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Critical exponents of correlated percolation of sites not visited by a random walk
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We consider a d-dimensional correlated percolation problem of sites not visited by a random walk on a
hypercubic lattice Ld for d = 3, 4, and 5. The length of the random walk is N = uLd . Close to the critical
value u = uc, many geometrical properties of the problem can be described as powers (critical exponents) of
uc − u, such as β, which controls the strength of the spanning cluster, and γ , which characterizes the behavior of
the mean finite cluster size S. We show that at uc the ratio between the mean mass of the largest cluster M1 and
the mass of the second largest cluster M2 is independent of L and can be used to find uc. We calculate β from the
L dependence of M1 and M2, and γ from the finite size scaling of S. The resulting exponent β remains close to
1 in all dimensions. The exponent γ decreases from ≈3.9 in d = 3 to ≈1.9 in d = 4 and ≈1.3 in d = 5 towards
γ = 1 expected in d = 6, which is close to γ = 4/(d − 2).
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I. INTRODUCTION

Percolation theory [1–3] provides a theoretical framework
for several classes of theories describing generation of long-
range connectivity from contacts between nearby objects. On
regular lattices, these objects are sites or bonds. A group of
connected neighboring sites or bonds forms a cluster. In this
paper, we consider site percolation on hypercubic lattices.
Such systems are characterized by a single parameter, such as
the probability p of an occupied site. A cluster is spanning if it
contains an uninterrupted path between opposing boundaries
in a specific direction. In finite systems of linear size L, the
probability �(p, L) of the existence of such a path gradually
increases with increasing p. For an infinite system, �(p,∞)
becomes a step-function �(p − pc) jumping from 0 to 1 at a
particular critical concentration pc. The mean spatial extent
(linear size) of finite clusters is called the correlation length ξ .
Close to pc it diverges as

ξ ∼ |p − pc|−ν . (1)

One of the simplest percolation models is Bernoulli site
percolation on a d-dimensional lattice, where each lattice site
is independently occupied with probability p. The exponent
ν = νB of this problem decreases with increasing d reaching
νB = 1

2 for d � dc = 6, i.e., at and above the upper critical
dimension dc [4]. Besides ν, the percolation problem is char-
acterized by a large number of additional critical exponents,
such as γ describing the divergence of the mean finite cluster
size S (an accurate definition will be provided in the Sec. III)
in the vicinity of pc,

S ∼ |p − pc|−γ , (2)

*Contact author: razhalifa@gmail.com

or the fraction of sites P belonging to the infinite cluster for
p > pc, also called the strength of the infinite cluster:

P ∼ (p − pc)β. (3)

For Bernoulli percolation, the values of these and other
exponents are known exactly for d = 2 and d � 6, and have
accurate numerical estimates for d = 3, 4, and 5. There are
numerous equalities relating various exponents describing the
behavior close to the threshold, such as the hyperscaling rela-
tion

dν = 2β + γ (4)

and others [1]. As a result, the values of many exponents can
be deduced from only two exponents. Nevertheless, due to
the limited accuracy of the numerical studies, additional ex-
ponents are measured and the values of the results are verified
using the known relations.

In Sec. II, we define a correlated percolation model and
briefly overview its properties as well as some known results.
In Sec. III, we define the main quantities and briefly describe
the numerical methods used in this paper. Section IV describes
the properties of the largest clusters and their use to verify
the position of the percolation threshold. Critical exponent β

characterizing the strength of the infinite cluster is found from
the L dependence of the first and the second largest clusters
in Sec. V, while the exponent controlling the behavior of the
mean cluster size γ is found in Sec. VI. Summary Sec. VII
briefly discusses the results.

II. LONG-RANGE MODEL

Minor modifications of the Bernoulli percolation model,
such as the introduction of short-range correlations between
sites, consideration of bond percolation, or even power-law
correlations ∼1/rb between present sites at distance r with
large power b do not change the critical behavior of the system
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TABLE I. Some results of previous studies: First two columns
show the space dimension d and the value of ν predicted by Weinrib
[5], as applied to our problem [13] in Eq. (6), respectively. The 3rd
and the 4th columns provide numerical estimates of ν and uc from
[13], while the last column gives the maximal linear size of a lattice
used in that study.

d νth νnum uc Lmax

3 2 2.04 ± 0.08 3.15 ± 0.01 512
4 1 1.0 ± 0.1 2.99 ± 0.01 64
5 2

3 0.65 ± 0.03 3.025 ± 0.008 32

6 1
2 ∼0.6 3.10 ± 0.05 16

[5]. However, if b < 2/νB, then the correlations are relevant,
and νB is replaced [5] by

νlong range = 2/b. (5)

There is a variety of studies of correlated percolation mod-
els [6–12]. In this paper, we consider a problem where an
initially full d-dimensional hypercubic lattice of linear size
L (in lattice constants) and volume Ld has its sites removed
by an N -step random walk (RW) on the lattice. The length of
the RW that starts at a random position is proportional to the
volume of the lattice, namely, N = uLd . Periodic boundary
conditions are imposed on the walk on a finite lattice, i.e., the
walker exiting through one boundary of the lattice reemerges
on the opposite boundary. The parameter u controls the length
of the RW and the fraction p of unvisited sites. In repeated
realizations of this process at fixed u, the average p is a
monotonically decreasing function of u. For large L (and d �
3), there is a simple relation between these quantities: p =
exp(−Ad u), where Ad are known constants (see Ref. [13] and
references therein). An experimental realization of this model
involves a gel of crosslinked polymers with the random walker
represented by an enzyme that breaks the crosslinks between
polymers that it encounters [14,15], eventually breaking the
spanning cluster and turning the solid gel into a liquid. The
object of our study is the sites not visited by the RW that
represent the surviving crosslinks.

The variable u naturally replaces p in this problem, and
pc is replaced by the critical value uc. (Keep in mind that
the system percolates, i.e., has spanning clusters of unvisited
sites below uc.) In a previous study, it has been found that on
hypercubic lattice for 3 � d � 6 the threshold values uc ≈ 3
[13]. (See Table I.) This problem has been previously studied
by Banavar et al. in d = 2 and 3 [16], while Abete et al.
considered the critical behavior near the percolation threshold
in d = 3 [17]. More recently, Kantor and Kardar studied the
percolation properties of the problem for 2 � d � 6 [13] and
showed that the problem has no percolation threshold in d = 2
(for more details, see Ref. [18]). Recently, we received a work
by Chalhoub et al. [19] with a detailed numerical study of the
critical properties of this problem in large systems in d = 3
and analytical predictions regarding this problem and several
similar problems in general d . We will compare their results
with ours wherever it is appropriate.

Figure 1 depicts a typical configuration of the percolation
of sites (blue cubes) not visited by a RW in d = 3. In this

FIG. 1. Three-dimensional percolation in a small system of lin-
ear size L = 16. The sample was created by a random walk of
N = uL3 steps, where u = 4. The blue cubes show the unvisited
sites, which form several clusters. The visited sites form a single
cluster.

realization, the number of steps of the RW exceeds four times
the number of available lattice positions. Nevertheless, a sig-
nificant fraction of the sites remains unvisited, since the RW
frequently revisits previously visited sites. All visited sites
form a single cluster since they have been created by a single
RW. The unvisited sites form many clusters of various sizes.
The picture is quite different from the usual geometries of
Bernoulli percolation. The RW has a fractal dimension d̃ f =
2. On an infinite lattice, an N -step walk explores distance
r ∼ N 1/d̃ f = N 1/2. Within that distance, the density of sites
visited by the RW is N /rd ∼ 1/rd−2. On a finite lattice, a
RW that exits through one boundary and re-enters through the
opposite boundary creates almost uncorrelated strands, and
the sites on different strands are no longer power-law corre-
lated. A RW of length uLd creates approximately uLd−2 such
strands that contribute to an uncorrelated background density
of sites. However, at distances r smaller than the lattice size,
there remains a residual correlation of sites that happen to be
on the same strand of the RW. Consequently, the cumulant
of the correlation (from which the overall background density
has been subtracted) still has ∼1/rd−2 correlation like a RW
on an infinite lattice. Consider a random variable v(�x) which
is 1 if the site at position �x is unvisited by the RW, and zero
otherwise. It is complementary to the variable representing
the visited site (their sum is 1) and therefore it has the same
cumulant: 〈v(�x)v(�y)〉c ∼ 1/|�x − �y|d−2 [13]. Thus, the correla-
tion power is b = d − 2, and the relation (5) becomes

ν = 2/(d − 2), for 3 � d � 6. (6)

We note that, recently, Feshanjerdi et al. [20] studied a three-
dimensional carbon copy version of our problem, where they
considered percolation of sites visited by a (modified) RW.
Their model is expected to have similar critical properties.
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Kantor and Kardar’s study of the problem in 3 � d � 6
[13] focused on the behavior of the percolation probabil-
ity �(u, L) as a function of RW parameter u and system
size L. As L increases, �(u, L) approaches the step function
�(uc − u). Thus, by examining the u dependence of � for a
sequence of L values, it was possible to estimate the transition
point uc, while by studying L-dependence of the width of the
transition between percolating (� ≈ 1) and nonpercolating
(� ≈ 0) states it was possible to determine the exponent ν.
Table I compares numerically calculated values of ν [13]
with the predictions of Weinrib [5] in Eq. (6) and provides
the calculated values of the thresholds. (In d = 3, an earlier
estimate of ν on smaller systems (Lmax = 60) was 1.8 ± 0.1
[17], i.e., it slightly deviated from the predicted value of 2.)
The conclusion of Ref. [13] was that the numerical results
validated the theoretical prediction of Weinrib [5] in d = 3,
4, and 5, and we will use the theoretical values of ν in the
current paper. (Dimension d = 6 is expected to be the upper
critical dimension where ν = 1

2 coincides with νB of Bernoulli
percolation. The system sizes in Ref. [13] were too small to
reliably determine the value of the exponent.)

III. CLUSTERS AND FINITE-SIZE SCALING

In a system of N sites with Ns clusters containing s sites, we
define cluster density ns ≡ Ns/N . The total number of occu-
pied sites on a lattice M = ∑

s sNs, and therefore the fraction
of occupied sites, is p = M/N = ∑

s sns. It is natural to define
ns and p as averages over an ensemble of systems, such as
ns ≡ 〈Ns〉/N , where 〈·〉 defines defines ensemble average of
“·”. For simplicity of the notation, we will omit the 〈〉 signs
where their presence is self-evident from the context. We also
consider the thermodynamic limit of infinite lattices N → ∞,
where all ns and p approach a finite limit. In an infinite lat-
tice above the percolation threshold pc, an infinite cluster is
present and occupies some fraction P > 0 of the sites. Since
summation over all integer numbers s does not include an infi-
nite cluster, the

∑
s sns = p − P. (Below the threshold, P = 0

and the formula reduces to the expression that we had before.)
In finite systems, the distinction between the would-be-infinite
cluster and other clusters blurs and the transition itself is
smeared. Therefore, it is customary [1] in numerical estimates
of Ns on finite lattices to exclude the largest cluster of mass
smax ≡ M1 of any random realization of the system: For very
large systems above pc this is equivalent to the exclusion of
the infinite cluster, while below pc it slightly decreases the
finite cluster size, but this effect decays with increasing L.
Values of M1 are used to estimate the fraction of the infinite
cluster P = M1/N . This procedure produces a nonvanishing
effective P below the threshold, but its value decays to zero as
the system size increases.

In infinite systems, the second moment χ ≡ ∑
s s2ns char-

acterizes the size (mass) of the finite cluster, since the sum
excludes the infinite cluster, if such is present. In fact, the
mean size S of a cluster to which a given occupied site belongs
is given by S = χ/(p − P) [1]. [In an infinite system, both the
mean cluster size S and the second moment χ diverge near
pc as shown in Eq. (2), and both can be used for numerical
estimates of γ .] The expression for χ can be rewritten as
χ = ∑

s s2Ns/N = ∑
α s2

α/N , where the last sum simply rep-

resents a sum of squares of sizes of each distinct cluster α in
the system. (In the finite systems in each configuration in our
calculations, we exclude the largest cluster from that sum.)

For the problem of the sites unvisited by a RW, the system
percolates below uc and in all the expressions describing the
behavior of S and P the arguments p − pc should be replaced
by uc − u, if the sign of the expression matters.

The second moment χ or the mean cluster size S are the
geometrical analogs of the susceptibility in magnetic sys-
tems. In an infinite system near the threshold, Eq. (2) can
be rewritten as S ∼ |u − uc|−γ and, similarly, Eq. (3) be-
comes P ∼ (uc − u)β . The correlation length in Eq. (1) can
be rewritten as ξ ∼ |u − uc|−ν . In a system of linear size L,
the correlation length is naturally truncated by the system size
and, consequently, S stops increasing when the expression for
diverging ξ exceeds L. Similarly, P, which was supposed to
vanish at uc, abandons its power-law decay when ξ ∼ L. In
general, a critical quantity X that was supposed to be singular
as |u − uc|−x, with either positive or negative exponent x be-
comes finite when ξ > L. It is also possible that the apparent
position of the singularity (such as the position of the peak of
S) may slightly differ from uc and can be treated as an effective
percolation threshold u∗

c (L). (Its actual value may depend on
the quantity which is being considered.) u∗

c (L) keeps moving
towards uc with increasing L. It is expected that

|uc − u∗
c (L)| ∼ L−1/ν . (7)

Finite-size scaling theory was originally developed for ther-
modynamic systems [21] and later adapted to percolation
systems [1]. Since the behavior of the system is controlled by
ξ/L ∼ |u − uc|−ν/L, it is convenient to describe the system by
using parameter v = (u − uc)L1/ν . In terms of v, the position
of the peak of S becomes independent of L. When v is small,
i.e., |v| < V , where V is some model-dependent number of
order unity, the behavior of the system is controlled by the
finite size L, while for |v| � V we expect to recover infinite-
system behavior. In general, the behavior of a critical quantity
X can be described by

X = Lx/νgX [L1/ν (u − uc)] = Lx/νgX (v), (8)

where gX (v) is a scaling function. Thus, by drawing XL−x/ν

vs v with properly chosen parameters uc, ν and x it should be
possible to collapse all the results into a single curve, which
is the function gX (v), as long as both L and ξ are significantly
larger than the lattice constant. To recover the L = ∞ behav-
ior X ∼ |u − uc|−x, we must have gX (v) ∼ |v|−x for |v| � V .
For small v the scaling function approaches some constant
gX (0) leading to u-independent result X ∼ Lx/ν .

The numerical procedure used in this paper is rather
straightforward: Initially, all sites on a hypercubic lattice Ld

are present. The system sizes in d = 3 are L = 16, 32, 64,...,
512. For d = 4, they are 16, 32, 64, and 128, while in d = 5
the Ls are increased by approximately factor

√
2: 16, 23, 32,

45. These Ls are slightly larger than in the previous study
(see Table I). A RW starts at a randomly selected site and
for a given u performs uLd steps removing the sites that
have been visited. At each realization, the Hoshen-Kopelman
algorithm [22] is used to identify all clusters, and from the
complete list of clusters all necessary quantities characterizing
that configuration can be calculated. For a fixed u and L, this
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FIG. 2. Semilogarithmic plot of the mean mass M1 of the largest
cluster (solid lines) and the mean mass M2 of the second largest
cluster (dashed lines) as a function of RW parameter u, in d = 4
for (bottom to top) L = 16 (blue circles), 32 (yellow squares), 64
(green diamonds), and 128 (red triangles). Here, as in other graphs,
each point represents an average over 1000 configurations. Relative
statistical errors in M1 and M2 are �4%, which on logarithmic scale
results in error bars 
 log10 M2 � 0.02 which are smaller than the
symbol sizes. Horizontal separation between data points 
u = 0.05.
Qualitatively similar behavior was observed in d = 3 and d = 5.

RW procedure is repeated 1000 times and various quantities
are averaged over the realizations. For each L, a sequence of us
is studied to obtain u dependence of such averages at typical
steps 
u = 0.05, except for specific situations mentioned in
the text.

IV. TWO LARGEST CLUSTERS

At any d , on a finite lattice of linear size L the typical
mass (number of sites) M1 of the largest cluster has a very
different u dependence than the mass M2 of the second largest
cluster: In the percolating region (u < uc), M1 is essentially
the mass of the would-be-infinite cluster PLd . For a very small
u, we have M1 ≈ Ld and it decreases with increasing u. For
u > uc in the nonpercolating region, M1 is just the largest of
the finite clusters that are present and it keeps decreasing with
increasing u. So, overall, M1 is a monotonically decreasing
function of u. For a very small u, almost all space is occupied
by the massive spanning cluster, and M2 ≈ 1. As u increases
(still in the percolating region), so do the sizes of finite clusters
and M2 increases. Above uc, the typical cluster sizes decrease
with increasing u and so does the mass M2. In that region, it
has a similar behavior to M1 but, obviously, is smaller than
M1. We expect M2 to have a maximum somewhere around
uc. Figure 2 shows M1 and M2 for several system sizes L in
d = 4. (Similar behavior is found at other ds.) Indeed, M1 is a
monotonically decreasing function, while M2 has a maximum
at some u∗

c (L), which approaches uc with increasing L as in
Eq. (7).

At the percolation threshold, the largest cluster has frac-
tal structure, and its mass increases with the system size

as M1 ∼ Ld f [1], where d f is the fractal dimension of the
infinite cluster. However, it has been known for quite some
time [23–25] that for Bernoulli percolation at the threshold,
the mass of the second largest cluster M2 (as well as third
and higher rank clusters) also scales with the same power,
although it has a smaller prefactor. Therefore, one can expect
that the ratios of two such cluster masses, represented either
by the ensemble average 〈M1/M2〉 or by 〈M1〉/〈M2〉 will scale
with the zeroth power of L. So, this ratio can be treated using
the same finite-size arguments that were used for X and lead to
scaling form (8), with x = 0 and a different scaling function
[26] g0. While this reasoning originally applied to Bernoulli
percolation, it originates from the argument that at a critical
point in the absence of length scale, both the largest and the
second largest clusters share the same behavior. Therefore,
this property can be expected (subject to verification) in our
correlated percolation problem. In such a case, we expect

〈M1/M2〉 or 〈M1〉/〈M2〉 = g0[L1/ν (u − uc)] = g0(v). (9)

At u = uc this equation means that the ratio of masses of
the first and the second largest clusters at the critical point
should be g0(0), i.e., independent of L. The presence of such
an intersection at uc both confirms that the first and the second
largest clusters have the same fractal dimension, and enables
an alternative approach for an accurate determination of the
percolation threshold. This method has been successfully used
by da Silva et al. [27] to locate pc in Bernoulli percolation
problem.

The study in Ref. [13] of correlated percolation extracted
the value of uc by examining the percolation probability
�(u, L) as a function of u for several values of L, and observ-
ing the approach of that function to the infinite-L limit of step
function �(uc − u). With increasing u, the function �(u, L)
monotonically decreases from a percolating small-u regime
to a nonpercolating large-u region. The effective transition
point ũ was defined as a point where �(ũ, L) = c, with an
arbitrary constant 0 < c < 1. Clearly, the value of ũ depends
both on L and c. Since in the L → ∞ limit the � becomes
a step function, in that limit ũ → uc independently of the
choice of c. Indeed, in Ref. [13] it was shown that various
choices of c lead to similar L → ∞ extrapolations. However,
all ũ values exhibited significant L dependence, and therefore
it is beneficial to use an alternative method to confirm that
threshold values appearing in Table I. We apply the method
of da Silva et al. [27] to our problem. Figure 3 depicts the
u dependence of M1/M2 for various values of L in d = 4.
We note that the intersection points between various lines are
concentrated between 2.99 and 3.00, even for moderate Ls,
similar to uc = 2.99 ± 0.01 that has been obtained by strong
extrapolations in Ref. [13]. (We will use value of uc = 2.995
for the fits in d = 4 in the remainder of the paper.)

We performed similar studies of M1/M2 in d = 3 and
d = 5 and confirmed the known values of uc listed in
Table I. (Fig. 1 in Ref. [19] uses an analogous method of line-
intersection for different types of quantities to determine uc

in d = 3 and concludes that our original value uc = 3.15 was
correct.) We will use the uc values from Table I (for d = 3 and
5) in the remainder of this paper. While the results obtained
in the following sections require the knowledge of uc, they
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FIG. 3. Semilogarithmic plot of the ratios of mean mass M1 of
the largest cluster and the mean mass M2 of the second largest cluster
as a function of RW length parameter u in d = 4 for system sizes
(left to right on the top parts of the graphs) L = 16 (blue circles), 32
(yellow squares), 64 (green diamonds), and 128 (red triangles). This
figure uses the same data as Fig. 2 and shares the same technical
details. The intersection points of subsequent-L lines are between
2.99 and 3.00 and provide an estimate for uc (Smaller 
us were used
close to uc but the extra data points are not shown here.) Qualitatively
similar behavior was observed in d = 3 and d = 5.

are rather insensitive to its exact value and even changes in
the values of uc as large as 0.01 or 0.02 do not modify the
estimates of the critical exponents.

V. EXPONENT β

Critical exponent β is defined by the behavior of the infinite
cluster P near the percolation threshold, i.e., in an infinite sys-
tem P ∼ (uc − u)β for u < uc. One can directly plot measured
P vs uc − u on a logarithmic plot for a sequence of increasing
Ls, and determine the exponent β. For a finite L, the power law
is truncated when ξ reaches L, and it is possible to treat that
truncation more systematically by considering a finite-size
scaling form for P which is analogous to Eq. (8),

P = L−β/νgP[L1/ν (u − uc)] = L−β/νgP(v), (10)

where gP(v) is a scaling function, which for large negative
v should have the behavior gP(v) ∼ (−v)β to recover the
desired L-independent behavior of P, while for small v we
obtain u-independent result P ∼ L−β/ν . Since P is small close
to uc, it increases the relative statistical errors and reduces the
accuracy of the numerical calculations near that point. On the
other hand, one can concentrate on a fixed v, such as v = 0,
and explore the relation P = L−β/νgP(0). Since P = M1/Ld ,
we may use the relation M1 ∼ Ld f , with the fractal dimension

d f = d − β/ν. (11)

Since both M1 and M2 have the same fractal dimension at
uc, by plotting both M1(v = 0) and M2(v = 0) as a functions
of L on a logarithmic scale, one can determine d f and, conse-
quently, the exponent β. The solid lines in Fig. 4 depict on a
logarithmic scale the dependence of M2 at uc on system size

FIG. 4. Logarithmic plots of the mean mass M1 of the largest
cluster measured at uc (v = 0) (dotted lines) and of the mean mass
M2 of the second largest cluster measured at uc (v = 0) (solid lines)
or at the maximum of the curve (v = vmax) (dashed lines) as a
function of L for (bottom to top triplets of lines) d = 3 (blue circles),
d = 4 (red squares), and d = 5 (green triangles). Each data point
depicts an ensemble average and the error bars, as explained in Fig. 2,
are smaller than the symbol sizes. Slopes of the curves are the fractal
dimensions df of the clusters.

L in the complete range of Ls used for each d = 3, 4, and 5.
From the slopes of the lines (d f ) and from Eq. (11), we deduce
β = 0.98 ± 0.04 in d = 3, β = 1.00 ± 0.06 in d = 4, and
β = 1.09 ± 0.05 in d = 5. Similarly, the dotted lines depict
the values of M1 from which we deduce β = 0.99 ± 0.02
in d = 3, β = 0.98 ± 0.10 in d = 4, and β = 1.11 ± 0.07 in
d = 5. The stated errors combine small statistical errors of
individual M1 or M2 data points (relative errors smaller than
4%) with the scatter of the points around the straight line.
We could not determine a systematic L dependence of the
slope, which might indicate that we are measuring an effective
exponent which changes with increasing L. If such a change
was present, it was masked by the statistical fluctuations of the
slope.

The result for d = 3 should be compared with the result
β = 1.0 ± 0.1 of Abete et al. [17] obtained on smaller sys-
tems (Lmax = 60). (In that calculation, a slightly smaller value
of ν was used.) Our result in d = 3 is also consistent (within
quoted errors) with the result obtained in Ref. [19] for larger
systems (Lmax = 600). A similar result was also obtained by
Feshanjerdi et al. [20] for a problem of visited sites; they
conjectured that the exact value of β in d = 3 should be the
integer value 1. Table II displays previously calculated values
of β and other exponents in d = 3 by several authors. Note
that our β values in d = 3 are consistent with the previously
known values.

As an additional check of the presence or absence of sys-
tematic errors, we measured M2 at its maximal value. We
verified that, within statistical uncertainty, the maximal values
of M2 for all L appear at the same value of vmax. This is correct
for each d , although the actual definition of v depends on d
since it involves specific uc and ν. Thus, the measurement
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TABLE II. Numerical values of exponents from previous studies
of percolation of sites or bonds not visited by a RW in d = 3. The
fifth column provides the source reference, while the fourth column
gives the maximal linear size of a lattice used in that study. (This
table excludes the results appearing on the first line of Table I.)
Asterisks indicate results for a (presumably equivalent) model of
sites visited by a modified RW. The values of β or γ are frequently
calculated as the ratios β/νnum or γ /νnum, respectively, and have been
calculated from the results appearing in the references. Some authors
used several methods to calculate the same exponents, and the reader
should consult the original references.

νnum β γ Lmax Ref

1.8 ± 0.1 1.0 ± 0.1 3.5 ± 0.2 60 [17]
1.99 ± 0.01∗ 0.99 ± 0.01∗ 1024 [20]
1.95 ± 0.11 4.00 ± 0.36 600 [19]
2.02 ± 0.08 0.98 ± 0.08

of M2(v = vmax) for various Ls should produce the same L-
dependence M2 ∼ Ld f , although with a larger prefactor, as we
got for v = 0 (or u = uc). This method of measurement intro-
duces an additional source of errors, since finding maximal
M2 requires interpolation between data points close to that
maximum. The presence of this additional error increases in
the estimated statistical errors. Dashed lines in Fig. 4 depict
M2 as a function of L measured at the points of maxima.
The measured slopes (d f ) produce slightly different values:
β = 0.99 ± 0.07 in d = 3, β = 1.07 ± 0.06 in d = 4, and
β = 1.13 ± 0.05 in d = 5. While the results at v = vmax are
less reliable, they are similar to the previous sets of βs.

The study of the behavior of M1 and M2, demonstrated
in this section supports the extension of the scaling form in
Eq. (10) to Mi (i = 1, 2), namely,

Mi = Ld f gMi [L
1/ν (u − uc)] = Ld f gMi (v), (12)

where gM1 (v) ≡ gP(v). Figure 5 demonstrates such scaling
via data collapse of scaled M1 and M2 for various Ls for
d = 4. [In this graph, as well as in other scaled plots (the last
two figures of the paper) instead of sampling the functions
at fixed intervals 
u, we use (almost) fixed intervals 
v of
the scaled variable.) We note that the value of β used in
this fit is in the middle of β values obtained from Fig. 4
for the same d . Analogous behavior is observed in other
dimensions.

As mentioned at the beginning of this section, the behavior
of gP(v) for large negative v is consistent with the ex-
pected power law but is not accurate enough to determine the
value of β.

We note that in d = 6, the exponent of our problem should
coincide with the exponent of Bernoulli percolation and have
mean field value β = 1. The fact that β maintains the value so
close to 1 in all dimensions makes one wonder if β = 1 is the
exact dimension-independent value of β. Such conjecture has
been made by Feshanjerdi et al. [20] in d = 3 (for a system of
visited sites) and theoretically suggested to be valid in other
dimensions by Chalhoub et al. [19] (see Table I in their work).

FIG. 5. Data-collapse plot of the scaled cluster sizes M1L−d f (top
solid lines) and M2L−d f (bottom dashed lines) in d = 4 vs scaled
parameter v = (u − uc )L1/ν . This graph was obtained for df with
β = 1.04 [see Eq. (11)] and it remains a good fit when β is changed
by ±0.04. This graph is a scaled form of Fig. 2. The error bars are
smaller than the sizes of the symbols.

VI. EXPONENT γ

Mean cluster size S is one of the most important charac-
teristics of percolation. In infinite systems, similarly to the
susceptibility in magnetic systems, it diverges at the critical
point as in Eq. (2), and it would be possible to measure the
exponent γ by directly plotting S as a function of the distance
from the critical point on a logarithmic scale. (Exponent γ

is expected to be the same both above and below that point.)
However, in a finite system, the divergence is truncated when
ξ exceeds L. Figure 6 depicts S measured in d = 3 as a
function of u for system sizes L ranging from 16 to 512. As L
increases, the height of the peak in S increases approximately
as L2. The position of the peak appears at some u∗

c (L), which
is smaller than uc and this effective critical point shifts towards
uc with increasing L as indicated by Eq. (7), while the height
of the peak increases almost as L2. As with other critical
quantities, we will use scaled variable v = (u − uc)L1/ν and
describe the behavior of S using scaling form analogous to
Eq. (8), namely,

S = Lγ /νgS[L1/ν (u − uc)] = Lγ /νgS (v), (13)

where gS (v) is a scaling function. To recover the L = ∞ be-
havior S ∼ |u − uc|−γ , we must have gS (v) ∼ |v|−γ for |v| �
V . For small v, the scaling function approaches some constant
gS (0), leading to u-independent result S ∼ Lγ /ν . Instead of
focusing on v = 0, we can look at a point v = vmax, where
all S reach their maxima independently of L. At this point,
we also expect S ∼ Lγ /ν but with a larger prefactor. In fact,
the exponent γ can be determined from the entire function
function gS (v): We need to plot SL−γ /ν vs v. Such a plot
should produce the function gS (v). The graphs for several Ls
should collapse into a single plot, provided the fitting parame-
ter y ≡ γ /ν has been properly selected. In general, we should
use three fit parameters γ , ν and uc. However, the latter two
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FIG. 6. Mean cluster size S vs u in d = 3 for L = 16, 32,...,512.
Error bars are smaller than the symbols. The inset shows the graphs
for the three smallest Ls with an expanded vertical scale. The ex-
pected critical point is uc = 3.15, while the maxima of the curves
appear at slightly lower values u∗

c (L) that drift towards uc with
increasing L.

are well-known to us—see Table I. (The fitting is insensitive
to small changes in uc.) We therefore use the known values of
ν = νth = 2 and uc = 3.15 from Table I and adjust only the
parameter y that depends on γ . Using the above values, Fig. 7
presents the same results as Fig. 6 in a scaled form where the
horizontal axis uses variable v = (u − uc)L1/ν . The vertical
axis represents the scaled cluster size SL−y, with the fit pa-
rameter y corresponding to γ = 3.90. The fit remains good up
to a shift of ±0.05 in γ . Note that the best-fit value of y is
very close to 2. The obtained value of γ should be compared

FIG. 7. Data-collapse plot of the scaled mean cluster size SL−y

in d = 3 vs scaled parameter v = (u − uc )L1/ν . This graph was ob-
tained for γ = yν = 3.90 and it remains a good fit when γ is changed
by ±0.05. This graph is a scaled form of Fig. 6. The error bars are
smaller than the sizes of the symbols.

FIG. 8. Data-collapse plot of the scaled mean cluster size SL−y in
d = 4 vs scaled parameter v = (u − uc )L1/ν . It is analogous to d = 3
graph in Fig. 7. The exponent y was adjusted to get the best data
collapse. This graph was obtained for γ = yν = 1.90 and it remains
a good fit when γ is changed by ±0.05. The error bars are smaller
than the symbol sizes.

with γ ≈ 3.5 by Abete et al. [17] obtained on smaller systems
(Lmax = 60) and with a slightly smaller numerical value of ν,
and γ ≈ 4.0 obtained by Chalhoub et al. [19] on a slightly
larger system. (See previous results in Table II.)

Our result was extracted from the behavior for small v

behavior of gS (v). As expected, for large |v| we observe a
power law which is consistent with |v|−γ , but the quality and
the range of the data is too small for an accurate determination
of the power.

We repeated the above calculations in d = 4 and d = 5.
The decreasing range of L leads to decreasing reliability of
the fit. As an example, we present Fig. 8 that shows the scaled
results in d = 4, for L ranging from 16 to 128. By fitting y, we
find γ = 1.90 ± 0.05, and again parameter y is very close to 2.
Similar analysis was performed in d = 5 on systems of even
smaller linear size L ranging from 16 to 45. The collapse plot
(not shown) has slightly lower quality and the best fit leads to
the estimate γ = 1.30 ± 0.05.

As in the three-dimensional case we compared the values
of γ obtained for small values of v with possible power-law
behavior |v|−γ . Again, we obtained a reasonable correspon-
dence for large negative values of v, although the accuracy of
those results was much lower. (We did not see a clear power
law for large positive v.)

We expect the exponents β obtained in the previous sec-
tion and the exponents γ obtained in this section to satisfy the
hyperscaling relation (4). Indeed, by inserting the calculated
values the relation is approximately satisfied if we allow for
errors in the exponents. In fact, we can use (4) in an opposite
way: if we substitute β = 1 into the equation and use ν from
(6) we find that in our problem

γ = 4/(d − 2). (14)
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We can see that this expression is very close to the values of
γ obtained in all dimensions. [We also note that (14) leads for
all 3 � d � 6 to the exponent y = γ /ν = 2.]

VII. DISCUSSION

The problem of sites not visited by a RW presents a rel-
atively simple case of correlated percolation. In this paper,

we calculated exponents β and γ in d = 3, 4, and 5, with
reasonable accuracy, using system sizes comparable with the
previous works. (There were no previous results in d = 4 and
5.) We used different methods to measure the exponents: mea-
surement of the fractal dimension of the first and the second
largest clusters for calculation of β and finite size scaling for
γ . Our results hint at simple numerical values for the critical
exponents, and one may hope to derive these values from
simple geometrical considerations.
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