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We study charge fluctuations in single-file dynamics with general charge measures. The exact finite-time
distribution of charge fluctuations is obtained in terms of a dressing transformation acting on the finite-time
distribution of particle fluctuations. The transformation is mapped to a simple substitution rule for corresponding
full-counting statistics. By taking the asymptotics of the dressing transformation, we analyze typical and large
scale charge fluctuations. Typical charge fluctuations in equilibrium states with vanishing mean charge are
anomalous, while large charge fluctuations undergo first and second order dynamical phase transitions out of
equilibrium.
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I. INTRODUCTION

One of the most widely applicable results of probability
theory is the central limit theorem that, in its basic form,
characterizes fluctuations of the average of n independent
identically distributed variables sampled from a distribution
with finite variance. The theorem states that typical fluctua-
tions around the mean value are of order O(n1/2) and their
distribution is asymptotically Gaussian. The central limit the-
orem has been further refined to cover the important cases of
not identically distributed or weakly correlated variables [1].

A natural extension to the study of typical fluctuations is
given by large deviation theory, characterizing large fluctua-
tions of order O(n) away from the mean. A basic problem of
large deviation theory is to establish a large deviation principle
for tail probabilities, i.e., to show that large fluctuations are
suppressed exponentially in n and to characterize the rate of
suppression, encapsulated in the rate function. The central
limit theorem can then often be understood as the quadratic
expansion of the rate function around the mean value.

The theory of large deviations is also the natural language
to describe the central notion of concentration of measure
in statistical mechanics both in and out of equilibrium [2,3].
Fluctuations of conserved quantities in many-body systems
are captured by the full-counting statistic of corresponding
time-integrated current densities, the time-integrated current
being the many-body analog of the sum of a sequence of
variables, with the proviso that current densities at different
times are now correlated by the dynamics with randomness
necessarily entering even for deterministic dynamics due to
sampling from an ensemble of initial conditions.

This naturally leads to the problem of characterizing
current fluctuations on both the large and typical scales. The
question of large fluctuations in ergodic systems with a single
conserved quantity has been thoroughly addressed by the
development of macroscopic fluctuations theory; see [4] for
a review. The theory establishes a large deviation principle
for fluctuations of the integrated current and formulates a
variational problem, the solution of which recovers the rate
function. Recently, building upon the theory of generalized

hydrodynamics [5,6], an analogous ballistic macroscopic
fluctuations theory [7] has been developed to describe large
fluctuations in integrable systems. Similar results have also
been derived by mapping the full-counting statistics in a
nonequilibrium bipartite ensemble to a dual equilibrium
problem using space-time duality [8].

Establishing a large deviation principle quantifies the struc-
ture of large fluctuations and its expansion to quadratic order
suggest asymptotic Gaussianity of typical fluctuations. This
might lead to the erroneous conclusion that a large deviation
principle directly implies Gaussianity on the typical scale.
However, inferring behavior on the typical scale from the
large scale involves a rescaling for which the logarithm of
the full-counting statistics needs to satisfy an additional regu-
larity condition [9]. While Gaussianity of typical fluctuations
in a class of chaotic quantum systems has been recently
demonstrated [10], numerical studies of classical integrable
spin chains [11,12] have found clear violations of asymptotic
Gaussianity in equilibrium ensembles at half filling.

This unexpected observation has led to an exact solution
of equilibrium fluctuations [13] in a simple interacting clas-
sical cellular automaton of impenetrable ballistic Z2-charged
particles first studied in [14]. Typical fluctuations were found
to follow an M-Wright distribution, normally associated with
fractional diffusion [15–18]. The violation of Gaussianity
was traced to a complex zero of the full-counting statistics
colliding with the origin, breaking the regularity condition
in a process reminiscent of an equilibrium phase transition.
Shortly thereafter, the same distribution was derived in the
low-temperature regime of the sine-Gordon model [19]; see
also [20] for an earlier derivation in the same setting us-
ing form factors. It was soon realized that the observed
phenomenology is closely related to fragmentation of the con-
figuration space by a strict kinetic constraint, giving rise to
the class of charged single-file dynamics whose fluctuations
were studied in detail in [21]. Besides anomalous fluctuations
in equilibrium, the nonequilibrium setting gave rise to a rich
interplay of dynamical phase transitions in the rate function of
large fluctuations. Apart from fluctuations, single-file kinetic
constraints have also been used to study dynamical correlation
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functions at hydrodynamics scales [22] and in some exact
solutions [23–25].

Nevertheless, the class of dynamics studied in [21] had two
important limitations. First, it was not clear what role was
played by the specifics of the Z2 charge measure. Second,
the dynamics were restricted to particles with inert charges,
whose interaction came solely from their impenetrability and
not the charges themselves. In the present work, we relax the
first of these assumptions and show that the phenomenology
of fluctuations established in [21] remains intact on both the
large and typical scales, requiring only mild restrictions on the
charge measure.

The paper is organized as follows: In Sec. II, we introduce
single-file dynamics and the basic concepts used in the re-
mainder of the work. In Sec. III we derive the exact finite-time
joint charge-particle fluctuations in terms of particle fluctua-
tions. In Sec. IV we study the time-asymptotic behavior of
joint fluctuations at both the typical and large scales. We con-
clude in Sec. V by putting our results in the context of recent
advances in the study of fluctuations in integrable systems and
related models.

II. CHARGED SINGLE-FILE DYNAMICS

Consider a system of Qp classical particles on a pe-
riodic ring of length L and label particle positions in
configuration space Qp ≡ [−L/2, L/2)Qp at time t as x(t ) ≡
(x1(t ), . . . , xQp (t )) ∈ Qp, where we identify x j = x j + L. As-
suming a generic position (one in which no two particles
coincide), we order the particles from left to right at initial
time t0, x1(t0) < x2(t0) < . . . < xQp (t0). The particles’ dy-
namics is given by a map φs : Qp → Qp which propagates
the particles’ positions forward in time,

φs[x(t )] = x(t + s). (1)

We consider dynamics φs that admit a flat invariant measure
characterized by the average particle density ρ and specialize
to a simple nonequilibrium setting by considering a bipartite
initial measure consisting of two equilibrium measures joined
at the origin with particle densities ρ± to the right/left of the
origin, respectively,

�L(x, t0) =
Qp∏
j=1

pL(x j ), (2)

with the one particle density

pL(x) = 2L−1

ρ− + ρ+

{
ρ−, −L/2 � x < 0,

ρ+, 0 � x < L/2.
(3)

The integral of the local particle density ρp(x, t ) ≡∑Qp

n=1 δ(x − xn(t )) gives the total particle number Qp =´ L/2
−L/2 dx ρp(x, t ). We consider systems in the thermodynamics

limit at finite particle density with the corresponding initial
measure,

�(x, t0) = lim
Qp,L→∞

Qp/L=(ρ−+ρ+ )/2

�L(x, t0). (4)

We attach a scalar charge c ∈ C ⊆ R to each parti-
cle, sampled from a normalized measure, ωμ : C → R+

0 ,

FIG. 1. Many-body trajectory of an inert charged single-file
system consisting of ballistically propagating hard-core particles
(broken straight lines) carrying inert charges (blue to red) sampled
from a Gaussian charge measure (17).

´
C dωμ = 1, with a finite mean | ´C dωμ c| = |μ| < ∞ and

variance
´
C dωμ(c − μ)2 = σ 2

ω < ∞ whose support is not
sign-definite, s± ≡ supp(ωμ) ∩ R± �= ∅ and denote ±c± ≡
maxc∈s± ±c.

The enlarged configuration space Qc
p ≡ Qp × Qc is

spanned by (x(t ), c), where c ≡ (c1, . . . , cQp ) ∈ Qc ≡ CQp

and c j is the charge of the jth particle. We consider inert
charges, meaning that the dynamics of the charged system
φc

s : Qc
p → Qc

p decomposes as

φc
s [(x(t ), c)] = (φs[x(t )], c) = (x(t + s), c). (5)

The integrated local charge density ρc(x, t ) ≡ ∑Qp

i=1 ciδ(x −
xi(t )) gives the total charge Qc ≡ ´ L/2

−L/2 dx ρc(x, t ). We extend
the bipartite particle initial measure (2) to Qc

p by specifying
the mean charge values μ± in each partition,

�c
L(x, c, t0) =

Qp∏
j=1

pL(x j )ωμs j
(c j ), (6)

where s j = sgn(x j ), and take the thermodynamic limit,

�c(x, c, t0) = lim
Qp,L→∞

Qp/L=(ρ−+ρ+ )/2

�c
L(x, c, t0). (7)

We further consider single-file dynamics for which the initial
particle ordering is preserved by the dynamics φc

s ,

x1(t ) < x2(t ) < . . . < xN−1(t ) < xN (t ), ∀t, (8)

which, due to charge inertness (5), is the same as imposing the
single-file constraint on the particle dynamics φs. A snapshot
of an inert charged single-file system in the thermodynamic
limit is shown in Fig. 1. Note that in an arbitrary crossing [i.e.,
one violating the single-file condition (8)] particle dynamics
it is always possible to enforce the single-file constraint by
adding a strong repulsive hard-core interaction to the particles.
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Full-counting statistics

Conservation of particle number Qp and total charge Qc

means that their local densities satisfy continuity equations
∂tρi(x, t ) + ∂x ji(x, t ) = 0, where i ∈ {p, c} and ji(x, t ) is the
local current density. The corresponding integrated currents at
the origin,

Ji(t ) ≡
ˆ t0+t

t0

dt ′ ji(0, t ′), (9)

equal the total charge transported across the origin Ji(t ) =
Q+

i (t0 + t ) − Q+
i (t0) in an interval of time t , where Q+

i (t ) ≡´∞
0 dx ρi(x, t ). Fluctuations of transported charges are en-

coded in the joint full-counting statistics

Gc,p(λc, λp|t ) ≡ 〈eλcJc (t )+λpJp(t )〉Qc
p
, (10)

where λp and λc are the particle and charge counting fields,
respectively, and the average 〈·〉Qc

p
is taken with respect to

the initial nonequilibrium measure (7). The corresponding
joint probability distribution Pc,p(Jc, Jp|t ) is recovered by the
inverse Laplace transform of the full-counting statistics,

Pc,p(Jc, Jp|t ) = L−2
λc,λp

[Gc,p(−λc,−λp|t )](Jc, Jp), (11)

where Lx[ f (x)](y) ≡ ´∞
−∞ dx e−yx f (x) is the bilateral Laplace

transform with respect to x. The univariate probability distri-
butions Pi(Ji|t ) of the integrated particle/charge current are
obtained by marginalizing the joint probability distribution,
which at the level of full-counting statistics amounts to set-
ting a counting field to zero, Gi(λi|t ) = Gc,p(λc, λp|t )|λ j �=i=0.
The charge full-counting statistics Gc involves averaging over
the composite initial measure (7) as charges are bound to
particles. However, since inert charges do not effect particle
dynamics, the particle full-counting statistics involves averag-
ing solely over the particle initial measure (4),

Gp(λp|t ) = 〈eλpJp(t )〉Qp . (12)

Noting that the integrated particle current Jp is invariant
under arbitrary permutations of particle labels, the particle
full-counting statistics of a single-file dynamics with elas-
tic scattering is identical to that of a crossing dynamics by
considering quasiparticles (unbroken straight lines in Fig. 1)
instead of particles as, e.g., in the hard-rod gas or general-
ized hydrodynamics [26]. In particular, even a free particle
dynamics gives an interacting dynamics upon imposition of
the single-file condition, which was used in [13,21] to derive
the exact finite-time particle and charge full-counting statistics
for Z2 charges.

III. DRESSING

Charge current fluctuations can be obtained from fluctu-
ations of the particle current by a combinatorial dressing
procedure due to charge inertness (5) as we discuss below.
The general form of the dressing simplifies for single-file
dynamics (8), resulting in a tractable integral representation.

The joint charge-particle distribution Pc,p of an arbitrary
(i.e., not necessarily inert or single-file) charged particle
dynamics can be factorized into a product of the particle
distribution and a time-independent conditional probability,

Pc,p(Jc, Jp|t ) = Pc|p(Jc|Jp)Pp(Jp|t ). The conditional distribu-
tion gives the probability of the integrated charge current Jc

conditioned on a value of the integrated particle current Jp.
For a particle dynamics with inert charges the conditional
probability is given by

Pc|p(Jc|Jp) =
∞∑

n+,n−=0

δn−−n+,Jp

ˆ
Cn++n−

× dωn−
μ−dωn+

μ+ δ(q−
c − q+

c − Jc), (13)

where n± denote the number of particles crossing from right
to left and vice versa and q±

c ≡ ∑n±
m=1 cm is the total charge

carried by the respective crossing particles. Some comments
on Eq. (13) are in order. Since inert charges do not influence
particle dynamics, the conditional probability is obtained by
first summing over all combinations of particles crossing the
origin [first sum and δ function in Eq. (13)] and then averaging
over possible charge configurations of these particles [second
δ function in Eq. (13)]. Given that charges are inert and not
correlated in the initial measure (7), this amounts to averag-
ing over independent charge distributions [factorized charge
measure in Eq. (13)].

For a single-file dynamics (8), either all particles cross
from left to right or vice versa, so that at most one of n± �= 0
which simplifies the conditional probability (13),

Pc|p(Jc|Jp) =
ˆ
C|Jp|

dω
|Jp|
μν

δ
(
qν

c + νJc
)
, (14)

where ν = −sgn(Jp). The conditional probability is then (up
to a sign) the distribution of the sum of |Jp| charges sampled
from ωμ. By the convolution theorem, the conditional distri-
bution reads

Pc|p(Jc|Jp) =
ˆ
R

dk

2π
ω̂

|Jp|
μν

(k)e−ikνJc , (15)

where we have introduced the Fourier transform of the charge
measure ω̂μ(k) ≡ ´

C dωμ e−ikc. We denote the dressing of the
particle distribution via factorization of the joint probability
distribution and the conditional distribution (15) as the action
of a dressing operator DP ,

Pc,p(Jc, Jp|t ) = DP [Pp(Jp|t )]. (16)

The charge distribution Pc is recovered by marginalization
Pc(Jc|t ) = ´

dJp Pc|p(Jc|Jp)Pp(Jp|t ).
Example: Gaussian charges. An exactly solvable example

of dressing is given by a Gaussian charge measure

ωGauss
μ (c) = Nc

(
μ, σ 2

ω

)
, (17)

where Nx(x, σ 2) ≡ e−(x−x)2/2σ 2
/
√

2πσ 2, owing to additivity
of variances of independent Gaussian variables. The Fourier
transform of Eq. (17) reads

ω̂Gauss
μ (k) = 2πNμ

(
0, σ 2

ω

)
Nk

( − iμσ−2
ω , σ−2

ω

)
. (18)

Equation (15) reduces to a Gaussian integral which gives the
exact conditional probability

PGauss
c|p (Jc|Jp) = NJc

(
Jpμ, |Jp|σ 2

ω

)
. (19)

Note that while Eq. (15) gives the exact conditional proba-
bility for an arbitrary charge measure, the integral generally
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cannot be evaluated in closed form as for a Gaussian measure
and must instead be evaluated asymptotically; see Sec. IV.

Dressing the full-counting statistics

A more compact and explicit relation between charge and
particle fluctuations is obtained at the level of full-counting
statistics. We define the action of the dressing operator on the
particle full-counting statistics DG by analogy to the action of
the dressing operator DP (16),

Gc,p(λc, λp|t ) = DG[Gp(λp|t )]. (20)

Recalling the relation between the full-counting statistics and
the probability distribution in terms of the Laplace transform
(11), the dressing operators are related via conjugation by the
Laplace transform,

DG = L ◦ DP ◦ L−1. (21)

The conjugation is computed in Appendix A, resulting in a
straightforward substitution rule for exponentials of the parti-
cle counting field,

DG : e±nλp �→ e±nλpω̂n
μ∓ (±iλc), n ∈ N. (22)

We note that ω̂μ∓ (±iλc) = ´
C dωμ∓e±cλc are the charge full-

counting statistics of a single particle going left to right or
right to left respectively. Since charges are uncorrelated in
the initial measure (6), the corresponding n-particle result
factorizes in terms of the single-particle one. The substitution
rule (22) therefore dresses the particle full-counting statistics
by adjoining the left/right-going charge full-counting statis-
tics with fixed particle number to the corresponding particle
crossings.

Example: Z2 charges. The Z2 charge measure reads

ωZ2
μ (c) = 1 − μ

2
δ(c + 1) + 1 + μ

2
δ(c − 1), (23)

with the Fourier transform ω̂Z2
μ (k) = cos k − iμ sin k. The

dressing substitution

D
Z2
G : e±nλp �→ e±nλp[cosh λc ± μ∓ sinh λc]n (24)

recovers the corresponding result for the Z2 dressing operator
in [21].

IV. DRESSING ASYMPTOTICS

The dressing operator (22) gives the exact finite-time dress-
ing of particle full-counting statistics. We now consider how
the dressing manifests in time-asymptotic charge fluctuations
on typical and large scales which we specify below. We
show that typical fluctuations depend only on the first two
moments of the charge measure. Assuming asymptotically
Gaussian typical particle fluctuations, we demonstrate that
typical charge fluctuations in equilibrium ensembles with van-
ishing mean charge are anomalous (non-normal).

Gaussianity of typical fluctuations is commonly estab-
lished as a consequence of a large deviation principle [3].
To proceed, we make the following assumptions about the
particle full-counting statistics:

(1) The particle full-counting statistics satisfy a large de-
viation principle with a strictly convex twice differentiable

particle scaled cumulant generating function Fp ∈ C2(R)

Fp(λp) ≡ lim
t→∞ t−α ln Gp(λp|t ), (25)

where the speed exponent α ∈ R+ is chosen such that Fp is
finite and nonzero.

(2) Asymptotic values of scaled cumulants s(p)
n ≡

limt→∞ t−α∂n
λp

ln Gp(λp|t )|λp=0 are finite, |s(p)
n | < ∞, for

all n ∈ N, and the asymptotic value of the second cumulant is
nonzero, σ 2

p ≡ s(p)
2 �= 0.

The asymptotic exponential decay of large [of order O(tα )]
fluctuations of the integrated particle current Jp is governed by
a large deviation principle [3]

Pp(Jp = jptα|t ) � e−tα Ip( jp), (26)

where Ip( jp) ≡ − limt→∞ t−α lnPp(Jp = jptα|t ) is the par-
ticle rate function and � indicates asymptotic logarithmic
equivalence. The twice differentiable Fp(λp) in assumption
(i) is related to the rate function Ip by the Legendre-Fenchel
transform

Ip( jp) = sup
λ∈R

{λp jp − Fp(λp)}, (27)

which shows that Ip is a twice differentiable strictly convex
function on its domain Jp ≡ ( jmin

p , jmax
p ).

While large fluctuations become exponentially unlikely at
large times, typical [of order O(tα/2)] fluctuations have a finite
asymptotic distribution. Noting that the average integrated
particle current is given asymptotically by the first cumu-
lant 〈Jp(t )〉 � s(p)

1 tα we denote Jp[ jp] = s(p)
1 tα + jptα/2. The

asymptotic typical distribution is then given by

P typ
p ( jp) ≡ lim

t→∞ tα/2Pp(Jp = Jp[ jp]|t ). (28)

Taken together, assumptions (i) and (ii) ensure that the typical
distribution of jp is asymptotically normal,

P typ
p ( jp) = N jp

(
0, σ 2

p

)
. (29)

We note that finiteness of scaled cumulants in (ii) and the re-
sulting asymptotic normality generally do not follow directly
from the existence of the limit in (i). Instead, a sufficient
condition is that the logarithm of the particle full-counting
statistics ln Gp(λp|t ) is complex-analytic at the origin λp = 0
for all t ; see [9]. The assumption (ii) should be understood as
a regularity condition on the particle dynamics that ensures
central limit behavior on the typical scale set by the variance.

A. Typical charge fluctuations

Consider a nonequilibrium initial ensemble (7) with
generic particle densities ρ+ �= ρ− and charge means
μ± �= 0. The difference of particle densities drives av-
erage particle and charge currents s(i)

1 �= 0. To access
typical fluctuations around the averages, we set Ji[ ji] =
s(i)

1 tα + jitα/2 and consider the joint typical distribu-
tion P typ

c,p( jc, jp) ≡ limt→∞ tαPc,p(Jc[ jc], Jp[ jp]|t ). The fac-
torized form of the joint typical distribution at the
typical scale then reads P typ

c,p( jc, jp) = P typ
c|p ( jc| jp)P typ

p ( jp),

where the typical conditional probability is P typ
c|p ( jc| jp) ≡

limt→∞ tα/2Pc|p(Jc[ jc]|Jp[ jp]). As shown in Appendix B 1,
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FIG. 2. Typical distribution of transported charge P typ, eq
c (32)

with σ = 1 (full blue curves) in an equilibrium ensemble with van-
ishing mean charge in logarithmic (main figure) and linear (inset)
scale. The distribution is strongly non-Gaussian, decaying asymp-

totically as P typ, eq
c (σ jc/

√
2) � 2| jc|−1/3e− 3

4 | jc |4/3
/
√

3π (dashed red
curves) and featuring a cusp at jc = 0.

the integral representation (15) allows us to relate the average
values of charge and particle currents, giving the expected
result

s(c)
1 = s(p)

1 μν, (30)

where ν = −sgn(s(p)
1 ) with Gaussian fluctuations around the

mean value, P typ
c|p ( jc| jp) = N jc ( jpμν, |s(p)

1 |σ 2
ω ). The typical

charge distribution is obtained by marginalization, yielding a
Gaussian distribution

P typ
c ( jc) = N jc

(
0, σ 2

c

)
, (31)

with charge variance σ 2
c = μ2

νσ
2
p + |s(p)

1 |σ 2
ω. The charge vari-

ance decomposes into a contribution stemming from typical
particle fluctuations with variance σ 2

p and average charge μν

and a contribution from the charge measure variance σ 2
ω car-

ried by the average particle current |s(p)
1 |.

In equilibrium ensembles with vanishing mean charge,
ρ± = ρ, μ± = 0, the average particle and charge currents
vanish, s(p)

1 = s(c)
1 = 0; see Eq. (30). Moreover, the vanish-

ing charge variance σc = 0 indicates that the distribution
(31) approaches a δ function centered at jc = 0. Typical
charge fluctuation in such ensembles are not of order O(tα/2)
but are instead O(tα/4). We accordingly define the typical
conditional probability in equilibrium ensembles with van-
ishing mean charge P typ, eq

c|p ( jc| jp) ≡ limt→∞ tα/4Pc|p(Jc =
jctα/4|Jp( jp)). As shown in Appendix B 2, Eq. (15) now gives
P typ, eq

c|p ( jc| jp) = N jc (0, | jp|σ 2
ω ).

Remarkably, the resulting typical charge distribution
P typ,eq

c ( jc) = ´
R d jp P typ, eq

c|p ( jc| jp)P typ
p ( jp) is non-Gaussian

but is instead given by an M-Wright distribution, see Ref. [16],
Appendix C, and Fig. 2,

P typ,eq
c ( jc) = σ−1M1/4(2| jc|/σ ), (32)

where M1/4(|x|) = ´
R

dy
2π

|y|−1/2e−x2/4|y|−y2/4 and σ 2 ≡√
2σpσ

2
ω . Compared to a Gaussian distribution, the anomalous

distribution (32) has heavier tails with the leading asymptotic
term of the M-Wright function given by Laplace’s method as

M1/4(
√

2(2x)3) � e−12x4

√
3πx2

for |x| → ∞. M-Wright functions
of general order occur as fundamental solutions in stochastic
processes described by fractional diffusion equations [15–18].
In the realm of fluctuations in deterministic systems, the
distribution (32) has already been found to govern charge
fluctuations in inert Z2 charged single-file systems [13,21].
Unlike in fractional diffusion equations, the order of the
M-Wright function in single-file systems is fixed to 1/4
independently of the timescale of underlying dynamics. Our
result shows that anomalous equilibrium typical fluctuations
are independent of the detailed structure of the charge
measure, requiring only a finite variance and the single-file
property (8).

B. Large charge fluctuations

Typical charge fluctuations depend only on the first two
moments of the charge measure, whereas large fluctuations
are sensitive to the full structure of the measure. In the
following it will be convenient that the Fourier transform
of the measure ω̂μ(k) is an entire function. By the Paley-
Wiener theorem [27], a sufficient assumption is that the charge
measure decays faster than exponentially on the real line,
ln[ωμ(c)]/|c| → −∞ as |c| → ∞.

The joint charge-particle rate function Ic,p( jc, jp) =
− limt→∞ t−α lnPc,p(Jc = jctα, Jp = jptα ) is obtained by
taking the logarithm of the factorized probability

Ic,p( jc, jp) = Ic|p( jc| jp) + Ip( jp), (33)

where Ic|p is the conditional rate function given by

Ic|p( jc| jp) ≡ − lim
t→∞ t−α ln

ˆ
R

dk

2π
ω̂

| jp|tα

μν
(k)e−iνk jctα

. (34)

The rate function Ic( jc) ≡ − limt→∞ t−α ln Pc(Jc = jctα|t ) is
recovered by marginalizing the joint rate function (33) over all
particle fluctuations which reduces to a minimization problem

Ic( jc) = min
jp∈J −

p ∪J +
p

Ic,p( jc, jp), (35)

over the domains Jp
± of the particle current; see Appendix D

for details.
Example: Large fluctuations of Gaussian charges. Gaussian

charges (17) again provide a useful exactly solvable example
with the following representation for the conditional rate func-
tion,

IGauss
c|p ( jc| jp) = − lim

t→∞ t−α ln
ˆ
R

dk

2π
etα f (k), (36)

where f (k) = − 1
2 | jp|σ 2

ωk2 − ikν( jc − jpμ). The rate func-
tion follows from a Gaussian integral

IGauss
c|p ( jc| jp) = ( jc − jpμν )2

2σ 2
ω| jp| . (37)

The simplicity of the result (37) allows it to serve as a tractable
example in the following more involved analysis of the gen-
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FIG. 3. Split rate functions I±
c,p (red/left and blue/right lines,

respectively) for a Gaussian charge measure (17) and their respective
minima at jp = j±crit ( jc ) (46) (red circles/blue squares). For jc �= 0
the functions I±

c,p diverge near the origin by (44). For jc = 0, I±
c,p are

continuous and convex as a function of jp at the origin due to (42)
and (43), respectively. Note the minimum of I+

c,p at jp = 0 for jc = 0.

eral case, which nevertheless contains all the main intricacies
of the analysis.

1. First minimization problem

We analyze the minimization problem (35) by splitting the
conditional rate function according to the sign of the particle
current,

Ic|p( jc| jp) =
{

I+
c|p( jc| jp) for jp ∈ J −

p ,

I−
c|p( jc| jp) for jp ∈ J +

p ,
(38)

and decompose (35) into two sequential minimizations. We
first minimize I±

c,p( jc, jp) ≡ I±
c|p( jc| jp) + Ip( jp) over J ∓

p to
obtain the split charge rate functions I±

c ,

I±
c ( jc) = min

jp∈J ∓
p

I±
c,p( jc, jp). (39)

The split conditional rate functions I±
c|p are computed in Ap-

pendix D 1, resulting in

±I±
c|p( jc| jp) = jp ln ω̂μ± (iκ±) − jcκ±, jp ∈ J ∓

p , (40)

with κ± ∈ R the unique solutions of saddle point equations on
the imaginary axis,

jp ∂kω̂μ± (k)|k=iκ± + i jc ω̂μ± (iκ±) = 0. (41)

While Eq. (40) cannot be simplified further without addi-
tionally specifying the measure, it suffices to demonstrate
the following general properties of split rate functions in
their respective domains, see Appendix D 2 and Figs. 3
and 4:

FIG. 4. Two-step minimization of split rate functions I±
c,p (thin red/blue lines on left/right of each panel, respectively) for a Gaussian

charge measure (17). The first minimization (39) gives minima (red/blue circles) at jp = j±crit ( jc ) (46) (red circles/blue squares) that follow
dashed thick red/blue (left/right) lines as functions of jc. The flow of global minima—solutions of (49)—is indicated by solid thick red/blue
(left/right) lines and displays qualitatively different behavior upon varying parameters of the initial ensemble (7).
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(1) I±
c,p( jc = 0, jp) approach Ip( jp) as jp → 0∓:

lim
jp→0∓

I±
c|p( jc = 0, jp) = Ip( jp). (42)

(2) Derivatives of I±
c,p( jc = 0, jp) with respect to jp are

finite and bounded by

∓∞ < ±∂ jp I
±
c,p( jc = 0, jp ∈ J ∓

p ) � ±∂ jp Ip( jp). (43)

(3) Derivatives of I±
c,p( jc �= 0, jp) with respect to jp di-

verge on inner boundaries of J ±
p :

±∂ jp I
±
c,p( jc �= 0| jp → j∓p ) → ∞. (44)

(4) The Hessian determinant of I±
c,p( jc, jp) is positive:

det HI±
c,p

( jc, jp) > 0. (45)

Having established these general properties of the split rate
functions, we are in a position to describe the structure of the
split charge rate functions I±

c resulting from the minimization
(39). Note that the properties (42)–(45) are similar to those
used in the analysis of the minimization problem (39) for a
Z2 charge measure (23) in Ref. [21].

We start by analyzing the optimization problem (39) for
jc �= 0. Positivity of the Hessian determinant (45) means that
I±
c,p are strictly convex functions that diverge near the inner

boundaries of J ∓
p by (44). Since their derivatives change sign

on J ∓
p , I±

c,p each has a single minimum at jp = j±crit ( jc) in the
interior of the domains J ∓

p , see Fig. 3, where the derivatives
of I±

c,p vanish,

∂ jp I
±
c,p( jc �= 0, jp)| jp= j±crit

. (46)

The split charge rate functions are then given by

I±
c ( jc) = I±

c,p( jc, jp)| jp= j±crit ( jc ) (47)

and are strictly convex since minimization over the domains
J ∓

p preserves strict convexity of I±
c,p. By the implicit function

theorem and strict convexity, the minima j±crit are differentiable
functions of jc. Differentiability of I±

c for jc �= 0 finally fol-
lows by noting that I±

c,p are differentiable in both arguments.
It remains to consider the optimization problem (39) for

jc = 0. The derivatives of I±
c,p at jp = 0 are finite by (43) and

the minima of I±
c,p are no longer guaranteed to occur in the

interior of J ∓
p , and can instead approach the origin, see Fig. 3,

resulting in two possible cases:

lim
jc→0

I±
c ( jc) =

{
I±
c,p( jc, j±crit ( jc) �= 0),

I±
c,p( jc, jp = 0) = Ip(0).

(48)

In the first case I±
c are differentiable on their entire domains.

In the second case I±
c are nondifferentiable at jc = 0 due to

a violation of the condition for an interior minimum (46), but
remain strictly convex by virtue of strict convexity of I±

c,p (45).
The domains J ±

p join at jc = 0, lim jc→0 J −
p ( jc) ∪

J +
p ( jc) = Jp, and Ic,p( jc = 0, jp) is continuous on Jp by

(42). However, the right/left derivatives of I±
c,p( jc = 0, jp) at

jp = 0 in general do not match, rendering Ic,p nondifferen-
tiable at the origin. Instead continuity at the origin and (44)
make Ic,p strictly convex on Jp, while its derivative changes

FIG. 5. A first-order dynamical phase transition. (a) Split charge
rate functions I±

c (solid and dashed red/blue lines) entering the sec-
ond minimization problem (49). The charge rate function Ic (solid
line) has nonconvex cusp at jcusp

c (gray circle). (b) Split charge
scaled cumulant generating functions F±

c (λc ) (54) (solid and dashed
red/blue lines) entering the second optimization problem (55). The
nonconvex cusp of Ic is mapped to a nondifferentiable corner (gray
circle) of the charge scaled cumulant generating function Fc (solid
line) at λcor

c .

sign on Jp. As such, it has only a single minimum on Jp so
that at least one of the minima of I±

c,p( jc = 0, jp) is necessarily
located at jp = 0, see Fig. 3, and the corresponding solution
I±
c is nondifferentiable at jc = 0.

To summarize, the split charge rate functions I±
c , obtained

as solutions of (39), are strictly convex differentiable func-
tions, except at the origin, where at least one of the functions
is nondifferentiable.

2. Second optimization problem

Having obtained the split charge rate function I±
c , we re-

cover the full charge rate function Ic by simply picking the
smaller of the two at each value of the charge current,

Ic( jc) = min{I−
c ( jc), I+

c ( jc)}. (49)

The simplest case is that one of the split charge rate func-
tions I±

c dominates the other on the entire charge current
domain, trivially resulting in a differentiable charge rate func-
tion Ic( j) = I±

c ( jc); see Fig. 4(a). However, nothing prevents
one of the rate functions overtaking the other at a generic
charge current jcusp

c , see Figs. 4(b) and 5(a),

I+
c

(
jcusp
c

) = I−
c

(
jcusp
c

)
, (50)

resulting in a nondifferentiable point of the charge rate
function Ic. Since I±

c are always differentiable away from the
origin, the difference of right and left derivatives �±( jc) ≡
∂δ[I+

c ( jc ± δ) − I−
c ( jc ± δ)]|δ=0 changes sign at the cusp

�+( jcusp
c )�−( jcusp

c ) = −{∂ jc [I
+
c ( jc) − I−

c ( jc)]| jc= jcusp
c

}2 < 0,
indicating that Ic has a nonconvex cusp at jcusp

c .
It remains to consider the possibility of crossing at the

origin, which can occur when both I+
c and I−

c have a non-
differentiable point at jc = 0 with I±

c (0) = Ip(0) by Eq. (48).
The right and left derivatives at the origin in general do not
match:

Ic( jc) =
{

I±( jc) for jc > 0 if ± �+(0) < 0,

I±( jc) for jc < 0 if ± �−(0) > 0.
(51)

We accordingly distinguish two cases. In the first case, the
same function I±

c is smaller on both sides of the origin; see
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FIG. 6. A second-order dynamical phase transition. (a) A pair
of split charge rate functions I±

c (solid and dashed red/blue lines)
exchange dominance at the origin jc = 0, where the strictly convex
charge rate function Ic (solid line) has nondifferentiable point (gray
circle). (b) Split charge scaled cumulant generating functions F±

c (λc )
(54) (solid and dashed red/blue lines) exhibit a flat plateau. The
nonconvex point of Ic at the origin is mapped to a flat interval
(56) (horizontal gray line) of the charge scaled cumulant generating
function Fc (solid line) with a discontinuous second derivative at the
boundaries λ±

c (gray circles).

Fig. 4(c). The resulting Ic is trivially nondifferentiable at the
origin and strictly convex in a neighborhood of the origin.
In the second case, Ic switches from I±

c to I∓
c as it crosses

the origin; see Figs. 4(d) and 6(a). The resulting Ic is again
nondifferentiable at the origin but is no longer necessarily
convex and can exhibit a nonconvex cusp.

To summarize, the charge rate functions Ic, obtained as so-
lutions of the optimization problem (49), can exhibit two basic
types of nondifferentiable behavior, exemplified in Fig. 4. The
first type corresponds to a nonconvex cusp in the rate function,
at which the two split rate functions exchange dominance. The
second type is manifested as nondifferentiability of the rate
function at the origin. In the first case one of the split rate func-
tions dominates on both sides of the origin and the charge rate
function is strictly convex. When split rate functions exchange
dominance at the origin the charge rate function can exhibit a
nonconvex cusp at the origin. We emphasize that the charge
rate function can combine both a nondifferentiable cusp for
jcusp
c �= 0 with nondifferentiability at the origin.

C. Dynamical phase transitions

The nondifferentiable behavior of the charge rate function
Ic is more conveniently discussed by considering the charge
scaled cumulant generating function

Fc(λc) ≡ lim
t→∞ t−α ln Gc(λc|t ), (52)

commonly referred to as the dynamical free energy [2];
see also the discussion in [21]. Scaled cumulant generating
functions are convex and recoverable from a rate function
by the Legendre-Fenchel transform irrespective of its
differentiability [3],

Fc(λc) = sup
jc

{λc jc − Ic( jc)}. (53)

The two-step structure of the charge rate function
minimization is inherited by the optimization problem
(53), leading to an initial optimization for the split charge

scaled cumulant generating functions

F±
c (λc) = sup

jc
{λc jc − I±

c ( jc)}, (54)

followed by picking the larger of the two results

Fc(λc) = max{F−
c (λc), F+

c (λc)}. (55)

A nonconvex cusp (50) at jcusp
c (including at jcusp

c = 0) of
the charge rate function Ic is accordingly mapped to a convex
nondifferentiable corner of Fc at λcor

c ; see Fig. 5. From the
mismatch of first derivatives of Fc at the corner we conclude
that a nonconvex cusp of Ic corresponds to a first-order
dynamical phase transition.

On the other hand, a nondifferentiable point at the origin
of a strictly convex charge rate function Ic (51) is mapped to
a flat interval of Fc, see Fig. 6, whose boundaries are given by
the right and left derivatives of the rate function at the origin,

Fc(λc) = Ip(0) for λc ∈ (λ−
c , λ+

c ), (56)

where λ±
c = ∂ jc Ic(0±). By taking a derivative of Eq. (53),

we find that outer derivatives of Fc on the boundaries of
the interval vanish, ∂λc Fc(λc)|λ±

c
= 0, rendering Fc differen-

tiable. Computing the second derivative at the boundaries
we find ∂2

λc
Fc(λ±

c ) = 1/∂2
jc Ic(∂ jc I

−1
c (λ±

c )) > 0, where positiv-
ity follows from strict convexity of Ic. The mismatch of second
derivatives shows that nondifferentiability at the origin of a
strictly convex charge rate function corresponds to a second
order dynamical phase transition.

V. CONCLUSION AND DISCUSSION

We have studied charge fluctuations of single-file dynamics
with inert charges in bipartite initial ensembles, extending the
results of [21] to generic charge measures. We found an exact
finite-time dressing transformation between the particle and
charge fluctuations in terms of a conditional probability, easily
expressible in terms of the Fourier transform of the charge
measure (15). The dressing takes on its simplest form at
the level of full-counting statistics where it reduces to a simple
substitution rule (22). By analyzing the asymptotics of the
dressing transformation, we were able to study typical and
large charge fluctuations with only mild technical assump-
tion on the underlying particle fluctuations and the charge
measure.

Typical charge fluctuations depend only on the first two
moment of the charge measure and are generically Gaus-
sian (31), except in equilibrium ensembles with vanishing
mean charge, where they are parametrically suppressed and
anomalous, being distributed according to an M-Wright dis-
tribution (32). The analysis of large charge fluctuations is
technically more involved, incorporating asymptotic analysis
of the integral representation of the conditional rate function
and subsequent analysis of the convex minimization problem
(35). The outcome is a charge rate function that is either dif-
ferentiable, has a nonconvex cusp at a finite charge current, a
convex nondifferentiable point at the origin, or a combination
of the latter two. In terms of the charge scaled cumulant gener-
ating function, the cusp corresponds to first-order dynamical
phase transition while nondifferentiability at the origin is
mapped to a second-order dynamical phase transition. Our
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results show that charged single-file dynamics constitute a
class of dynamical systems with distinct universal fluctuation
phenomenology, with Gaussian charges the exactly solvable
model of the class.

As pointed out in [12,21,28], dynamical two-point func-
tions are not sufficient to unambiguously determine an
effective evolution law. The exact dynamical charge two-point
of arguably the simplest charged single-file system has been
derived in [14] and is diffusive in a half-filled equilibrium
ensemble, which might erroneously suggest an effective diffu-
sion equation. This is however incompatible with anomalous
fluctuations in the system [13].

At the level of two-point functions a hydrodynamic de-
scription of similar kinetically constrained models has been
put forward in [22]. Similar ideas have also appeared in a
hydrodynamic study of fluctuations of the large anisotropy
limit of the easy-axis XXZ spin chain [28], which also finds
anomalous spin fluctuations following an M-Wright distri-
bution, observed numerically also at finite anisotropy [12].
While such systems do not manifestly satisfy a single-file
constraint, they can be mapped to a single-file dynamics with
noninert charges by a bond-site transformation [29–31].

An important open problem is to understand how much of
the phenomenology observed for inert charges remains intact
when charges influence the particle dynamics. Recently, a
symmetry-based approach has been used to derive a three-
mode hydrodynamic theory of Dirac fluids [32] which found
anomalous charge current fluctuations described by an M-
Wright distribution in absence of normal diffusion.

Another question concerns the development of a hydro-
dynamic framework for typical fluctuations in integrable
systems. While ballistic macroscopic fluctuation theory [7]
and space-time duality [8] give access to large fluctuations, the
central limit property critically hinges on regularity of the full-
counting statistics [9], which has been found to be violated in
certain integrable models that exhibit sub-ballistic transport at
half filling [11,12]. Very recently, a set of three-mode hydro-
dynamic equations, akin to those describing Dirac fluids, has
been derived microscopically in a deterministic single-file cel-
lular automaton [33] and used to show anomalous fluctuations
follow from Euler hydrodynamics. It appears plausible that
sub-ballistic transport in integrable models generically signals
anomalous full-counting statistics.

The study of fluctuations in strongly interacting quantum
systems is becoming experimentally feasible [34] and
could provide insight into the seemingly related fluctuation
phenomenology.
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APPENDIX A: DRESSING THE FULL-COUNTING
STATISTICS

Introducing the counting fields zi = eλi and writing out the
conjugation in Eq. (21) we find

Gc,p(zc, zp|t ) = 1

2π i

‰
|z|=1

dz

z
K (zc, zp|z)Gp(z−1|t ), (A1)

where we noted that Gp(z|t ) is a convergent Lauren series in
z on C\{0,∞} and interchanged the order of summation over
zp and integration to arrive at the kernel K of the dressing
operator,

K (zc, zp|z) =
∞∑

Jp=−∞

ˆ
R

dJc zJc
c Pc|p(Jc|Jp)zJp

p zJp . (A2)

The problem in evaluating (A1) is the lack of convergence
of (A2) in the z plane. We therefore introduce the projectors
P (z)

± onto the non-negative/positive powers in the Laurent
expansion of a function f (z),

P±
z [ f (z)] = 1

2π i

∞∑
n=0

z±n
‰

|z|=1

dz

z
z∓n f (z), (A3)

and define the projected kernels,

K±(zc, zp|z) = P±
z [K (zc, zp|z)]. (A4)

Introducing the corresponding projected dressed full-counting
statistics,

G±
c,p(zc, zp|t ) = 1

2π i

‰
|z|=R±

dz

z
K±(zc, zp|z∓1)Gp(z±1|t ),

(A5)

where R± denote the radii of convergence of K±(zc, zp|z∓1),
respectively, the integral (A1) decomposes as

1 + Gc,p(zc, zp|t ) = G+
c,p(zc, zp|t ) + G−

c,p(zc, zp|t ). (A6)

Note that we have inverted the integration variable z → 1/z in
the definition of G+

c,p (A5) to ensure that the integral kernel has
a nonvanishing region of convergence around z → ∞. The
additional one on the left-hand side of (A6) comes from both
projectors P± picking up the constant term Gp(z0|t ) = 1.
Inserting the Fourier form of the conditional probability given
by Eq. (15) into (A4), interchanging the orders of summation
and integration, summing up the power series, and recalling
that zc = eλc , we find

K±(zc, zp|z∓1) =
ˆ
R

dJc

ˆ
R

dk

2π

e(λc±ik)Jc

1 − ω̂μ∓ (k)z±1
p /z

, (A7)

for |z| > |ω̂μ∓ (k)z±1
p |. Interchanging the order of integration

and carrying out the integral over Jc yields

K±(zc, zp|z∓1) =
ˆ
R

dk
δ(λc ± ik)

1 − ω̂μ∓ (k)z±1
p

/
z
, (A8)
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for |z| > |ω̂μ∓ (k)z±1
p |, which trivially integrates to

K±(zc, zp|z∓1) = 1

1 − z±/z
, for |z| > |z±|, (A9)

where z± = ω̂μ∓ (±iλc)z±1
p . We now return to the integral in

(A5) and evaluate it over a contour |z| > max {R−, R+} by the
residue theorem. The contour encircles the two poles at z = 0
and z = z± with residues

Res

(
zm

z − z±
, z = 0

)
=

{
0, for m � 0,

−zm
±, for m < 0,

(A10)

Res

(
zm

z − z±
, z = z±

)
= zm

±. (A11)

For non-negative powers of zm�0, the two residues can-
cel while positive powers amount to a simple replace-
ment zm�0 �→ zm

±. Recombining the split charge-particle
full-counting statistics (A6) then gives a straightforward
substitution

Gc,p(zc, zp|t ) = Gp(zp|t )|z±n
p �→z±n

p ω̂n
μ∓ (±iλc ), n ∈ N, (A12)

where we note that the additional one in (A6) is canceled
by the constant term being dressed in both G±

c,p terms. The
substitution (A12) gives the action of the dressing operator
DG acting on Gp; see Eq. (22).

APPENDIX B: TYPICAL FLUCTUATIONS

Typical fluctuations are governed by the large-scale struc-
ture of the measure which corresponds to small k-behavior of
the Fourier transformed measure ω̂μ,

ω̂μ(k) = 1 − iμk − 1
2

(
σ 2

ω + μ2
)
k2 + O(k3). (B1)

1. Nonequilibrium typical conditional probability

To evaluate the typical conditional probability we start with
the integral representation Eq. (15) and change variables to
u = ktα/2,

P typ
c|p ( jc| jp) =

ˆ
R

du

2π
lim

t→∞
[
ω̂μν

(ut−α/2)
]−ν(s(p)

1 tα+ jptα/2 )

× e−iνu(s(c)
1 tα/2+ jc ), (B2)

where ν = −sgn( jp). We now observe that the argument of
the Fourier-transformed measure becomes small as t → ∞,
suggesting the use of the Taylor expansion (B1). The limit

lim
t→∞[1 + a1t−α/2 + a2t−α]b1tα+b2tα/2

e−c1tα/2
(B3)

diverges for c1 �= a1b1 while it equals e− a2
1b2

2 +a2b1+a1b2 for c1 =
a1b1. It follows that the conditional distribution (B2) is finite
only if the average charge and particle currents are related by
Eq. (30). For these values, the integral (B2) simplifies,

P typ
c|p ( jc| jp) = e

− ( jc− jpμν )2

2σ2
ω |s(p)

1 |√
2πσ 2

ω

∣∣s(p)
1

∣∣ . (B4)

2. Equilibrium typical conditional probability

To evaluate the typical condition probability we again start
with the integral representation Eq. (15), which, after chang-
ing variables and u = ktα/4 and inserting the Taylor expansion
(B1), becomes

P typ,eq
c|p ( jc| jp) =

ˆ
R

du

2π
e−iνu jc lim

t→∞[ω̂0(ut−α/4)]−ν jptα/2
.

(B5)

Using the definition of the exponential, limt→∞[1 +
at−α/2]btα/2 = eab, we find

P typ,eq
c|p ( jc| jp) = e− j2

c /2| jp|σ 2
ω√

2π | jp|σ 2
ω

. (B6)

APPENDIX C: INTEGRAL REPRESENTATION OF M1/4

The integral representation of the M-Wright functions M1/4

is obtained starting from Theorem 2 of Ref. [16],

1

2
Mν (|x|) =

ˆ
R

dk

2π
e−ik|x|E2ν (−k2), (C1)

valid for 0 � ν � 1, where Eν (z) is a Mittag-Leffler function
[35], defined for ν > 0, z ∈ C by the series

Eν (z) ≡
∞∑

n=0

zn

�(νn + 1)
. (C2)

For special values of ν, the series can be computed explicitly.
In particular, we note that E1/2(−z) = ez2

erfc(z); see, e.g.,
[35]. Using the identity ez2

erfc(z) = ´∞
0

dy√
π

e−zy−y2/4 and tak-
ing ν = 1/4 in Eq. (C1) we find

M1/4(|x|) =
ˆ
R

dk

π3/2
e−ik|x|

ˆ ∞

0
dy e−yk2−y2/4. (C3)

Interchanging the order of integration by Fubini’s theorem,
carrying out the Gaussian integral over k, and symmetrizing
the remaining integral over the real line, we come to

M1/4(|x|) = 1

2π

ˆ
R

dy |y|−1/2 e− x2

4|y| − y2

4 . (C4)

Note that M-Wright functions on R+ are normalized as´∞
0 dx Mν (x) = 1. Normalization of the symmetrized func-

tion in Eq. (C4) is accordingly
´
R dx Mν (2|x|) = 1.

APPENDIX D: LARGE FLUCTUATIONS

The qualitative properties of large charge deviation are
primarily determined by the analytic properties of the Fourier-
transformed charge measure ω̂μ. The reality of ωμ is
manifested as a reflection symmetry of ω̂μ about the imagi-
nary axis,

ω̂μ(k) = ω̂μ(−k). (D1)

The assumed rapid decay of the measure ensures that ω̂μ is an
entire function. As the Fourier transform of a measure, ω̂μ is
a positive-definite function on R and its norm on the real line
is upper-bounded by the norm at the origin,

|ω̂μ(k)| � |ω̂μ(0)| = 1 for k ∈ R. (D2)
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For later convenience we note that the conditional probabil-
ity Eq. (15) bounds the scaled particle current jp entering
Eq. (34):

jp � jc/c+ for jc � 0 and jp � 0, (D3)

jp � jc/c− for jc � 0 and jp � 0, (D4)

jp � jc/c− for jc � 0 and jp � 0, (D5)

jp � jc/c+ for jc � 0 and jp � 0. (D6)

We accordingly define the domains J ±
p of the scaled particle

current,

J −
p ≡ (

jmin
p , j−p

]
, J +

p ≡ [
j+p , jmax

p

)
, (D7)

where the inner boundaries j±p depend on jc for measures with
finite support,

j−p = min { jc/c−, jc/c+}, (D8)

j+p = max { jc/c−, jc/c+}. (D9)

The Legendre-Fenchel transform relates the derivative of the
particle rate function Ip to inverse derivatives of the scaled
cumulant generating function Fp, ∂ jp Ip( jp) = (∂λpFp)−1( j).
Differentiability and strict convexity of Fp on R then combine
to give divergent derivatives of the particle rate function at the
boundaries of Jp,

∂ jp Ip( jp) → −∞ as j → jmin
p ,

∂ jp Ip( jp) → +∞ as j → jmax
p . (D10)

1. Large deviation form of split conditional rate functions

The integral representation of split conditional rate func-
tions given by Eq. (34) simplifies to

I±
c|p( jc| jp) = − lim

t→∞ t−α ln
ˆ
R

dk

2π
etα f±(k), (D11)

where

∓ f±(k) = jp ln ω̂μ± (k) + ik jc. (D12)

The asymptotics of (D11) can be analyzed by the saddle point
method, the saddle points k± satisfying

jp ∂kωμ± (k)|k=k± + i jc ω̂μ± (k±) = 0. (D13)

a. Saddle point on the imaginary axis

We now show that the saddle point equations (D13) each
have exactly one solution on the imaginary axis. By virtue of
the assumed rapid decay of the measure, the function

r(x) ≡ ω̂μ(ix) =
ˆ
C

dωμ ecx (D14)

is well defined and is manifestly real and positive for x ∈ R.
Suppressing inessential indices and setting k± = ix, x ∈ R,
the saddle point equations can be written as

h(x) − jc/ jp = 0, (D15)

where h(x) = r′(x)/r(x) and r′(x) = ∂xr(x). Computing the
derivative

h′(x) = r′′(x)r(x) − [r′(x)]2

[r(x)]2

=
˜

R2 d2ωμ

(
c2

1 − c1c2
)
ex(c1+c2 )

[r(x)]2

=
˜

R2 d2ωμ

(
c2

1 + c2
2 − 2c1c2

)
ex(c1+c2 )

2[r(x)]2

=
˜

R2 d2ωμ(c1 − c2)2ex(c1+c2 )

2[r(x)]2
> 0, (D16)

we find that h is continuous and strictly monotonic, with
equality in (D16) being achieved only for a trivial measure
supported on a single point. We also have

h(x) = r′(x)

r(x)
=

´
C dωμ cecx

r(x)

=
´ 0

−∞ dωμ cecx + ´∞
0 dωμ cecx

r(x)
. (D17)

Both terms in the numerator of (D17) are nonzero and of
different sign. Moreover, they can be made arbitrarily large
or small by sending x → ±∞. If ωμ is finitely supported,
the integrals in (D17) localize around the support’s boundary
points

h(x) → c− as x → −∞, h(x) → c+ as x → ∞.

(D18)

Enlarging the support to R accordingly gives divergent
asymptotic values as |x| → ±∞,

h(x) → ±∞ as x → ±∞, (D19)

which can be understood as taking the limit c± → ±∞. Re-
turning to Eq. (D15), we note that the expression on the
left-hand side changes sign for x → ±∞ as a a consequence
of (D18) and bounds on the charge current (D3)–(D6). The
same conclusion holds in the case of unbounded support via
(D19). Since h is continuous and strictly monotonic, it follows
that Eq. (D15) has exactly one solution x0 ∈ R. Reinstating
the notation of Eqs. (D13), we denote these solutions on the
imaginary axis as

k± = iκ±, κ± ∈ R. (D20)

Note that the locations of the saddle points depend only on the
ratio of the currents κ± = κ±( jc/ jp) via (D15).

b. Saddle point localization

Around the saddle points iκ± the functions f± read

∓ f±(iκ± + z)

= ∓ f±(iκ±)

+ z2

2
jp

ω̂′′
μ± (iκ±)ω̂μ± (iκ±) − [ω̂′

μ± (iκ±)]2

[ω̂μ± (iκ±)]2
+ O(z3).

(D21)

Importantly, the coefficients at quadratic order are strictly
negative (for jp �= 0) by virtue of (D14) and (D16) so that the
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saddle points are nondegenerate. Now consider the contours
of steepest descent I± across the saddle points iκ± that are
locally parallel to the real axis

I± = {k ∈ C | Im [ f±(k)] = constant, I±|κ± ‖ R}. (D22)

Since ω̂μ± are entire, we can deform the integration contour
in (D11) without changing the value of the integrals (D11).
We accordingly deform the path of integration to the steepest
descent contours I± across the saddle points, resulting in an
integral whose exponential contribution is easily evaluated as
t → ∞:

I±
c|p( jc| jp) = − lim

t→∞ t−α ln
ˆ
I±

dk

2π
etα f±(k)

= − f±(iκ±) = ±[ jp ln ω̂μ± (ik±) − k± jc].

(D23)

2. Generic properties of the split rate functions

We now prove Eqs. (42)–(45), reproduced below for con-
venience.

Claim 1. I±
c,p( jc = 0, jp) approach Ip( jp) as jp → 0∓:

lim
jp→0∓

I±
c|p( jc = 0, jp) = Ip( jp). (D24)

Proof. For jc = 0, the saddle point equation (D13) reduces
to ∂kω̂μ± (k)|k=iκ± = 0, showing that κ± is independent of jp.
The result now follows directly from taking the limit jp → 0∓
in Eq. (D23).

Claim 2. Derivatives of I±
c,p( jc = 0, jp) with respect to jp

are finite and bounded by

∓∞ < ±∂ jp I
±
c,p( jc = 0, jp ∈ J ∓

p ) � ±∂ jp Ip( jp). (D25)

Proof. Computing ∂ jp I
±
c|p( jc| jp) from Eq. (D23) and sim-

plifying, we find

∂ jp I
±
c,p( jc, jp) = ∂ jp Ip( jp) ± ln ω̂μ± (iκ±), (D26)

where the reality of I±
c,p follows from (D1). It is straightfor-

ward to show that ω̂μ± is strictly convex on the imaginary
axis, ∂2

x ω̂μ± (ix) = ´∞
−∞ dωμ± c2ecx > 0, while for jc = 0, the

saddle point equation specifies that the derivative of ω̂μ± van-
ishes. Since the saddle points iκ± are on the imaginary axis
they are precisely the minima of ω̂μ± on the imaginary axis.
Taking the value at the origin ω̂μ± (0) = 1, we have

−∞ < ln ω̂μ± (iκ±) � ln ω̂μ± (0) = 0, (D27)

where finiteness follows from positivity of ω̂μ± (iκ±). Plug-
ging (D27) into (D26) gives the result.

Claim 3. Derivatives of I±
c,p( jc �= 0, jp) with respect to jp

diverge on inner boundaries of J ±
p :

±∂ jp I
±
c,p( jc �= 0| jp → j∓p ) → ∞. (D28)

Proof. The derivatives are given by (D26) for all jc. Unlike
in the case jc = 0, the saddle points κ± are now determined
by the full equation (D13) or alternatively by (D15) (where
indices are again suppressed for simplicity). We start by con-
sidering the ratio of currents in the saddle point equation.
From (D9) we have the limits

lim
jp→ j±p

jc/ jp =
{

c+, for ± jc > 0,

c−, for ± jc < 0.
(D29)

Since the above values match the limiting values (D18), we
conclude that the locations of saddle points κ± diverge:

sgn( jc jp) κ± → ∞ as jp → j±p . (D30)

It follows that ω̂μ± (iκ±) = ´∞
−∞ dωμ± (c) eκ±c → ∞ as

|κ±| → ∞, which together with (D26) gives the result.
Claim 4. The Hessian determinant of I±

c,p( jc, jp) is positive:

det HI±
c,p

( jc, jp) > 0. (D31)

Proof. We introduce u = jc/ jp and compute the partial
derivatives of I±

c,p:

∂2
jp

I±
c,p( jc, jp) = u2

| jp|
d

du
κ±(u) + ∂2

jp
Ip( jp), (D32)

∂2
jc I

±
c,p( jc, jp) = 1

| jp|
d

du
κ±(u), (D33)

∂ jc∂ jp I
±
c,p( jc, jp) = u

| jp|
d

du
κ±(u). (D34)

By taking a derivative of the saddle point equations (D13) we
also have

d

du
κ±(u) = − ω2

μ± (iκ±)

∂2
k ω̂μ± (iκ±)ωμ± (iκ±) + [∂kω̂μ± (iκ±)]2

= 1

h′(κ±)
> 0, (D35)

where positivity follows from (D16) using the identification
(D14) and noting that a derivative with respect to k gives an
additional factor of i. The Hessian determinant then reads

det HI±
c,p

( jc, jp) =
∂2

jp
Ip( jp)

| jp|
d

du
κ±(u) > 0, (D36)

with positivity a consequence of (D35) and strict convexity of
Ip, giving the desired result.
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