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Brownian particle diffusion in generalized polynomial shear flows

Nan Wang and Yuval Dagan *

Faculty of Aerospace Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel

(Received 5 December 2023; revised 12 June 2024; accepted 17 June 2024; published 8 August 2024)

This study presents a mathematical framework for calculating the diffusion of Brownian particles in general-
ized shear flows. By solving the Langevin equations using stochastic instead of classical calculus, we propose a
mathematical formulation that resolves the particle mean-square displacement (MSD) at all timescales for any
two-dimensional parallel shear flow described by a polynomial velocity profile. We show that at long timescales,
the polynomial order of time of the particle MSD is n + 2, where n is the polynomial order of the transverse
coordinate of the velocity profile. We generalize the method to resolve particle diffusion in any polynomial
shear flow at all timescales, including the order of particle relaxation timescale, which is unresolved in current
theories. Particle diffusion at all timescales is then studied for the cases of Couette and plane Poiseuille flows
and a polynomial approximation of a hyperbolic tangent flow while neglecting the boundary effects. We observe
three main stages of particle diffusion along the timeline for Couette and plane Poiseuille flows and four main
stages for hyperbolic tangent flow. The particle MSD is distinctly different across these stages due to different
dominant physical mechanisms. Thus, higher temporal and spatial resolution for diffusion processes in shear
flows may be realized, suggesting a more accurate analytical approach for the diffusion of Brownian particles.
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I. INTRODUCTION

The diffusion of Brownian particles suspended in shear
flows has been studied comprehensively in science and en-
gineering. Examples can be found in aerospace propulsion
[1], filtration of aerosols [2], atmospheric flows [3,4], medical
applications [5], and biological studies [6]. Settling of submi-
cron particles that may be affected by Brownian diffusion is
also of particular interest in transmission routes of viral dis-
eases, where complex particle-flow interactions occur [7–11],
and was shown to be particularly sensitive in vortical shear
flows [12–15]. In the present study we derive a theoretical
method to address the influence of shear flows on particle
diffusion in a generalized framework.

Brownian motion was first observed by Brown [16] and
was subsequently studied mathematically by Einstein [17,18]
and Smoluchowski [19]. They obtained the particle mean-
square displacement (MSD) in a quiescent medium as 〈s2

p〉 =
2Dt , where D is the diffusion coefficient and t is time. This
relation was verified experimentally by Perrin et al. [20,21].
Langevin [22] introduced a random force into Newton’s sec-
ond law and obtained the Einstein-Smoluchowski formula
through the equation

mẍp(t ) = −γ ẋp(t ) + N (t ), (1)

where m is the particle mass, xp(t ) is the particle position,
γ ẋp(t ) is the drag force, and N (t ) is a time-dependent ran-
dom force. Uhlenbeck and Ornstein [23] analytically solved
the Langevin equation for a free particle suspended in a
stationary medium and derived the probability distribution
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function for the particle velocity and displacement. In their
analysis, the particle velocity distribution coincides with the
one-dimensional Maxwell-Boltzmann distribution. It has been
recently verified by conducting experiments of particles in
gaseous [24] and liquid [25,26] media using optical tweezers.
Their solution of particle displacement follows a Gaussian
process, and the particle MSD is asymptotic to

〈s2
p〉 →

{
u2

p(0)t2, t → 0

2Dt, t → ∞,
(2)

which has also been recently confirmed by experiments
[24,27,28] for both short and long timescales.

Inspired by Perrin’s description of Brownian trajectories,
Wiener [29] worked on the properties of Brownian trajectories
and characterized Brownian motion as continuous nondiffer-
entiable curves, which led to a new field of study on stochastic
processes. Hence, a disagreement about the existence of the
Brownian particle velocity between Wiener’s theory and the
Ornstein-Uhlenbeck theories emerged. Doob [30] devised a
theory of stochastic processes with continuous parameters and
formally presented the Langevin equation in a differential
manner,

dup = − γ

m
up(t )dt + dB(t ),

dxp(t ) = up(t )dt . (3)

He showed that B(t ) satisfies the properties of a Wiener
process and therefore circumvented the argument on the dif-
ferentiability of Brownian trajectories as a consequence of
expressing the Langevin equation in a differential form in-
stead of using derivatives. In the present study we use the
stochastic formula of the Brownian force of Eq. (3).
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As for Brownian motion in a medium with external
forces, Uhlenbeck and Ornstein [23] studied the dynamics of
Brownian particles in harmonic flows by solving Langevin
equations with an additional term. Furthermore, particle dif-
fusion in shear flows was also investigated analytically and
experimentally [31,32]. In an unbounded linear shear flow, the
diffusion of Brownian particles was first derived by Foister
and Van De Ven [31,32] and more recently by Katayama and
Terauti [33] and Chakraborty [34]. They obtained the particle
MSD along the streamlines at a time much longer than the
particle relaxation time (τp = m/γ ) as〈

s2
p

〉 = 2Dt
(
1 + 1

3α2t2
)
, (4)

where α is the shear rate [31,32]. Particle diffusion is en-
hanced compared to the Einstein-Smoluchowski diffusion
equation and was coined anomalous diffusion due to the right-
most term, which is proportional to t3. Recently, Takikawa
and co-workers [35–37] performed experiments with a stereo
microscope to validate the t3 term and the dependence on the
shear rate α. Their results verified the anomalous diffusion
in the streamwise direction and the correlation between the
particle MSD in the streamwise direction and the velocity gra-
dient, which is α in this case. Takikawa and Orihara [35] also
investigated the diffusion of Brownian particles under a sinu-
soidal oscillatory shear flow. The results in their experiments
are in good agreement with the theoretical results obtained
from solving the Langevin equation. This study also confirms
that the diffusion in the streamwise direction is related to the
velocity variation in the transverse direction.

Particle dispersion in the streamwise direction of an un-
bounded Poiseuille flow was derived by Taylor [38,39] and
generalized by Aris [40] through the convection-diffusion
equation. Taylor first proposed the coupling between the
Brownian diffusion in the transverse direction and the velocity
gradient of the flow, which has been confirmed experimentally
and theoretically.

Furthermore, Foister and Van De Ven obtained a t4 dif-
fusion term of the particle MSD in the streamwise direction
for unbounded plane Poiseuille and Hagen-Poiseuille flows,
which was qualitatively verified by experiments [32]. By
solving the Langevin equation with an additional term, they
obtained the particle MSD in an unbounded plane Poiseuille
flow at a time much longer than τp as〈

s2
p

〉 = 2Dt
(
1 + 4

3ζ 2y2
0t2 + 7

6 Dζ 2t3
)
, (5)

where ζ = Vmax/R2, Vmax is the maximum velocity at the
centerline of the flow, R is half the distance between the
two plates, and y0 is the initial position of the particle in
the transverse direction. The studies of Foister and Van De
Ven indicate that Langevin’s approach to random movement
provides another way to comprehend the effects of the cou-
pling between particle diffusion and flow variations in the
transverse direction; the t3 and t4 diffusion terms reveal that
this coupling significantly alters the diffusion in the stream-
wise direction.

The review above indicates that the flow velocity gradient
significantly affects the Brownian particle diffusion in shear
flows. Here we may separate the diffusion process into three
distinct temporal regions: a short timescale much shorter than

the particle relaxation time τp, an intermediate timescale on
the order of τp, and a long timescale much longer than τp. As
previously mentioned, the particle MSD in unbounded linear
shear flow and Poiseuille flow at long timescales has been
studied analytically and experimentally. The particle MSD for
short timescales has not been studied analytically for differ-
ent shear flows. Nevertheless, one would expect it to be the
same as that obtained by Uhlenbeck and Ornstein for a sta-
tionary medium. However, the particle MSD at intermediate
timescales is yet to be discussed.

The particle diffusion in polynomial shear flows is ideal
for studying anomalous diffusion since the velocity profile of
a two-dimensional parallel laminar flow can be approximated
by polynomial series. However, the study of Brownian particle
diffusion in parallel shear flows has so far been limited to
Couette and Poiseuille flows, for which the velocity profile
is either linear or parabolic functions of the transverse coor-
dinate. Moreover, current analytical solutions are restricted to
the limit of either short or long timescales. Thus, the present
research aims to analytically derive the diffusion of Brow-
nian particles in polynomial parallel laminar flows over all
timescales by solving the Langevin equation using stochastic
calculus.

In Sec. II the Langevin equation for Brownian particle
diffusion and the deduction for the stochastic formula of
the random force are presented. In Sec. III we derive particle
dynamics in a general polynomial parallel shear flow. The
long-timescale asymptotics for the general polynomial flow
is derived in Sec. III A and is validated with the results of
Foister and Van De Ven [32] for unbounded Couette flow
and plane Poiseuille flow at long timescales. The particle
MSDs in unbounded Couette flow and plane Poiseuille flow
for all timescales are then presented in Secs. III B and III C,
respectively. In Sec. III D we present a solution employing the
stochastic method to resolve the Brownian particle diffusion
in a shear flow, described by a hyperbolic tangent profile,
by approximating the velocity using polynomial series as an
example. We discuss the observations in Sec. III E. We sum-
marize our work in Sec. IV.

II. MATHEMATICAL MODEL

Submicron-sized particles suspended in fluids may be sub-
jected to drag forces, electrostatic forces, gravitational and
other body forces, and the random force resulting from fre-
quent collisions by surrounding molecules. The dynamics of
a Brownian particle suspended in a flow can be described by
the Langevin equation

dXp(t )

dt
= Up(t ),

m
dUp(t )

dt
= γ [V f (t ) − Up(t )] + FB + N(t ),

(6)

where Xp is the particle position vector; FB represents other
body forces, such as gravity and electric forces; N(t ) is the
Brownian force vector with the components Ni(t ), where i
refers to spatial coordinates x, y, or z; and γ [V f (t ) − Up(t )]
is the drag force vector, which is proportional to the differ-
ence between the particle velocity vector Up(t ) and the flow
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velocity vector V f (t ). The drag coefficient may be written as

γ = 3πμdp

Cc
, (7)

where μ is the dynamic viscosity of the medium, dp is the
diameter of the particle, and Cc is the Cunningham correction
coefficient to the Stokes drag.

The random force N(t ) results from frequent random
collisions, which could be as often as 1020 times per sec-
ond, between the particle and surrounding molecules in the
medium. The extremely frequent collisions lead to memory
loss at different time intervals. Since random collisions are
uniform in all directions, the average of the random force
should be zero. Thus, by decomposing the random force into
Cartesian coordinates, the random force in each direction
Ni(t ) can be summarized, by defining the mean and correla-
tion of Ni(t ) at any time t and s, as proposed by Uhlenbeck
and Ornstein [23],

〈Ni(t )〉 = 0, 〈Ni(t )Nj (s)〉 = rδi, jδ(t − s), (8)

where
√

r is the magnitude of the random force, δi, j is the
Kronecker delta function, and δ is the Dirac delta function.
Suppose tB is the minimum time period during which many
collisions are occurring such that these collisions eliminate all
correlations between occurrences and the preceding ones. We
define

dUi(t ) = Ni(t )dt (9)

and investigate Ui(t ) for time t much longer than tB. Dividing t
into intervals 0 = t0 < t1 < t2 < · · · < tn = t , where tk − tk−1

is on the order of tB, then

Ui(t ) − Ui(0) =
n∑

k=1

[Ui(tk ) − Ui(tk−1)]. (10)

Since during the time interval tk − tk−1 the random force Ni(t )
is independent of that before tk−1, Ui(tk ) depends only on
Ui(tk−1), etc., which implies Ui(t ) is a continuous Markov
process. The continuity follows the integral of Eq. (9).

Because the random force Ni(t ) must average to zero, if
we choose Ui(0) = 0 at the origin time, then 〈Ui(tk )〉 = 0
must hold. Based on the discussion above, we may con-
clude that the increments of Ui, i.e., Ui(t1) − Ui(t0),Ui(t2) −
Ui(t1), . . . ,Ui(tk ) − Ui(tk−1), . . . ,Ui(tn) − Ui(tn−1), are in-
dependent, stationary, and identically distributed with zero
mean if the thermal motion in the medium has attained a
steady state. By the central-limit theorem, we deduce that
Ui(t ) is a Gaussian process with zero mean. Thus, Ui(t ) is
a Wiener process scaled by

√
r, that is,

〈dUi(t )dUi(s)〉 = r(dt ∩ ds). (11)

By accounting for the particle thermal velocity in equi-
librium, the magnitude of the random force r can be written
[23] as

r = 2γ KbT, (12)

where Kb is the Boltzmann constant and T is the absolute
temperature. Then Eq. (9) can also be represented as

dUi(t ) = Ni(t )dt =
√

2γ KbT dWi(t ), (13)

where Wi(t ) is the standard Wiener process with zero mean
and unit variance. This equation echoes Doob’s formula [30]
presenting the Langevin equation by a stochastic process.
Also, the relation

〈dUi(t )dU j (t )〉 = 2γ KbT 〈dWi(t )dW j (t )〉 = 0 (14)

holds since dWi(t ) is independent of dW j (t ), with i and j
referring to the different coordinate indices of x, y, or z.

III. DYNAMICS AND DIFFUSION OF BROWNIAN
PARTICLES IN GENERAL POLYNOMIAL SHEAR FLOWS

We start the mathematical derivation by considering a two-
dimensional laminar shear flow, of which the velocity profile
may be described as a polynomial function of the transverse
coordinate y, generally expressed here as

v f =
n∑

k=0

ckU
( y

L

)k
, (15)

where c0, c1, c2, . . . , cn are dimensionless constant coeffi-
cients, U is the characteristic velocity of the flow, L is the
characteristic length scale of the flow, and n is the order of the
flow velocity profile. This representation will allow the gen-
eralization of the method to resolve any shear flow that may
be described by a polynomial function, either as a solution of
the Navier-Stokes equations, such as Couette and Poiseuille
flows, or as an approximation thereof.

To study the dynamics and diffusion of a Brownian particle
carried by this polynomial laminar parallel flow, we may solve
the two-dimensional Langevin equation (6) in the stochastic
form by defining

Up =
(

upx

upy

)
, Xp =

(
xp

yp

)
, V f =

(
v f

0

)
,

FB =
(

0
0

)
, N =

(
Nx

Ny

)
, (16)

where gravity and other body forces are neglected. The
stochastic form of the Langevin equation is then

dXp(t ) = Up(t )dt,

dUp(t ) = γ

m
[V f (t ) − Up(t )]dt + 1

m

√
2γ KbT dW (t ), (17)

where W (t ) = (Wx (t )
Wy (t )

)
.

Equation (17) is normalized by defining the following di-
mensionless variables:

x̃p = xp

L
, ỹp = yp

L
, ũpx = upx

U
, ũpy = upy

U
,

t̃ = t

L/U
, ṽ f = v f

U
=

n∑
k=0

ck (ỹ)k . (18)

We further define the Stokes number as St = m/γ

L/U , the ratio of
particle relaxation time to flow characteristic timescale, and
the dimensionless diffusion coefficient as D∗ = KbT

γ LU . Note

that
√

L
U Wi( t

L/U ) is a standard Wiener process since Wi(t ) is a

standard Wiener process. Hence,
√

L
U Wi(t̃ ) is also a standard
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Wiener process. Thus,

〈dWi(t̃ )dWi(t̃ )〉 = U

L
dt = dt̃, 〈dWi(t̃ )dW j (t̃ )〉 = 0.

(19)

Substituting the dimensionless variables into (17) and hence-
forth omitting the tilde for convenience, we obtain the
dimensionless governing equations

dXp(t ) = Up(t )dt,

dUp(t ) = 1

St
[V f (t ) − Up(t )]dt + 1

St

√
2D∗dW (t ). (20)

The analysis is divided into transverse and streamwise di-
rections. The transverse velocity of the shear flow is assumed
to be zero so that the particle dynamics and diffusion in the
transverse direction are essentially the same as in quiescent
flows. Under this assumption, by integrating Eqs. (20) in the
transverse direction, the particle position in the transverse
direction is obtained as

yp(t ) = yp(0) + Stupy(0)(1 − e−t/St)

+
√

2D∗
∫ t

0
(1 − e−(t−s)/St) dWy(s). (21)

In any polynomial shear flow, the particle’s initial position
yp(0) may change the particle diffusion depending on the local
velocity and its gradient. If a particle is initially located at a
higher (lower) flow velocity, the MSD will be larger (smaller)
due to the higher (lower) flow velocity. However, only the
gradient alters the variance of particle displacement, whereas
the velocity affects the mean displacement. The initial veloc-
ity upy(0) is constant depending on the initial condition. It
could be viewed either as the velocity at which the particle
is introduced into the flow or the instantaneous velocity due
to Brownian motion. For a particle in thermal equilibrium, the
Brownian motion in the transverse direction is the same as
in quiescent flow. The particle speed is random and satisfies
the one-dimensional Maxwell-Boltzmann distribution. Thus,
the particle’s initial velocity could be predicted by the root-
mean-square velocity. By the energy equipartition theorem,
the magnitude of upy(0) can be obtained as

√
kBT
mp

/U [24]. In
the present study, the dimensionless variables yp(0), upx(0),
upy(0), and ck are considered of O(1). The Stokes number,
defined as the ratio of particle timescale to flow timescale, is
assumed to be much less than 1 for submicron particles within
the shear flow.

Since the integral of the deterministic function 1 −
e−(t−s)/St with respect to the standard Wiener process is a
Gaussian process, the stochastic part of the particle position√

2D∗ ∫ t
0 (1 − e−(t−s)/St)dWy(s) is a Gaussian process with

zero mean and variance

σ 2
yp

= 2D∗
(

St

2
(1 − e−2t/St) + t − 2 St(1 − e−t/St)

)
. (22)

Given that St is relatively small for Brownian particles, the
variance of the particle position is asymptotic to 2D∗t for
timescales much longer than St. To maintain all the proper-
ties of the stochastic part of the particle position, as well as
to simplify the problem, the stochastic term −√

2D∗ ∫ t
0 (1 −

e−(t−s)/St) dWy(s) may be approximated as
√

2D∗Wy(t ) for
timescales much longer than St. Thus, for long timescales, the
particle position in the transverse direction can be written as

yp(t ) ∼ yp(0) + Stupy(0)(1 − e−t/St) +
√

2D∗Wy(t ). (23)

To solve Eqs. (20) in the streamwise direction, we sub-
stitute yp(t ) of Eq. (23) into the dimensionless flow velocity
equation and obtain

v f (t ) =
n∑

k=0

ck[yp(0) + Stupy(0)(1 − e−t/St) +
√

2D∗Wy(t )]k

=
n∑

k=0

∑
α,β,λ,

α+β+λ=k

ck

(
k

α, β, λ

)
yα

p (0)Stβuβ
py(0)(1 − e−t/St)β

× (
√

2D∗)λW λ
y (t ) (24)

with trinomial coefficients(
k

α, β, λ

)
= k!

α!β!λ!
,

where α, β, λ are non-negative integers. Defining
F (k, α, β, λ) = ck

( k
α,β,λ

)
yα

p (0)Stβuβ
py(0)(

√
2D∗)λ, then v f (t )

may be written as

v f (t ) =
n∑

k=0

∑
α,β,λ,

α+β+λ=k

F (k, α, β, λ)(1 − e−t/St)βW λ
y (t ). (25)

By substituting (25) into (20) and solving (20) in the stream-
wise direction, we obtain an expression for the particle
velocity and displacement in the streamwise direction,

upx =
n∑

k=0

∑
α,β,λ,

α+β+λ=k

F (k, α, β, λ)St−1
∫ t

0
e−(t−t ′ )/St

× (1 − e−t ′/St)βW λ
y (t ′)dt ′ + upx(0)e−t/St

+ 1

St

√
2D∗

∫ t

0
e−(t−s)/StdWx(s), (26)

spx =
n∑

k=0

∑
α,β,λ,

α+β+λ=k

F (k, α, β, λ)
∫ t

0
(1 − e−(t−t ′ )/St)

× (1 − e−t ′/St)βW λ
y (t ′)dt ′ + Stupx(0)(1 − e−t/St)

+
√

2D∗
∫ t

0
(1 − e−(t−s)/St)dWx(s). (27)

To resolve the particle dynamics and diffusion in the stream-
wise direction, we first solve the Langevin equation (20) for
the general polynomial laminar flow, analyze the particle dif-
fusion in general polynomial laminar flows at long timescales,
and find the particle diffusion at all timescales for specific
polynomial laminar flows.

A. Long-timescale asymptotics

For long timescales t � St, all the exponential terms in
Eq. (27) decay and the particle displacement in the streamwise
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direction is asymptotic to

spx ∼
n∑

k=0

∑
α,β,λ,

α+β+λ=k

F (k, α, β, λ)
∫ t

0
W λ

y (t ′)dt ′

+ Stupx(0) +
√

2D∗Wx(t ). (28)

Since the standard Wiener process is a normal distribution, by
the moment generating function of the normal distribution and
Taylor series, we have

E [W λ(t )] =
{

0 for λ = 1, 3, 5, . . . (odd)

(λ − 1)!!tλ/2 for λ = 0, 2, 4, . . . (even).

(29)

Then the particle mean displacement at long timescales is

〈sp(t )〉 ∼
n∑

k=0

∑
α,β,λ,

α+β+λ=k,
λ even

F (k, α, β, λ)(λ − 1)!!
2

λ + 2
t (λ+2)/2

+ Stupx(0). (30)

The term t (λ+2)/2 in Eq. (30) arises from the expected value
of the term with

∫ t
0 W

λ
y (s)ds when λ is even. That implies the

variation of the particle displacement is offset by the integral
of the odd powers of the Wiener process and is accumulated
by the integral of the even powers of the Wiener process.

Furthermore, by the stochastic Fubini theorem and Itô’s
lemma, the time integral of the powers of the Wiener process
can be represented as (see the Appendix)

∫ t

0
W λ

y (u)du =
⎧⎨
⎩
∑(λ+1)/2

l=1
λ!

2l−1(λ−2l+1)!

∫ t
0

(t−s)l

l! W λ−(2l−1)
y (s)dWy(s) for λ = 1, 3, 5, . . . (odd)∑λ/2

l=1
λ!

2l−1(λ−2l+1)!

∫ t
0

(t−s)l

l! W λ−(2l−1)
y (s)dWy(s) + (λ − 1)!! 2

λ+2 t (λ+2)/2 for λ = 2, 4, 6, . . . (even)
, (31)

and for λ = 0 it holds that ∫ t

0
W λ

y (u)du = (λ − 1)!!
2

λ + 2
t (λ+2)/2 = t .

In the case of n = 0, the variance of the particle displacement is

σ 2
sp

= 〈[
√

2D∗Wx(t )]2〉 = 2D∗t, (32)

which corresponds to particle diffusion in quiescent media. In the case of n � 1, the variance of the particle displacement for
long timescales is

σ 2
sp

=

$⎛
⎜⎜⎜⎜⎝

n∑
k=1

∑
α,β,λ,

α+β+λ=k,
λ>0

F (k, α, β, λ)
�λ/2∑
ζ=1

λ!

2ζ−1(λ − 2ζ + 1)!

∫ t

0

(t − s)ζ

ζ !
W λ−2ζ+1

y (s)dWy(s) +
√

2D∗Wx(t )

⎞
⎟⎟⎟⎟⎠

2%

=
n∑

k1=1

n∑
k2=1

∑
α1,β1,λ1,

α1+β1+λ1=k1,
λ1>0

∑
α2,β2,λ2,

α2+β2+λ2=k2,
λ2>0

F (k1, α1, β1, λ1)F (k2, α2, β2, λ2)
�λ1/2∑
ζ1=1

�λ2/2∑
ζ2=1

〈Z (λ1, ζ1)Z (λ2, ζ2)〉 + 2D∗t, (33)

with �λ/2 a ceiling function giving the least integer greater than or equal to λ/2 and

Z (λ, ζ ) = λ!

2ζ−1(λ − 2ζ + 1)!

∫ t

0

(t − s)ζ

ζ !
W λ−2ζ+1

y (s)dWy(s). (34)

By Itô’s isometry, 〈Z (λ1, ζ1)Z (λ2, ζ2)〉 may be presented as

〈Z (λ1, ζ1)Z (λ2, ζ2)〉 = G
∫ t

0

(t − s)ζ1+ζ2

ζ1! ζ2!
〈W J

y (s)〉ds, (35)

with J = λ1 + λ2 − 2(ζ1 + ζ2) + 2 and

G = λ1!λ2!

2ζ1+ζ2−2(λ1 − 2ζ1 + 1)!(λ2 − 2ζ2 + 1)!
.

Then, by the properties of the Wiener process and Eq. (29), we obtain

〈Z (λ1, ζ1)Z (λ2, ζ2)〉 =
{

0 for J odd

G
∑ζ1+ζ2

i=0

(
ζ1+ζ2

i

)
(−1)ζ1+ζ2−i 2

λ1+λ2+4−2i t
λ1+λ2+4

2 for J even,
(36)

024117-5



NAN WANG AND YUVAL DAGAN PHYSICAL REVIEW E 110, 024117 (2024)

FIG. 1. Velocity profile of (a) Couette flow, (b) plane Poiseuille flow, and (c) hyperbolic tangent flow with the polynomial fit in the region
between y = −1 and y = 5 presented in Eqs. (40), (47), and (55), respectively.

with the binomial coefficient
(
ζ

i

) = (ζ )!
i!(ζ−i)! . Moreover,

〈Z (λ1, ζ1)Z (λ2, ζ2)〉 receives its highest power, denoted by
〈Z (λ1, ζ1)Z (λ2, ζ2)〉h, when both λ1 and λ2 are n, that is,

〈Z (λ1, ζ1)Z (λ2, ζ2)〉h =G
ζ1+ζ2∑
i=0

(
ζ1 + ζ2

i

)
(−1)ζ1+ζ2−i

× 1

n + 2 − i
t n+2. (37)

The variance of the particle displacement in Eq. (33) is a
polynomial function of t . The term with the highest power
t n+2 in Eq. (33) emerges from the variance of the term∫ t

0 W
n

y (s)ds. The second highest power t n+1 results from the

variance of the term
∫ t

0 W
n−1

y (s)ds or the covariance between

the terms
∫ t

0 W
n

y (s)ds and
∫ t

0 W
n−2

y (s)ds. So do the other
powers of t . This implies that the combination of the flow
velocity function, shown in the exponents, and the Brownian
motion in the transverse direction Wy, shown in the base,
makes a remarkable difference to the variance of the particle
displacement.

The particle MSD at long timescales can be calculated
by the formula 〈s2

p〉 = 〈sp〉2 + σ 2
sp

. For odd n, the highest

power of t in 〈sp〉2 is n + 1 since only the integral of even
powers of the Wiener process accumulates in the mean dis-
placement, while the highest power of t in σ 2

sp
is n + 2. For

even n, the highest power of t in both 〈sp〉2 and σ 2
sp

is n + 2.
Thus, we obtain, at long timescales, that the particle MSD
in the streamwise direction is a polynomial function of t
with the highest power n + 2. In other words, at long
timescales, the order of the particle diffusion is n + 2 for the
order of flow velocity n.

The summation term in Eq. (33) characterizes the dominant
term of particle diffusion in the streamwise direction due to
the coupling of particle diffusion and flow velocity gradient
in the transverse direction. The second term 2D∗t reveals pure
diffusion in the streamwise direction.

To verify the formulas for the general velocity profile, we
compare our present results with the results from Foister and
Van De Ven [32] for the cases of Couette and plane Poiseuille
flows. In their study, instead of using a space-fixed coordinate

system, the authors defined a new coordinate system in which
the flow velocity at the particle’s initial position v f (0) is sub-
tracted. Thus, for the comparison, we subtract a displacement
due to v f (0), in order to verify the present MSD.

For Couette flow, n = 1, c0 = c2 = · · · = cn = 0, and
v f (0) = c1yp(0). Subtracting c1yp(0)t from sp and omitting
the terms with all powers of St for the limit t → ∞, we obtain
the asymptotic MSD as

〈
s2

p

〉 = 2D∗t

(
1 + c2

1
t2

3

)
, (38)

which is the same as the results reported in [32].
For plane Poiseuille flow, n = 2, c0 = 1, c1 = 0, c2 = −1,

c3 = c4 = · · · = cn = 0, and v f (0) = c0 + c2y2
p(0). Subtract-

ing [c0 + c2y2
p(0)]t from sp and omitting the terms with all

powers of St for the limit t → ∞, we obtain the asymptotic
MSD for the plane Poiseuille flow as

〈
s2

p

〉 = 2D∗t

(
1 + c2

2y2
p(0)

4t2

3
+ D∗c2

2
7t3

6

)
, (39)

which is the exact same result reported by Foister and Van De
Ven [32].

In the following sections, using the generalized formula-
tion developed here, we explore the diffusion of particles in
three specific test cases, illustrated here in Fig. 1.

B. Brownian particle diffusion in Couette flows
at all time regions

We begin the analysis by expanding the calculation of
particle diffusion in Couette flows for all time regions. Specifi-
cally, the particle diffusion will be resolved for the short, long,
and intermediate timescales. A dimensionless Couette flow,
illustrated in Fig. 1(a) and described by

v f (t ) = y, (40)

is considered here, where the effects of boundaries on particle
diffusion are neglected.

Here c0 = c2 = c3 = · · · = cn = 0, c1 = 1, and
the particle initial position is (xp(0), yp(0)). The
displacement in Eq. (27) for this unbounded
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Couette flow is

spx =
1∑

k=0

∑
α,β,λ,

α+β+λ=k

F (k, α, β, λ)
∫ t

0
(1 − e−(t−s)/St)(1 − e−s/St)β W λ

y (s)ds + Stupx(0)(1 − e−t/St)

+
√

2D∗
∫ t

0
(1 − e−(t−s)/St)dWx(s). (41)

Using Itô’s lemma, we may write
∫ t

0 Wy(u)du = ∫ t
0 (t − s)dWy(s) (see the Appendix). Then the particle displacement takes

the form

spx = c1yp(0)[t − St(1 − e−t/St)] + c1Stupy(0)[(1 + e−t/St) t − 2 St(1 − e−t/St)] + Stupx(0)(1 − e−t/St)

+ c1

√
2D∗

(∫ t

0
[(t − s) + St(e−(t−s)/St − 1)]d Wy(s)

)
+

√
2D∗

∫ t

0
(1 − e−(t−s)/St)dWx(s). (42)

Finally, by taking the expected value of the particle displacement and calculating the variance, we have

〈sp〉 = c1yp(0)[t − St(1 − e−t/St)] + c1Stupy(0)[(1 + e−t/St)t − 2 St(1 − e−t/St)] + Stupx(0)(1 − e−t/St) ,

σ 2
sp

= 2D∗
{

c2
1

[
1

3
t3 − t2St − t St2 + 2t St2(1 − e−t/St) + 1

2
St3(1 − e−2t/St)

]}

+ 2D∗
(

St

2
(1 − e−2t/St) − 2 St(1 − e−t/St) + t

)
. (43)

The particle MSD is obtained by calculating 〈s2
p〉 = 〈sp〉2 +

σ 2
sp

. Note that the formula converges to the particle MSD in
quiescent flow when the shear rate c1 is zero.

1. Short-timescale analysis

For timescales much shorter than the Stokes number St,
that is, t � St � 1, t

St � 1 holds. Expanding e−t/St and
e−2t/St with third-order Taylor polynomial series around 0, we
approximate the particle MSD as〈

s2
p

〉 ∼ u2
px(0)t2. (44)

If the initial velocity of the Brownian particle in the stream-
wise direction is only the velocity due to the random motion,
then taking a second average over upx(0), by thermal equilib-
rium, we have

〈〈
s2

p

〉〉 ∼ 〈
u2

px(0)
〉
t2 = KbT

mp
t2. (45)

This shows that, on average, the particle has a uniform motion
at short timescales and that the MSD is the same as it is
in quiescent flow or a stationary medium [23] since time is
too short for the particle to catch up with the flow velocity.
Moreover, the transverse coordinate of the particle changes so
little during a very short period of time that the flow velocity
does not vary enough to make any difference to the particle
diffusion in the streamwise direction.

2. Long-timescale analysis

When the normalized time t is much longer than the
Stokes number St, e−t/St → 0 and e−2t/St → 0 hold; the
leading terms of the particle mean displacement, the vari-
ance of particle displacement, and the particle MSD can be

approximated by

〈sp〉 ∼ c1yp(0)t, σ 2
sp

∼ 2D∗t

(
c2

1
t2

3
+ 1

)
,

〈
s2

p

〉 ∼ [c1yp(0)t]2 + 2D∗t

(
c2

1
t2

3
+ 1

)
. (46)

On average, the particle travels at a velocity equal to the
flow velocity at the particle’s initial position c1yp(0). The
reasons may be illustrated as follows. On the one hand, there is
enough time for the particle to catch up with the flow velocity.
On the other hand, the Brownian motion in the transverse
direction results in particle hopping between different velocity
layers, while the linearity of the flow velocity offsets the
variation of the particle mean displacement in the streamwise
direction. Moreover, the variance of the particle displacement
in the streamwise direction is larger than that in quiescent
flows by 2D∗c2

1
t3

3 , which comes from the variance of the
term

∫ t
0 Wy(s)ds. This enhanced diffusion is the same as the

results obtained in [32,33]. This allows us to mathematically
perceive the effects of the combination of Brownian motion in
the transverse direction Wy and the linear velocity function,
shown in the power of Wy, on the particle diffusion in the
streamwise direction. Hence, for this linear case, the coupling
between the Brownian motion in the transverse direction and
the flow velocity does not alter the mean displacement but
rather the variance of particle displacement in the streamwise
direction.

We demonstrate the particle MSD for particles initially
located at y = 0.5 with St = 10−8 at 20 ◦C in Fig. 2(a). The
particle is initially located at the midpoint in the vertical di-
rection, as an example. However, it can be at any point distant
enough from boundaries. The Stokes number St � O(1) and
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FIG. 2. Comparison of the exact MSD with short-time and long-time approximation (a) Couette flow, (b) plane Poiseuille, and (c) hy-
perbolic tangent flow, respectively. The gray curves are the exact particle MSD in each flow, the green dashed curves are the corresponding
long-time approximated MSD, and the red dotted curves are the corresponding short-time approximated MSD.

temperature are arbitrarily chosen here. The conditions in the
following cases are chosen in the same way. We see that the
particle approximated MSD at long timescales in Eq. (46) and
the particle approximated MSD at short timescales in Eq. (44)
are in good agreement with the exact MSD obtained from
Eq. (43).

It should be noted that the particle MSD at short timescales
is known (see Sec. III B 1) and particle diffusion at long
timescales has been discussed in the literature [32,33].
However, our result continuously bridges these two approx-
imations and reveals the exact particle MSD in Couette flows
for all timescales.

C. Brownian particle diffusion in plane Poiseuille flows at all time regions

We now consider a 2D plane Poiseuille flow with a dimensionless parabolic velocity profile [see Fig. 1(b)], described by the
equation

v f = 1 − y2. (47)

Here, as in the linear Couette flow case, we neglect the effect of boundaries on the diffusion of particles. Also, y is the
dimensionless vertical coordinate with the origin at the centerline. Then c0 = 1, c1 = 0, c2 = −1, and c3 = c4 = · · · = cn = 0.
The displacement in Eq. (27) for this unbounded plane Poiseuille flow is

spx =
2∑

k=0

∑
α,β,λ,

α+β+λ=k

F (k, α, β, λ)
∫ t

0
(1 − e−(t−s)/St)(1 − e−s/St)βW λ

y (s)ds + Stupx(0)(1 − e−t/St)

+
√

2D∗
∫ t

0
(1 − e−(t−s)/St)dWx(s).

(48)

Using Itô’s lemma and Itô’s isometry, we may write W 2
y (t ) = ∫ t

0 2Wy(s)dWy(s) + t and
∫ t

0 W
2

y (u)du = ∫ t
0 2(t −

s)Wy(s)dWy(s) + t2

2 (see the Appendix). Then the particle displacement becomes

sp(t ) = [
c0 + c2y2

p(0)
]
[t − St(1 − e−t/St)] + 2c2yp(0)Stupy(0)[(1 + e−t/St)t − 2 St(1 − e−t/St)]

+ 2c2yp(0)
√

2D∗
∫ t

0
[(t − s) − St(1 − e−(t−s)/St)] dWy(s) + c2St2u2

py(0)

[
St

2
e−2t/St + 2(t + St)e−t/St +

(
t − 5

2
St

)]

+ 2c2Stupy(0)
√

2D∗
∫ t

0
[(1 − e−t/St)(t − s) − St(1 − e−(t−s)/St)(1 + e−s/St)] dWy(s)

+ 2c2D∗
∫ t

0
[(t − s) − St(1 − e−(t−s)/St)]2Wy(s) dWy(s) + 2c2D∗

(
t2

2
− t St + St2(1 − e−t/St)

)

+ Stupx(0)(1 − e−t/St) +
√

2D∗
∫ t

0
(1 − e−(t−s)/St) dWx(s). (49)
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Taking the expected value of the particle displacement and its variance, we have

〈sp(t )〉 = [
c0 + c2y2

p(0)
]
[t − St(1 − e−t/St)] + 2c2yp(0)Stupy(0)[(1 + e−t/St)t − 2 St(1 − e−t/St)] + Stupx(0)(1 − e−t/St)

+ c2St2u2
py(0)

(
(t − 5

2
St) + 2(t + St)e−t/St + St

2
e−2t/St

)
+ 2c2D∗

(
t2

2
− t St + St2(1 − e−t/St)

)
,

σ 2
sp

= 8c2
2y2

p(0)D∗
[(

1

3
t3 − t2St + t St2 + 1

2
St3

)
− 2t St2e−t/St − 1

2
St3e−2t/St

]

+ 8c2
2St2u2

py(0)D∗
[(

1

3
t3 − t2St − t St2 + 5 St3

)
+

(
2

3
t3 − 8t St2

)
e−t/St +

(
1

3
t3 + t2St − t St2 − 5 St3

)
e−2t/St

]

+ 16 c2
2 (D∗)2

[(
1

12
t4 − 1

3
t3St + 1

2
t2St2 + 1

2
t St3 − 9

4
St4

)
+ (2t St3 + 2 St4)e−t/St + 1

4
St4e−2t/St

]

+ 16c2
2yp(0)Stupy(0)D∗

[(
1

3
t3 − t2St + 5

2
St3

)
+

(
1

3
t3 − 4t St2

)
e−t/St −

(
t St2 + 5

2
St3

)
e−2t/St

]

+ 2D∗
[(

t − 3

2
St

)
+ 2 Ste−t/St − 1

2
Ste−2t/St

]
. (50)

The particle MSD for all time regions can now be obtained by calculating 〈s2
p〉 = 〈sp〉2 + σ 2

sp
.

1. Short-timescale limit

For time much shorter than the Stokes number St, that
is, t � St � 1, t

St � 1 holds. Taking the first-order Taylor
polynomial approximation to e−t/St and e−2t/St around 0, we
approximate the particle MSD as〈

s2
p

〉 ∼ u2
px(0)t2, (51)

which is the same expected expression obtained for particle
diffusion at short timescales in Couette flow. When the par-
ticle’s initial velocity is only the velocity due to the random
motion, Eq. (45) is also revealed in thermal equilibrium by
taking a second average over upx(0).

From the above analysis of short timescales for Couette
flow in Sec. III B 1 and plane Poiseuille flow, we deduce the
expected result that no matter what the laminar flow veloc-
ity is, the particle travels with its initial velocity at short
timescales and the particle diffusion is the same as in qui-
escent media. Nevertheless, this comparison is valuable for
the validity of our stochastic approach in the limit of short
timescales.

2. Long-timescale limit

For time much longer than the Stokes number St, e−t/St →
0 and e−2t/St → 0 hold. Then the leading terms of the particle
mean displacement, the variance of the particle displacement,
and the MSD are expressed by

〈sp〉 ∼ [
c0 + c2y2

p(0)
]
t + c2D∗t2,

σ 2
sp

∼ 2D∗t

(
c2

2D∗ 2t3

3
+ c2

2y2
p(0)

4t2

3
+ 1

)
,

〈s2
p〉 ∼ {[

c0 + c2y2
p(0)

]
t + c2D∗t2

}2

+ 2D∗t

(
c2

2D∗ 2t3

3
+ c2

2y2
p(0)

4t2

3
+ 1

)
. (52)

For long timescales, the particle travels at a higher
velocity than the flow velocity at the particle’s initial position

c0 + c2y2
p(0). Due to the coupling between random motion

in the transverse direction and the parabolic velocity profile
of the flow, the particle velocity increases incrementally
compared to c0 + c2y2

p(0). Here the increase results in an extra
term (that is, c2D∗t2) in the formula of the mean displacement.
In the case where c2 is negative, the particle velocity is lower
than the flow velocity at the particle’s initial position, and
the particle displacement is decreased compared to the
flow velocity at the particle’s initial position, which is also
demonstrated in Fig. 3. Moreover, the highest power of t of the
variance in 4D∗2c2

2t4/3 emerges from calculating the variance
of the term 2c2D∗ ∫ t

0 W
2

y (s)ds. This also gives us a glimpse,
through the mathematical formulation, of how the combi-
nation of random motion in the transverse direction Wy and
the parabolic velocity function, shown in the power of Wy(t ),

FIG. 3. Increase of the particle mean displacement and variance
in a hyperbolic tangent flow.
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impact the variance of particle displacement in the streamwise
direction.

Hence, for this second-order polynomial velocity case,
the coupling between the random motion in the transverse
direction and the flow velocity gradient drastically changes
not only the variance of particle displacement in the stream-
wise direction but also the particle mean displacement.
Suppose a group of particles is released freely and inde-
pendently into the unbounded plane Poiseuille flow at the
same position. The mean displacement of all the particles
will be [c0 + c2y2

p(0)]t + c2D∗t2 instead of [c0 + c2y2
p(0)]t

and particles will disperse in the streamwise direction with

a standard deviation
√

2D∗t[c2
2D∗ 2t3

3 + c2
2y2

p(0) 4t2

3 + 1], which

is greater than the classical diffusion
√

2D∗t by a factor of√
c2

2D∗ 2t3

3 + c2
2y2

p(0) 4t2

3 + 1.
Here we demonstrate the particle MSD for particles ini-

tially located at y = 0 with St = 10−8 at 20 ◦C in Fig. 2(b). It
shows that the particle approximated MSD at long timescales
in Eq. (52) and the particle approximated MSD at short
timescales in Eq. (51) fit well with the exact MSD obtained
from Eqs. (50). Our results unify these two approximations
and reveal the particle MSD in plane Poiseuille flow for all
time regions.

D. Brownian particle diffusion in a hyperbolic tangent flow

In this section we demonstrate how the stochastic general-
ized method developed here for Brownian particle diffusion
may theoretically be applied to any two-dimensional shear
flow under the limitation of polynomial approximation. We
can approximate the flow velocity by polynomial fitting within
the spatial regions of interest around the particle’s initial
position yp(0). Various techniques, including polynomial re-
gression, expansion, polynomial interpolation, and similar
methodologies can be applied to transform a designated re-
gion of a flow velocity function into a polynomial.

To demonstrate this approach, we consider a two-
dimensional shear flow, analytically described by a hyperbolic
tangent flow with a velocity profile,

v f = 0.5
[
1 + tanh

(y

δ

)]
, (53)

where δ is the shear thickness. Let Brownian particles be re-
leased freely and independently into the flow at yp(0). Choos-
ing ṽ f = v f /0.5, ỹ = y/δ for normalization and dropping all
the tildes for convenience, we obtain the dimensionless veloc-
ity profile as

v f = 1 + tanh(y). (54)

Here we use polynomial regression to model the function
in Eq. (54). We investigate the particle’s initial position at
yp(0) = 2 and diffusion region between y = −1 and y = 5,
shown in Fig. 1(c). The particle’s initial position and the
diffusion region are chosen arbitrarily. Using polynomial re-
gression, we obtain a tenth-degree polynomial modeling the
flow velocity as

v f = c0 + c1y + c2y2 + · · · + c10y10. (55)

The coefficients c0 = 1.002 11, c1 = 1.001 44, c2 =
−0.033 58, c3 = −0.323 63, c4 = 0.084 16, c5 = 0.071 12,
c6 = −0.053 57, c7 = 0.015 68, c8 = −0.002 36, c9 =
0.000 18, and c10 = −0.000 01 are determined. Hence, the
particle displacement in Eq. (27) for this hyperbolic tangent
flow is

spx =
10∑

k=0

∑
α,β,λ,

α+β+λ=k

F (k, α, β, λ)
∫ t

0
(1 − e−(t−s)/St)

× (1 − e−s/St)β W λ
y (s)ds + Stupx(0)(1 − e−t/St)

+
√

2D∗
∫ t

0
(1 − e−(t−s)/St)dWx(s). (56)

The effects of the artificial boundaries and the order to which
the polynomial function is fitted will be discussed in Sec. III E.

Following the same steps taken in the cases of Couette and
plane Poiseuille flows, we calculate the mean and variance
of the particle displacement and then the exact MSD. For
concision, we do not present the equations here due to the
long formulas. Rather, we report the final results for the exact
MSD, the expected short-time approximated MSD, and the
long-time approximated MSD obtained from Eqs. (30) and
(33) in Fig. 2(c). In this case, particles are also initially located
at y = 2 with St = 10−8 at 20 ◦C. As expected, the deduction
about particle MSD at short timescales is also verified in
Fig. 2(c). It shows the coincidence of the exact MSD and the
leading terms of particle diffusion at long timescales.

We denote the flow velocity at the initial position of the par-
ticle by v f (0). In this case, v f (0) = c0 + c1yp(0) + c2y2

p(0) +
· · · + c10y10

p (0). As time proceeds much further than St, the
increase of the particle mean displacement compared to v f (0)t
and the increase of the variance of the particle displace-
ment compared to 2D∗t can also be estimated, as shown
in Fig. 3.

Figure 3 conveys that the particle mean displacement re-
mains on the order of v f (0)t for a relatively long time and
decreases as time proceeds. This implies that, as the diffusion
in the transverse direction progresses, the mean velocity of
the particle is lower than the flow velocity at the particle’s
initial position yp(0) = 2, which approaches the maximum
illustrated in Fig. 1(c). However, the variance of particle dis-
placement stays on the order of 2D∗t at first. Thereafter, it
increases at an intermediate rate and then at a more rapid rate.
For this tenth-power polynomial velocity case, the coupling
between the random motion in the transverse direction and the
flow velocity gradient significantly alters not only the variance
of particle displacement in the streamwise direction but also
the particle mean displacement, which is also observed in the
case of plane Poiseuille flow. Suppose a group of particles is
released freely and independently into the hyperbolic tangent
flow at yp(0) = 2. The evolution of the mean displacement of
all the particles compared to v f (0)t follows the blue curve in
Fig. 3. Particles will disperse in the streamwise direction with
a variance compared to 2D∗t following the red curve in Fig. 3.
This case is exemplified to demonstrate the applicability of
the method proposed in this study to any two-dimensional
parallel flow.
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FIG. 4. (a) Comparison of the particle MSD in Couette flow, plane Poiseuille flow, and hyperbolic tangent flow at all time regions for
St = 10−8 when a particle is initially located at the centerline in Couette flow and plane Poiseuille flow and at yp(0) = 2 in the hyperbolic
tangent flow. (b) A close-up of the particle MSD of the three cases in the dotted rectangular region.

E. Discussion

The exact particle MSD has been derived for Couette flow
of a first-order polynomial velocity profile, plane Poiseuille
flow of a second-order polynomial velocity profile, and tenth-
order polynomial approximation of a hyperbolic tangent flow.
The anomalous diffusion in these three cases implies that
the flow velocity gradient in the transverse direction plays a
significant role in the diffusion of Brownian particles in the
streamwise direction.

The particle MSD in the streamwise direction calculated
above includes advection effects [expressed as v f (0)t], parti-
cle pure diffusion due to the random motion in the streamwise
direction (expressed as 2D∗t in the variance of particle
displacement), and the coupling between the flow velocity
gradient and the particle diffusion in the transverse direction
(expressed in both the mean and variance of the particle dis-
placement). For clarity, we subtract the advection effect due to
fluid motion from the particle displacement. The exact particle
MSD, caused by pure diffusion and the coupling between flow
velocity gradient and particle diffusion in the transverse direc-
tion, is presented in Fig. 4 for the Couette, plane Poiseuille,
and hyperbolic tangent flows. The exact MSD includes not
only the dominant terms but also insignificant terms, as shown
in Eqs. (43) and (50). In Fig. 4 the exponents of the exact MSD
depending on t are truncated to the third digit to compare
with the leading term of the MSD. Surely, more digits can
be obtained for more accurate results.

From Fig. 4 we observe that for all three cases, the particle
MSD is a function of t1.999 at short timescales t � St, which
follows the short-time analysis for which u2

px(0)t2 dominates.
Starting from t ∼ O(St), the particle MSD changes into a
function of t1.000 at St � t � O(1), and consequently par-
ticle pure diffusion dominates in the streamwise direction.
This can also be confirmed by the variance in Eqs. (46) and
(52) where σ 2

sp
∼ 2D∗t at St � t � O(1) for cn ∼ O(1) and

yp(0) ∼ O(1). When the normalized time t is much larger than
O(1), the coupling between the flow velocity gradient and the

particle diffusion in the transverse direction starts to affect
the results. For the cases of Couette flow (plane Poiseuille
flow), the particle MSD is a function of t2.999 (t3.999), which
may be confirmed by the variance in Eq. (46) [Eq. (52)] for
which the t3 term (t4 term) dominates in the variance when
t � O(1) � St. As for the polynomial approximation of the
hyperbolic tangent flow, the temporal evolution of the particle
MSD is first a function of t3.008, which closely resembles
the linear scenario because a linear approximation can be
employed around the particle initial point within a limited
diffusion time frame. Then the MSD shifts into t11.941 since
higher-order polynomial terms are dominant far away from
the particle’s initial position.

In the previous analysis, we considered the parallel shear
flow as unbounded in the transverse direction. However, re-
alistically, boundaries may exist in the transverse direction
of a flow. Hence, an observation time interval for particle
diffusion may be defined from t = 0 when particles are ini-
tially introduced at their initial position and the time at which
the particles reach the boundaries in the transverse direction.
Since particles exhibit simple diffusion in the transverse di-
rection, the time interval Tv , at which the particle reaches
the boundaries in the streamwise direction, can be roughly
estimated by

Tv = L2
BP

2D∗ , (57)

where LBP is the minimum distance between the particle and
the boundaries, which may be expressed as

LBP = min[|yB1 − yp(0)|, |yB2 − yp(0)|], (58)

where yB1 and yB2 are dimensionless coordinates of the flow
boundaries. For example, when a particle is initially located
at yp(0) = 0.7 in the dimensionless Couette flow, the obser-
vation time of particle diffusion should be much less than
Tv = 0.32/2D∗. When particles are initially located in the
middle between the two boundaries, the observation time is
maximum. For Couette flow, the maximum observation time
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FIG. 5. Velocity gradient effects on the variance of particle dis-
placement in plane Poiseuille flow for St = 10−8.

is 0.52/2D∗ since the dimensionless coordinates of the flow
boundaries are yB1 = 0 and yB2 = 1. For plane Poiseuille
(hyperbolic tangent) flows, the maximum observation time
is 1/2D∗ (32/2D∗) since the dimensionless coordinate of
the flow boundaries are yB1 = −1 (yB1 = −1) and yB2 = 1
(yB2 = 5). Figure 4 presents the change of the particle MSD
in the streamwise direction in the three cases studied and
demonstrates how the estimated limit of the corresponding
observation time correlates to the shift in MSD.

The differences between the three cases studied stem from
the magnitude and gradient of the shear flow velocity. The
magnitude of the flow velocity determines the particle mean
displacement, which is already subtracted here. However, the
velocity gradient alters the particle diffusion (shown in the
variance of particle displacement) through the random motion
in the transverse direction. Figure 4 indicates that, at the
third stage, the particle MSD behaves similarly in Couette
flow (t2.999) and the polynomial approximation of hyperbolic
tangent flow (t3.008). Nevertheless, the MSD of the Couette
flow transitions to the third stage earlier and subsequently
exceeds that of the polynomial approximation of the hyper-
bolic tangent flow, suggesting that the flow velocity around the
particle’s initial position exhibits linearity in both the Couette
flow and the approximation of a hyperbolic tangent flow with
distinct linear coefficients. However, the flow velocity gradi-
ent at the centerline of the plane Poiseuille flow is different
from that of the Couette flow, resulting in the distinguishable
MSD as shown in Fig. 4.

Moreover, in Eq. (46) we observe the dependence of the
variance of particle displacement on c1, which is the coeffi-
cient of the first and the only power of y in the velocity profile.
However, in the case of plane Poiseuille flow, the variance
in Eq. (52) depends not only on c2, the coefficient of the
second and the only power of y in the velocity profile, but
also on the particle initial position yp(0). The reason is that
the velocity gradient is constant everywhere in Couette flow
but varies along the transverse coordinate in plane Poiseuille
flow. Figure 5 illustrates the effects of the velocity gradient
on particle diffusion when particles are initially located at

FIG. 6. Effects of the number of polynomial expansion terms in
hyperbolic tangent flow with yp(0) = 2 and St = 10−8.

a position with different velocity gradients. Since the flow
profile is symmetric about the centerline, in Fig. 5 we only
show the initial position effect from the upper side. In plane
Poiseuille flow, the further away from the centerline, the
higher the velocity gradient. Figure 5 shows that the higher
the velocity gradient is at the particle’s initial position, the
higher the diffusion (MSD) particles exhibit and the earlier
the particle MSD shifts to a function of high-order temporal
evolution.

As for the number of polynomial expansion terms of a flow,
clearly, the more terms taken, the more accurately the particle
MSD will be obtained. However, calculating the particle MSD
including more terms will be demanding. Nevertheless, for
the test case of a hyperbolic tangent flow, Fig. 4 shows that
within the valid observation time, the first power of y in
Eq. (55) dominates first, and then higher-order terms. Fig-
ure 6 illustrates the convergence of the seventh- to tenth-order
polynomial approximations of the hyperbolic tangent flow as
the polynomial order increases. For this case, we deduce that
other higher-order terms may affect the particle mean dis-
placement but have little influence on the variance of particle
displacement within the maximum observation time. For any
polynomial approximation of a flow, one may conduct the
same analysis to determine how many terms should be taken.

The figures above suggest timescale differences as large as
ten orders of magnitude. It is instructive to verify the appli-
cability of our solution and the importance of the anomalous
diffusion by a dimensional analysis for a specific test case:
Let us assume a particle relaxation time of τ = 10−8 s and a
shear flow of maximum velocity of Umax = 2 m/s and shear
thickness of R0 = 0.05 m. For this example, we start to ob-
serve the anomalous diffusion at timescales as small as 10−2 s.
Markedly, this is roughly the shear flow timescale represented
by R0/Umax.

IV. CONCLUSION

In this study, we mathematically derived a formulation for
Brownian particle diffusion in two-dimensional parallel shear
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flows that may be described by a polynomial velocity profile.
Based on the Langevin equation, stochastic calculus was em-
ployed to resolve the generalized formulation, assuming the
product of the random force and the time interval follows the
increment of a Wiener process during this time interval.

Using this approach, we demonstrated that the particle
MSD is the same as in a stationary medium in the limit of short
timescales, as expected. For long timescales relative to St in
general polynomial laminar flows, we found that the order
of t in particle diffusion is n + 2, where n is the polynomial
order of the transverse coordinate in the flow velocity profile.
Our method was validated for two cases, i.e., Couette flow
of a linear velocity profile and plane Poiseuille flow of a
parabolic velocity profile, converging to the results previously
obtained using differential calculus. This stochastic solution
method can also apply to any parallel shear flow, of which the
velocity profile may be approximated by a polynomial. As an
example, a tenth-order polynomial approximation for a hyper-
bolic tangent shear flow in a specific region was discussed and
analyzed.

The method presented here also bridges the particle MSD
at short and long timescales and resolves the exact parti-
cle MSD for all time regions, which may contribute to a
more accurate prediction of particle diffusion with higher
spatiotemporal resolution. The three cases studied showed
significant effects of the shear flow velocity profile on particle
diffusion in the streamwise direction. Moreover, three or four

distinct regions were revealed for the particle MSD along the
timeline, demonstrating different physical mechanisms dom-
inating the particle diffusion at different observation times.
Thus, our study suggests a generalized formulation for the
diffusion of Brownian particles that may be applicable to any
two-dimensional parallel laminar flows at all timescales.

The applicability of this theoretical formulation may be
found in environmental, engineering, and scientific applica-
tions. Examples of such applications may be found in open
systems, such as atmospheric aerosol dispersion, which may
play a significant role in cloud nucleation, and in closed sys-
tems where submicron particles may be subjected to shear
flows. High shear and anomalous diffusion are expected to
affect soot formation and dispersion in combustion chambers,
jet turbines, and propulsion applications. In such a highly
sensitive, time-dependent processes, accurately simulating the
diffusion may be essential to accurately predicting the cre-
ation of submicron-sized soot particles. The shear flows of
such realistic applications would be represented by a complex
velocity profile, for which it will be instructive to apply the
model proposed in this study.
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APPENDIX: INTEGRALS OF THE POWERS OF THE WIENER PROCESS WITH RESPECT TO TIME

For the time integral of the powers of the Wiener process, by the stochastic Fubini theorem and Itô’s lemma, there are

∫ t

0
Wy(u)du =

∫ t

0

∫ u

0
dWy(s)du =

∫ t

0

∫ t

s
du dWy(s) =

∫ t

0
(t − s)dWy(s),

∫ t

0
W 2

y (u)du =
∫ t

0

∫ u

0
dW 2

y (s)du =
∫ t

0

∫ u

0
2Wy(s)dWy(s)du +

∫ t

0

∫ u

0
ds du

=
∫ t

0

∫ t

s
2Wy(s)du dWy(s) + t2

2
=

∫ t

0
2(t − s)Wy(s)dWy(s) + t2

2
,

∫ t

0
W 3

y (u)du =
∫ t

0

∫ u

0
dW 3

y (s)du =
∫ t

0

∫ u

0
3W 2

y (s)dWy(s)du +
∫ t

0

∫ u

0
3Wy(s)ds du

=
∫ t

0

∫ t

s
3W 2

y (s)du dWy(s) +
∫ t

0

∫ t

s
3Wy(s)du ds =

∫ t

0
3(t − s)W 2

y (s)dWy(s) +
∫ t

0
3(t − s)Wy(s)ds

=
∫ t

0
3(t − s)W 2

y (s)dWy(s) +
∫ t

0
3(t − s)

∫ s

0
dWy(u)ds =

∫ t

0
3(t − s)W 2

y (s)dWy(s)

+
∫ t

0

∫ t

s
3(t − s)ds dWy(u) =

∫ t

0
3(t − s)W 2

y (s)dWy(s) +
∫ t

0

3

2
(t − s)2dWy(s),

∫ t

0
W 4

y (u)du =
∫ t

0

∫ u

0
dW 4

y (s)du =
∫ t

0

∫ u

0
4W 3

y (s)dWy(s)du +
∫ t

0

∫ u

0
6W 2

y (s)ds du

=
∫ t

0
4(t − s)W 3

y (s)dWy(s) +
∫ t

0
6(t − s)W 2

y (s)ds

=
∫ t

0
4(t − s)W 3

y (s)dWy(s) +
∫ t

0

∫ s

0
12(t − s)Wy(u)dWy(u)ds +

∫ t

0

∫ s

0
6(t − s)du ds
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=
∫ t

0
4(t − s)W 3

y (s)dWy(s) +
∫ t

0

∫ t

u
12(t − s)Wy(u)ds dWy(u) + t3

=
∫ t

0
4(t − s)W 3

y (s)dWy(s) +
∫ t

0
6(t − s)2Wy(s)dWy(s) + t3,

etc. When n is odd,∫ t

0
W n

y (u)du =
∫ t

0

∫ u

0
dW n

y (s)du =
(n+1)/2∑

l=1

n!

2l−1(n − 2l + 1)!

∫ t

0

(t − s)l

l!
W n−(2l−1)

y (s)dWy(s).

When n is even,∫ t

0
W n

y (u)du =
∫ t

0

∫ u

0
dW n

y (s)du =
n/2∑
l=1

n!

2l−1(n − 2l + 1)!

∫ t

0

(t − s)l

l!
W n−(2l−1)

y (s)dWy(s) + (n − 1)!!
2

n + 2
t (n+2)/2.
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