements of the heat capacity
for temporally driven systems, that builds on recent work for
defining and measuring nonequilibrium heat capacities for
stationary systems [15]. The main idea remains to identify the
excess heat released by quasistatic variations in the tempera-
ture of a heat bath with which the system is in thermal contact.
In the present scenario, the steady dissipated power before and
(long) after a small temperature change are both oscillating in
time, making the notion of excess heat more problematic.
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FIG. 1. Sketch of the most promising calorimetric setup. The
open system or sample is acted upon by an external periodic variation
of system parameters. It reaches a steady condition in contact with a
heat bath at inverse temperature β to which the work is dissipated as
heat. When the temperature of the heat bath is slowly varied, say with
small frequency ωB, we get a heat flux P (t ) which can be measured
via the thermopile connecting the sample with the bath.

In Secs. III and IV we introduce the concrete time-
dependent dynamics we are dealing with. They are described
by time-periodic two-state Markov processes. We present the
main observations on their heat capacities as a function of
temperature, driving, and kinetic parameters. They all show
the typical Schottky anomaly but there are significant changes
when compared with the equilibrium case. In particular, while
the heat capacity still vanishes at very low temperatures, its
decay rate is slower in the nonequilibrium steady state with
respect to the equilibrium case. Moreover, the heat capacity
detects the presence of a kinetic barrier between the two
levels, which is invisible in the equilibrium heat capacity. We
also give the dependence on driving frequency and amplitude.

II. AC-CALORIMETRY

Heat capacity, whether for equilibrium [17,18] or nonequi-
librium [9] systems, measures the change in heat as a direct
response to a slowly changing environmental temperature,
while a choice of constraints is being specified. We refer to
[12] for a motivation and justification concerning nonequi-
librium calorimetry. As a reference, we suppose an open
equilibrium system in contact with a heat bath at inverse
temperature β. It becomes a nonequilibrium system when
work is being done on the system, periodically varying some
external parameters with frequency ω0, such as external fields,
pressure, or volume as makes the case. We assume that after
some initial transient, the system reaches a steady condition
with periodic variations in its observables. The question we
address in the present paper is to identify the response to a
small temperature variation in the heat bath, i.e., to define
the heat capacity as a function of β, ω0 and of further system
parameters such as the amplitude of the work or the values of
energy differences in the reference system.

We refer to Fig. 1 for a sketch of the procedure which is
experimentally feasible, and has indeed been used for pioneer-
ing calorimetry in nonequilibrium systems [11,19]. For other
experimental work on AC calorimetry, we refer to [20]. There
is also a clear theoretical model behind it, allowing detailed
calculations, which we will now explain.

FIG. 2. Two-level system with a time-periodic energy difference
Dt between the excited state e and the ground state g. The variation
of Dt is periodic in time (with frequency ω0) but does not need to be
harmonic around the reference value A. Transition rates are denoted
by αt and δt to move up and down in energy, respectively.

Remember that work is delivered to the system, which is
constantly dissipated in the heat bath. We can measure the
heat flux or dissipated power P0(t ) to that bath, e.g., via a
thermopile that converts heat into electric work. P0(t ) is peri-
odic with frequency ω0. Next, to get to the thermal response,
we slowly vary the bath temperature β−1, with

βt = β (1 + ε sin(ωBt )), (2.1)

using a small frequency ωB � ω0 and small amplitude ε,
allowing the quasistatic regime for thermal response. There is
now a new (total) dissipated power P (t ), see Fig. 1, in which
the time dependence of the temperature enters as well:

P (t ) = P0(t ) + εP1(t ) + O(ε2),

and P1(t ) depends on ωB. Note that P (t ) need not be periodic,
except when ω0 and ωB are commensurable.

The thermal response is in P1(t ). The heat capacity C =
C(β, ω0, . . . , ) is obtained from understanding how the power
P depends on the rate of temperature variation, with kB = 1,
as ωB → 0 and ε → 0:

C = β2
t

∂P
∂ (dβt/dt )

= β

εωB

∂P
∂ (cos ωBt )

. (2.2)

More specifically, by following the logic of AC calorimetry as
exposed in Ref. [15] for stationary nonequilibrium systems,
we get the heat capacity C as the out-of-phase component in
minus the excess heat current P1:

C = β

π

∫ 2π/ωB

0
P1(t ) cos(ωBt ) dt, as ωB → 0, ε → 0.

(2.3)

In the following sections, we illustrate the procedure for
a two-level system and discuss the results, and how they
illuminate the kinetics.

III. TIME-DEPENDENT TWO-LEVEL SYSTEMS

A. Setup

We consider a two-level system where we fix the ground
state energy (to be zero) while we vary the energy Dt > 0 of
the excited level; see Fig. 2. Possible scenarios include time-
dependent volumes or magnetic fields.

At fixed inverse temperature β of the surrounding bath,
transition rates between the ground state g and the excited
state e are parametrized as

k0
t (g, e) = ν0

t e−βDt /2, k0
t (e, g) = ν0

t eβDt /2, (3.1)
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with ν0
t a possibly time-dependent reactivity. We assume that

the rates kt are periodic in time with frequency ω0.
The heat qt given to the bath during the jump g → e

equals qt (g, e) = −Dt , and for e → g it is qt (e, g) = Dt . The
expected power dissipated to the heat bath (at constant tem-
perature) is therefore

P0
t = −Dt k

0
t (g, e)ρ0

t (g) + Dt k
0
t (e, g)ρ0

t (e), (3.2)

where ρ0
t is the level probability at time t (depending on

the initial condition), satisfying the time-dependent Master
equation,

∂tρ
0
t (e) = k0

t (g, e)ρ0
t (g) − k0

t (e, g)ρ0
t (e). (3.3)

That is the standard setup for dissipative two-level systems
in the incoherent approximation. Asymptotically in time, the
system reaches a steady nonequilibrium condition where the
occupation probabilities ρ0

t vary periodically with frequency
ω0. That process defines the nonequilibrium system for which
we want to determine the heat capacity.

The definition (and suggested experimental measurement
method) (2.3) of the heat capacity quantifies how the power
(3.2) gets modified for small temperature variations around
β−1. We apply the same definition of expected heat flux as
in (3.2) but now we use (2.1) to replace β → βt in (3.1),
changing k0

t → kt :

Pt = −Dt kt (g, e)ρt (g) + Dt kt (e, g)ρt (e), (3.4)

with

∂tρt (e) = kt (g, e)ρt (g) − kt (e, g)ρt (e). (3.5)

Applying the time-dependent inverse temperature βt in (2.1),
for the occupation probabilities we find, in general,

ρt = ρ0
t + ερ1

t + O(ε2, e−γ t ) (3.6)

for relaxation rate γ > 0 which we assume strictly positive,
and with small variation amplitude ε. Then, similarly, from
(3.4) we get

Pt = P0
t + εP1

t + O(ε2, e−γ t ), (3.7)

and the excess power P1
t is used in (2.3) to get the heat

capacity.
We make the above explicit for a number of cases and start

with a harmonically varying energy gap Dt , followed by a
stroboscopic time variation. We deal with the presence of a
kinetic barrier in Sec. IV. The logic is the same in each case.

B. Harmonically varying energy

Let the energy of the excited state in (3.1) be given by

Dt = A

(
1 + h

2
cos(ω0t )

)
, (3.8)

with 0 � h < 2, where h = 0 is the equilibrium reference for
energy difference A. We choose transition rates

αt := kt (g, e) = e−βt Dt /2

2 cosh(βt Dt/2)
,

δt := kt (e, g) = eβt Dt /2

2 cosh(βt Dt/2)
. (3.9)

FIG. 3. P0
t and Pt for the 2LS defined in (3.8) and (3.9) with

A = 2, ω0 = 0.1, ωB = 0.01, β = 6, ε = 0.1, and h = 1.

Comparing with (3.1), we have taken reactivities

ν0
t = (2 cosh(βDt/2))−1.

In that way, the transition rates remain bounded as β ↑ ∞
which is physically reasonable.

The master equation (3.5) simplifies to

∂tρt (e) + ρt (e) = αt . (3.10)

We have calculated (3.2) and (3.4). The (constant temperature)
dissipated power P0

t and the (varying temperature) dissipated
power Pt are shown in Fig. 3. While P0

t is periodic with
frequency ω0, Pt need not be periodic unless ω0 and ωB are
commensurable.

We next apply the procedure of (2.3) for P1
t = (Pt −

P0
t )/ε. We have checked that it suffices to take the tempera-

ture modulation at a small frequency ωB which is at least about
ten times smaller than ω0. In Fig. 4 we see the heat capacity
(always with kB = 1) as a function of inverse temperature β

for different values of the reference amplitude A.
Figure 5(a) shows the position βmax of the maximum of the

heat capacity. It behaves as βmax ≈ 2.4/A as is the case for the
Schottky anomaly for equilibrium 2LS as well. The Schottky
peak (height Cmax) is about constant for different values of A,
and slightly lower than the equilibrium reference. That relates
to the decay rate of the heat capacity at low temperatures. In
Fig. 5(b) we see that the rate of the exponential decay for

FIG. 4. Nonequilibrium heat capacity C vs β for h = 1, with A =
0.5, 2, 4, and with ω0 = 0.2, ωB = 0.01.
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(b)

(a)

FIG. 5. (a) Position βmax of the maximum of the heat capacity
(in blue for left vertical axis), and the peak height Cmax (in green for
right vertical axis) vs A for ω0 = 0.1, ωB = 0.01, and h = 1. The
equilibrium reference is indicated in red (for βmax) and in magenta
(for Cmax). (b) Slope of the exponential decay (for large β) vs A in
blue for the system with ω0 = 0.1, ωB = 0.01, and h = 1, and in red
for an equilibrium system. The decay rate is 2/5, and is the same for
other frequencies ω0 = 0.2 and ω0 = 0.05.

large β (small temperature) is about 2/5 of the decay rate in
equilibrium.

In Fig. 6(a) we see how the heat capacity changes with
different values of the frequency ω0. The differences are most
outspoken at the low-temperature side of the Schottky peak,
and saturate for large driving frequencies. When the parameter
h → 0, the system goes to equilibrium, with heat capacity

Ceq = (Aβ )2

4 cosh2(Aβ/2)
, (3.11)

as is plotted in Fig. 6(b) as well.

C. Stroboscopic variation

Next we consider a 2LS with energies E (g) = 0 for the
ground state and E (e) = Dt for the excited state, where

Dt =
{

A if mod(t, a + b) < a,

0 otherwise. (3.12)

Here, mod(t, T ) gives the remainder of t divided by T , and
T = a + b is the period of the stroboscopic variation shown
in Fig. 7.

(a)

(b)

FIG. 6. (a) C vs β for different values of ω0, with A = 2, h = 1,

and ωB = 0.01. (b) C vs β for different values of h, with A = 2, ω0 =
0.2, and ωB = 0.01. The case h = 0 coincides with the equilibrium
value (3.11).

The transition rates are given by

αt := kt (g, e) = e−βt Dt /2

2 cosh(βt Dt/2)
,

δt := kt (e, g) = eβt Dt /2

2 cosh(βt Dt/2)
. (3.13)

The steady distribution (3.6) can be obtained explicitly be-
cause of the simplicity of (3.12). It leads to the dissipated
power(s) [from (3.2)–(3.4)] and the heat capacity [from
Eq. (2.3)].

In Fig. 8(a) is shown how the heat capacity changes with
different values of the period T for the symmetric case a = b.

FIG. 7. Stroboscopic energy variation in a 2LS.
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(a)

(b)

FIG. 8. (a) C vs β for a = b with different values of a, and with
A = 2 and ωB = 0.01. With ω0 = 2π/T , the values a = 10π, 2π, π

correspond to ω0 = 0.1, 0.5, 1, respectively. (b) C vs β for the stro-
boscopic 2LS with fixed a = 10π and for different values of b.
The values b = 10π, 5π, 0 correspond to ω0 = 0.1, 0.13, 0.2, re-
spectively. The equilibrium heat capacity (3.11) is plotted in dashed
line. Parameters used: A = 2 and ωB = 0.01.

Figure 8(b) gives asymmetric cases. On the other hand, for
b = 0, i.e, Dt = A for all t , the system is in equilibrium, as
verified in Fig. 8(b).

We note that the heat capacities for stroboscopic variation
of the energy gap are different from the case of harmonic
variation at the same frequency and amplitude.

IV. 2LS WITH A KINETIC BARRIER

We consider here a 2LS with energies E (g) =
A h cos(ω0t )/2 for the ground state and E (e) = A for the
excited state, and with a barrier � between the two states; see
Fig. 9. The energy difference is Dt = A(1 − h cos(ω0t )/2).
We have computed the heat capacity C in exactly the same
way as above, by quasistatic variation of the temperature.
More specifically, we choose transition rates

αt := kt (g, e) = e−βt (Dt +�),

δt := kt (e, g) = e−βt �, (4.1)

where the inverse temperature follows (2.1).
Figure 10 shows the heat capacity for the system displayed

in Fig. 9 as a function of β for different values of the barrier

FIG. 9. 2LS with a kinetic barrier �. The energy difference Dt

changes harmonically in time.

� and for different amplitudes A. We see an extra shoulder
indicating the presence of �. From fitting, we observe that
the position of that second peak in the heat capacity [in
Fig. 10(a)], as a function of β, moves as 3.7/�. It means
that heat capacity measurements are now able to locate the
presence of a kinetic barrier; see [6,12] for examples in the
stationary case. Its position and height also change with A;
see Fig. 10(b).

Figure 11 gives C as a function of β for different val-
ues of ω0, and of the nonequilibrium parameter h. Again,

(a)

(b)

FIG. 10. C vs β for the 2LS in Fig. 9 with h = 1, ω0 = 0.03,

and ωB = 0.001; (a) for different values of �, with A = 2, (b) for
different values of A with � = 1.
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(a)

(b)

FIG. 11. C vs β, for the 2LS in Fig. 9 with � = 1, A = 2, and
ωB = 0.001; (a) for different values of ω0, and at h = 1; (b) for
different values of h at ω0 = 0.4. Also the equilibrium heat capacity
(coinciding with the case where h = 0) is shown for comparison.

for larger frequencies and for smaller h, the equilibrium curve
is approximated.

V. CONCLUSIONS AND OUTLOOK

We have reported a theoretical study of the quasistatic
thermal response of systems subject to time-dependent forces.
The 2LS, e.g., in the form of a time-dependent double well,
provides a proof of principle for steady state calorimetry by
associating a heat capacity to an open periodically driven
system in contact with a heat bath, even at room temperature.
We have given its dependence on driving frequency, driving
amplitude, and bath temperature for various dynamics of a
two-level system (in the incoherent approximation). Interest-
ing features include the dependence of that heat capacity on
kinetic features (such as a barrier and choice of transition
rates) and the slower decay to zero at vanishing temperatures.

Limitations to the given approach are mostly the compu-
tational complexity and, experimentally, the care that must
be given in distinguishing the steady dissipated power P0

from the temperature-modulated P . One other difficulty is
to deal with a necessarily open system on which work is
being performed and to screen it at the same time from other
influences. Experimental elaboration is in progress and will
face the natural problems of pioneering work.

The analysis is a stepping stone for similar studies of
calorimetry in periodically driven systems. As one specific
example, the theoretical derivation or understanding of the
heat capacity curves for ferroelectric materials undergoing a
hysteresis loop [11] is still lacking largely. We also hope that
this work may stimulate experimental work on nonequilib-
rium calorimetry as it promises to open new windows on the
functioning of driven materials.
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