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A simple zipper model is introduced, representing in a simplified way, e.g., the folded DNA double helix
or hairpin structures in RNA. The double stranded hairpin is connected to a heat bath at temperature T and
subject to an external force f , which couples to the free length L of the unzipped sequence. The leftmost zipped
position can be seen as the position of a random walker in a special external field. Increasing the force leads
to a zipping-unzipping first-order phase transition at a critical force fc(T ) in the thermodynamic limit of a very
large chain. We compute analytically, as a function of temperature T and force f , the full distribution P(L)
of free lengths in the thermodynamic limit and show that it is qualitatively very different for f < fc, f = fc,
and f > fc. Next we consider quasistatic work processes where the force is incremented according to a linear
protocol. Having obtained P(L) already allows us to derive an analytical expression for the work distribution
P(W ) in the zipped phase f < fc for a long chain. We compute the large-deviation tails of the work distribution
explicitly. This distribution can be interpreted as work distribution for an oscillatorylike model. Our analytical
result for the work distribution is compared over a large range of the support down to probabilities as small as
10−200 with numerical simulations performed by applying sophisticated large-deviation algorithms.
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I. INTRODUCTION

The physical work W plays an important role for many
equilibrium and nonequilibrium processes at all scales. The
work W is a random variable that fluctuates from one re-
alization of the underlying process to another. For large
thermodynamic systems, typically the distribution of work
converges to a δ function peaked at its average, and it is
thus sufficient to compute just the average work. For smaller
systems, however, the fluctuations of W around its average are
also highly relevant, as illustrated by the field of stochastic
thermodynamics [1,2]. Therefore, to describe systems with
few degrees of freedom comprehensively, one needs to know
the full distribution P(W ) of the work and not just its first
moment. For example, the knowledge of P(W ) in a nonequi-
librium process connecting two equilibrium states allows one
to extract the free-energy difference between these two states
by using the Jarzynski equality [3] or the theorems of Crooks
[4].

In experiments [5–7] the processes are repeated many
times, the work is measured for each execution, and a his-
togram of W is obtained. This allows one to approximate
P(W ) in the high-probability region, i.e., for typical values.
But one does not have access to a broader range of the support
of P(W ) down to its tails. If the system contains more degrees
of freedom, the estimation of free-energy differences without
knowing the tails of P(W ) yields wrong results because the
tails dominate the computed averages of exponentials of work.
The same is true when numerical simulations of model pro-
cesses are performed in a straightforward way and repeated

many times in the so-called simple sampling scheme. Still, by
using large-deviation algorithms, the work distribution P(W )
has been obtained in few cases for a larger range of its support,
down to extreme tails with probabilities as small as 10−100. In
the most interesting case of complex interacting many-particle
systems, P(W ) was obtained for the Ising model subject to
a changing magnetic field [8] and for stretching of an RNA
hairpin structure [9].

By using analytical studies, the distributions P(W ) over
their full range of support have been obtained for some sys-
tems with few degrees of freedom. In very simple cases
Gaussian distributions are obtained [10,11]. Furthermore, a
particle in a cylinder with a moving piston [12] was consid-
ered. Other examples are given by two level systems [13] and
single particles with a dynamics described by a Fokker-Planck
equation [14,15] or, equivalently, by a Langevin equation
[16–24], in one-dimensional potentials of varying shapes. In
addition, the distributions of work performed by changing
parameters of quantum harmonic oscillators [25–31] could be
obtained analytically. Also, the cases of cyclic driving [32],
of coupling to multiple reservoirs [33], quantum nonlinear
oscillators [34], or quantum oscillators used as detectors [35]
were considered. Furthermore, single-particle systems with
stochastic driving were investigated [36,37]. Recently, such
approaches were extended to single-particle quantum systems
[38]. In a related context, models for single-particle heat en-
gines have also been studied [39–42].

Here we want to go beyond the single-particle case and
address the analytical calculation of the work distribution
P(W ) for a more complex system of interacting particles, but
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with a finite number N of degrees of freedom. Some works
have been done in that direction. For example, in a system of
several point particles coupled by harmonic springs, e.g., the
Rouse polymer model, the work distribution can be obtained
from the result of the single-particle Gaussian case [11]. In ad-
dition to the harmonic coupling, also the extreme case of very
stiff nonlinear coupling can be solved [43]. The treatment of
polymers can be extended to networks of harmonic oscillators
[44]. Furthermore, for a relaxing elastic manifold [45] and for
a chain of active particles coupled by harmonic springs [46],
the heat statistics have been obtained analytically.

Our present work is motivated by the recent numerical
study on stretching of RNA secondary structures, where P(W )
was obtained for hairpins. By applying large-deviation algo-
rithms, almost the full range of support could be obtained [9].
In the present study we will investigate a simplified zipper
model that can be used to describe either the opening and clos-
ing of RNA hairpin structures, or that of DNA double helices,
under an external force. Our zipper model is a very simple one
with nonharmonic interactions (and thus goes beyond Gaus-
sian integrals in models with harmonic interactions) and yet
allows for an exact analytic solution in the folded or “zipped”
phase, in particular, exhibiting a non-Gaussian distribution of
work P(W ).

In an early model for DNA unzipping in a solvent [47],
the term coupling the free part of the helix to a solvent can
be interpreted as the interaction of the free part with an ex-
ternal force f . The model allowed for an exact calculation
of the partition function and an unzipping transition was ob-
served. During the decades other variants of unzipping models
[48–50] were studied, like the unzipping of DNA by pulling
[51], and the denaturation of DNA under applied torque [52].
Also, a model exhibiting a first-order unzipping transition was
analyzed [53–55]. Furthermore, unzipping was studied via the
calculation of Lee-Yang zeros [56], which allowed the authors
to obtain the large-deviation tail of the energy distribution. In
some cases heterogeneous sequences were considered [57],
in particular, a mapping to the disordered polymer in random
media was provided [58], allowing for an analytical replica
calculation. The actual dynamics of unzipping was modeled
via a simple kinetic two-step process [59]; for reviews see,
e.g., Refs. [60,61]. For the equilibrium models, unzipping
transitions with model-dependent critical forces fc were found
and the behaviors in the zipped and the unzipped phases were
described by average quantities (and sometimes also by the
corresponding fluctuations). One important observable is the
free length L, i.e., the unzipped part of the sequence which
is next to the beginning of the sequence where the external
force is applied. Note that by considering just L as an effective
variable, integrating out other degrees of freedom, the model
exhibits similarities to a random walker in an external field,
see end of Sec. III.

In the present paper, we will use a simple version of the
previous models but go beyond the calculation of averages
and study the full distribution P(L) of the free length in the
zipped phase, in the unzipped phase, and also at the critical
force fc. This in turn will allow us to calculate analytically
some moments and finally, the full distribution P(W ) of work
for equilibrium processes where the external force is changed
from 0 to fmax quasistatically in the region f < fc (zipped

phase). We compare the analytical results to large-deviation
simulations of the unzipping process and find very good
agreement over about 200 decades in probability. Thus, the
model constitutes a nice example where the work distribution
is available for a process in a system of many interacting
particles. This can be used as a starting point for similar
consideration of the corresponding not-quasistatic process or
other models of complex interacting particles. Also, the shape
or generalizations of the obtained distribution can be used to
fit to numerical data for other systems.

The paper is organized as follows. In Sec. II we present
our zipper model. Then in Sec. III we solve the model exactly
and show the existence of a first-order unzipping transition in
the temperature-force plane and obtain, in particular, the full
distribution P(L) of the free length. In Sec. IV we present an
exact numerical algorithm to sample configurations in equilib-
rium. In Sec. V we use this algorithm to confirm the analytical
results for the thermodynamic behavior. Next, in Sec. VI we
analytically derive, in the zipped phase, the first two moments
and also the full distribution of work P(W ) for quasistatic
processes involving a finite number of increments of the force
f . In Sec. VII we evaluate these quantities in the limit of
infinitely large increments. Then, in Sec. VIII we present the
numerical results of the large-deviation simulations showing
the work distributions over hundreds of decades in probability
and compare with the analytical findings. Finally, we conclude
in Sec. IX with a summary and outlook.

II. A SIMPLE UNZIPPING MODEL

We consider a zipper consisting of two complementary
halves of a sequence consisting of N opposite pairs of bases
where each pair can independently be bonded (close) or un-
bonded, see the top part of Fig. 1. Note that we assume the
simplest case where each base can only be bonded to the
complementary base in the pair, not to other bases.

The part of the sequence that is outside the “outmost”
bonded pair, i.e., the upmost pair in the top part of Fig. 1,
is denoted as free. We consider the case where the first base is
fixed and the last base is coupled to, e.g., an optical tweezer,
such that a force f can be exerted on the zipper. Thus, it is the
free part of the zipper which couples to the force.

This situation can be described by a one-dimensional lat-
tice of N sites i = 1, . . . , N , which represents the first half
or strand of the zipper. At each site we have a binary variable
σi ∈ {0, 1}, indicating whether the base i is bonded (σi = 1) or
not, respectively. A typical configuration of this binary string
is shown in Fig. 1. Let M denote the total number of 1’s in a
configuration. We also denote by L the number of lattice sites
to the left of the first 1 (appearing in the string as one reads
from left to right)—this is one-half of the free length of the
zipper. Evidently all these L sites contain 0 by definition, see
bottom of Fig. 1. Thus a typical configuration is labeled by
two integers M and L. Note that for a given L in 0 � L � N ,
the number of 1’s, i.e., the variable M, can take values only
in the range 0 � M � N − L. We define the energy of the
configuration as [62]

E (M, L) = −J M − 2 f L, (1)
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FIG. 1. Top: A sequence which is partially unzipped under an
applied force f . The length of the outside unzipped part is L. Also
in the zipped part, some pairs are not bonded, forming so-called
bubbles. Bottom: binary-string representation of length N of this
configuration consisting of 1’s and 0’s. Thus, L denotes the length
of the substring made of consecutive 0’s from the left before the
first 1.

where f > 0 is the applied force and J > 0 is the binding
energy of a base pair between a base in one strand and its
partner base located at the equivalent position in the other
strand.

Note that this model, basically equivalent to Ref. [47], is
a simplified model of real RNA or DNA sequences. Actually,
much more realistic models exist which, e.g., take entropic
contributions into account. The most realistic models exist in
the form of numerical packages like RNA structure [63] or the
Vienna RNA Package [64]. In particular, when comparing to
actual unzipping experiments on RNA or DNA, such pack-
ages are required. We consider it as natural to start with the
most simple model, which allows us to obtain the distribution
analytically over the full range of support. Somehow more
sophisticated models might be considered analytically in the
future, while the most realistic models are likely to be studied
only by numerical approaches.

III. EQUILIBRIUM BEHAVIOR

Ground state. Let us first investigate the ground state by
minimizing the energy function in Eq. (1). We need to max-
imize −E (M, L) = J M + 2 f L. Since both terms in −E are
non-negative, we can maximize them one after the other. First
fix L and vary M. The maximum value of M for fixed L is
clearly (N − L). Hence −E (M = N − L, L) = J (N − L) +
2 f L = J N + (2 f − J ) L. We now have to maximize this
function with respect to L where 0 � L � N . There are two
possibilities:

(i) The case 0 < f < J/2: In this case the function J N +
(2 f − J ) L is maximized when L = 0, i.e., the first entry

(from the left) in the ground-state configuration must be a 1.
This is then the “zipped” phase.

(ii) The case f > J/2: In this case the function J N +
(2 f − J ) L is maximized when L = N . This means the ground
state consists of all 0’s. This is thus a totally “unzipped” phase.

In summary, there is a phase transition in the ground state
from the “zipped” phase to the “unzipped” phase, as one
increases f (fixed J) through the critical value fc = J/2. We
will see below that this “unzipping” phase transition persists
at finite temperature also.

Finite temperature. At finite temperature we associate a
Boltzmann weight e−β E (M,L) to each configuration labeled by
(M, L), where the energy E (M, L) is given in Eq. (1) and
β = 1/T is the inverse temperature. Henceforth, we fix J
and consider the behavior of the system as a function of two
control parameters (T, f ) in the force-temperature plane. Our
goal is to obtain the phase diagram in the (T − f ) plane. The
partition function of the model is defined as

ZN (β, f ) =
∑

all config.

e−β E (M,L). (2)

To evaluate the partition function, we carry out the sum over
configurations in two steps. We first fix L and sum over all
values of M. After this, we sum over all values of L. Thus we
write

ZN (β, f ) =
N∑

L=0

WN (L), (3)

where we define

WN (L) =
N−L∑
M=0

e−β E (M,L). (4)

When carrying out the sum over M, we need to distinguish
two cases, namely, when 0 � L � N − 1 and when L = N .
In the latter case (L = N), the string consists entirely of 0’s,
hence M = 0. In this case the Boltzmann weight factor is just
e2β f N . For 0 � L � N − 1, we note that once we fix L, the
(L + 1)-th entry is necessarily a 1. Hence, the remaining (M −
1) 1’s can be placed in the available (N − L − 1) boxes such
that each box can contain at most one 1. The number of ways
this can be done is simply

(N−L−1
M−1

)
. Thus, beyond the (L + 1)-

th entry, M − 1 follows a Bernoulli distribution, and the net
partition sum can be obtained by summing over all possible
values of M. For fixed 0 � L � N , it can be expressed as

WN (L) = e2β f N δL,N

+
[

N−L∑
M=1

(
N − L − 1

M − 1

)
eβJM+2β f L

]
10�L�N−1, (5)

where 10�L�N−1 is an indicator function, which is 1 if 0 �
L � N − 1, and δL,N is the Kronecker δ function. The sum
over M in Eq. (5) can be performed trivially using binomial
expansion, and one gets, after slight rearrangement,

WN (L) = (1 + eβJ )N

(1 + e−βJ )
[μL 10�L�N−1 + (1 + e−βJ ) μN δL,N ],

(6)
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where we introduced the important parameter

μ = e2β f

1 + eβJ
. (7)

Thus, we have arrived at an effective one-dimensional model
with L as degree of freedom and controlled by the parameter
μ. Finally, summing Eq. (6) over L (it is just a simple ge-
ometric series), we get the exact partition function valid for
arbitrary positive N :

ZN (β, f ) =
N∑

L=0

WN (L)

= (1 + eβJ )N

(1 + e−βJ )

[
1 − μN

1 − μ
+ (1 + e−βJ ) μN

]
, (8)

where μ is given in Eq. (7).
We now analyze the thermodynamic limit N → ∞. The

free energy per site is defined as

F (β, f ) = − lim
N→∞

1

β

ln ZN (β, f )

N
. (9)

Taking logarithm of Eq. (8) and the N → ∞ limit, we see
that the limiting value of the free energy per site depends on
whether μ � 1 or μ > 1. We obtain

F (β, f ) =
{

− 1
β

ln(1 + eβJ ) if μ � 1

−2 f if μ > 1.
(10)

Note that F does not depend on the force for μ < 1 and is
continuous at μ = 1, but its first derivative with respect to T
or f is discontinuous at the critical point μ = 1, indicating a
first-order phase transition.

To shed more light on the two phases and the transition
between them, let us now define the average fraction of 1’s in
the string as an order parameter:

〈m〉 = lim
N→∞

〈M〉
N

= −∂F (β, f )

∂J
. (11)

Using Eq. (10) for the free energy per site, one gets

〈m〉 =
{

eβJ

1+eβJ if μ � 1

0 if μ > 1.
(12)

Thus the phase μ > 1 corresponds to the “unzipped” phase
where 〈m〉 = 0, while the phase μ � 1 corresponds to the
“zipped” phase where 〈m〉 is nonzero. As one approaches the
critical point μ → 1 from below, the order parameter 〈m〉
undergoes a finite jump, thus confirming the first-order phase
transition,

Thus the critical line in the (T − f ) plane is obtained by
setting μ = 1. Using the expression of μ in Eq. (8), one then
obtains the critical curve fc(T ) in the (T − f ) plane:

μ = 1 �⇒ fc(T ) = ln(1 + eβJ )

2β
= T

2
ln(1 + eJ/T ). (13)

The phase diagram in the (T − f ) plane including the critical
line fc(T ) is shown in Fig. 2. Note that the critical force in-
creases when increasing the temperature, i.e., the fluctuations
do not help. This is known as cold unzipping in the literature.

FIG. 2. Phase diagram in the (T − f ) (temperature-force) plane.
The critical line fc(T ) = (T/2) ln(1 + eJ/T ) (drawn schematically in
the figure) separates the unzipped phase [ f > fc(T )] from the zipped
phase [ f < fc(T )]. The order parameter 〈m〉, namely, the fraction
of 1’s in the string in the thermodynamic limit, is nonzero in the
zipped phase and vanishes in the unzipped phase. On the critical line
f = fc(T ), the order parameter 〈m〉 is nonzero and jumps to 0 as one
enters the unzipped phase from the zipped side, indicating a first-
order phase transition.

The critical curve fc(T ) has the following asymptotic be-
haviors:

fc(T ) 	
{

J
2 + T

2 e−J/T − T
4 e−2J/T + · · · (T → 0)

1
2 (ln 2) T + J

4 + J2

16T + O(T −2) (T → ∞).
(14)

To obtain the T → 0 limit, we rewrite the expression of fc(T )
in Eq. (13) as fc(T ) = J/2 + (T/2) ln(1 + e−J/T ) and then
expand the logarithm in powers of e−J/T . This gives the first
line of Eq. (14). In the opposite T → ∞ limit, we first expand
eJ/T = 1 + J/T + J2/(2T 2) + · · · and then expand the loga-
rithm in Eq. (13) in powers of 1/T , yielding the second line
in Eq. (14). Thus, as T → 0, the critical value fc(0) = J/2 is
consistent with the ground-state analysis before.

Statistics of the free length L. One can also characterize the
transition in terms of the variable L, denoting the free length
of the RNA chain. Here, we will not only calculate the average
value but actually the full distribution P(L|N ) for any given N .
This will allow us later on to obtain for slow processes the full
distribution of work analytically.

Indeed, it follows from Eq. (6) that P(L|N ) is given exactly,
for all 0 � L � N , by

PN (L) = WN (L)

ZN (β, f )

= μL 10�L�N−1 + (1 + e−βJ ) μN δL,N

1−μN

1−μ
+ (1 + e−βJ ) μN

. (15)

It is easy to check that PN (L) is normalized, i.e.,∑N
L=0 PN (L) = 1. A plot of this distribution for a small value

of N and f > fc highlighting the δ peak, is given in Fig. 3.
Interestingly, the distribution exhibits mainly an expo-

nential behavior ∼μL. Thus, if μ was equal to e−ε/T , with
constant ε, then P(L) would be similar to the energy dis-
tribution ∼e−εL/T of a quantum harmonic oscillator. For the
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FIG. 3. Distribution of the free length L in the unzipped phase
[see Eq. (15)] for T = J = 1, N = 10, and force value f = 0.7 > fc,
where fc ≈ 0.6566. The red vertical line highlights the δ peak at L =
N .

present case, μ exhibits a much more complex dependence on
the external force f and the temperature as given by Eq. (7),
corresponding to changing the rigidity of a quantum harmonic
oscillator. This leads in particular to strong changes of the dis-
tribution’s shape around the unzipping transition, as detailed
below. Such a behavior does not exist for a quantum harmonic
oscillator, because at the transition the rigidity would be zero.
Also, from the viewpoint of an oscillator, the roles of low- and
high-energy states would be exchanged at the transition. Note
that this resemblance of the distributions cannot be seen easily,
considering the definition Eq. (1) of the unzipping model, and
is rather a result of our calculation.

From Eq. (15), it is easy to compute its first moment for all
N ,

〈L〉 =
N∑

L=0

L PN (L)

=
μ

1−μ

[
1−μN

1−μ
− N μN−1

]
+ (1 + e−βJ ) N μN

1−μN

1−μ
+ (1 + e−βJ ) μN

, (16)

where μ is given in Eq. (7). In Sec. V samples for 〈L〉 as
function of the force f are shown and compared to results
from numerical exact sampling.

It is interesting to compute 〈L〉 in the large-N limit. It
follows from Eq. (16) that this thermodynamic limit depends
crucially on whether μ > 1, μ < 1, or μ = 1. Taking this
limit carefully, we find that as N → ∞,

〈L〉 	

⎧⎪⎨
⎪⎩

μ

1−μ
for μ < 1

N
2 for μ = 1

N for μ > 1.

(17)

Hence, as N → ∞, the average free length available per site
〈l〉 = 〈L〉/N approaches to 0 for μ < 1 (zipped phase) and
1 for μ > 1 (unzipped phase). Exactly, on the critical line
μ = 1, we find 〈l〉 → 1/2. This statistic of 〈l〉 also confirms
the first-order nature phase transition at μ = 1 for a different
measurable quantity.

Let us also analyze the asymptotic form of the full distri-
bution PN (L) in Eq. (15) in the thermodynamic limit N → ∞.
The behavior again depends on whether μ < 1 (zipped phase),
μ > 1 (unzipped phase), or on the critical lime μ = 1 (criti-
cal).

(i) Zipped phase (μ < 1). In this case, as N → ∞ in
Eq. (15) the distribution PN (L) converges to an N-
independent form which is purely geometric. For L =
0, 1, 2, . . . one obtains

PN→∞(L) = (1 − μ) μL. (18)

In this N → ∞ limit, the average value 〈L〉 ap-
proaches a constant

〈L〉 = (1 − μ)
∞∑

L=0

L μL = μ

1 − μ
, (19)

in accordance with the first line of Eq. (17). The fluc-
tuations of L around this mean are quantified by the
variance Var(L) = 〈L2〉 − 〈L〉2 that also approaches
to a constant Var(L) = μ/(1 − μ)2 in the large-N
limit.

(ii) Critical line (μ = 1). On the critical line μ = 1, we
find that PN (L) in Eq. (15) approaches a scaling form
as N → ∞,

PN→∞(L) → 1

N
F

(
L

N

)
, (20)

where the scaling function F (x) = 1 for 0 � x � 1
and F (x) = 0 for x > 1. In other words, the distri-
bution of L approaches a flat uniform distribution
over L ∈ [0, N]. Consequently, the average value 〈L〉
approaches the value N/2 as found in the second line
of Eq. (17). One can also check that the variance
Var(L) = 〈L2〉 − 〈L〉2 → N2/12 as N → ∞, indicat-
ing that the fluctuations of L remain big in the large-N
limit at the critical point, unlike in the zipped phase
where it is of O(1) as N → ∞.

(iii) Unzipped phase (μ > 1). In this phase, the distribu-
tion PN (L) in Eq. (15) does not approach a limiting
form as N → ∞. Instead, there is a decaying N-
dependent “bulk” part that coexists with a δ peak
(condensate) at the right edge of the support at L = N .
More precisely, for large N we find from Eq. (15) that

PN→∞(L) → (μ − 1)

[1 + (μ − 1)(1 + e−βJ )]

× [μL−N 10�L�N−1 + (1 + e−βJ ) δL,N ].
(21)

Note that the weight of the δ peak or the conden-
sate at L = N approaches an N-independent value as
N → ∞. However, the “bulk” part of the distribution,
even though it decays exponentially as ∼μL−N away
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from the condensate, does actually contribute to all
moments of L even in the N → ∞ limit. For example,
the average value 〈L〉 → N + O(1) (as N → ∞) as
in the third line of Eq. (17). The variance Var(L) =
〈L2〉 − 〈L〉2, however, approaches to a constant as
N → ∞:

Var(L) → μ[1 + (μ2 − 1)(1 + e−βJ )]

(μ − 1)2[1 + (μ − 1)(1 + e−βJ )]2
.

(22)

For both moments, the δ peak as well as the “bulk”
part contributes in the large-N limit. So, one cannot
neglect this “bulk” part in the thermodynamic limit.
This is thus a rather unusual and interesting distribu-
tion.

Note that this large-N distribution of L can be interpreted
as the distribution of the position of a biased random walker in
a system of N sites, if one identifies L as the effective position
of a random walker with reflecting boundary condition at
L = 0 and (μ − 1) as the effective bias to the right. When
μ < 1, the drift is to the left and the position distribution of
the walker reaches a stationary state as N → ∞. The critical
case μ = 1 is like the unbiased random walker case where the
position distribution becomes uniform at long time. Finally,
for μ > 1 there is no stationary state since the position keeps
increasing with the system size N . The limiting distribution is
compared for different values of f to those obtained from nu-
merically exact sampling in Sec. V. The numerical approach
is described next.

IV. SAMPLING OF CONFIGURATIONS

To sample configurations numerically, we calculate for a
given system length N two conditioned partition functions
Z f (i) and Zz(i), i = 1, . . . , N . Here Z f (i) is the partition func-
tion of the subsequence i . . . N conditioned to the case that all
sites 1, 2 . . . i − 1 are not bonded, i.e., on the free part. Zz(i)
is the corresponding partition function for subsequence i . . . N
for the zipped case, i.e., for at least one site j ∈ {1, . . . , i − 1}
we have σi = 1. The simplest case is for i = N , i.e., the
sequence is only the last pair. If the preceding subsequence
σ1, . . . σN−1 is free, having the pair open will contribute ac-
cording to Eq. (1) the energy −2 f , while closing the pair
will contribute energy −J . Correspondingly, if the preceding
subsequence is not fully free, there will be no coupling to
the force in the final site i = N . Therefore, having the pair
open contributes energy 0, while closing the pair again yields
energy −J . Thus, one obtains

Z f (N ) = e2 f /T + eJ/T

Zz(N ) = e0 + eJ/T . (23)

This can be used as starting point for the recursive equations,
which read as follows for i ∈ {0, . . . , N − 2}:

Z f (i) = e2 f /T Z f (i + 1) + eJ/T Zz(i + 1),

Zz(i) = (e0 + eJ/T )Zz(i + 1) = (e0 + eJ/T )N−i. (24)

Thus, the computation is done by the dynamic programming
approach [65], by starting at i = N and iterating site i until i =
1 is reached. Thus, the calculation takes O(N ) steps. The case

FIG. 4. Normalized expectation value 〈L〉/N of the length of the
unzipped part as a function of the force strength f , for tempera-
ture T = J = 1 and two different system sizes N = 102, 104. The
symbols denote the numerical results, while the lines the analytical
results from Eq. (16).

i = 1 describes the full sequence and therefore the complete
partition function is given by Z f (1), while Zz(1) is not used.
Note that here it is rather easy to introduce site randomness by
generalizing J → Ji.

To sample a configuration σ1, . . . , σN one starts at site
i = 1, in the free part of the chain, and iteratively assigns
variables σi, i = 1, . . . , N . As long as the partial configuration
is free, i.e., σ j = 0 for all j < i, one assigns σi = 0 with prob-
ability p0

f (i) = e2 f /T Z f (i + 1)/Z f (i). Thus, with probability
1 − p0

f (i) one assigns σi = 1. Once the first nonzero assign-
ment σi = 1 has been made, one has reached the zipped part
of the chain. From here one assigns σi = 0 with probability
p0

z (i) = Zz(i + 1)/Zz(i) = 1/(1 + eJ/T ) and σi = 1 with prob-
ability 1 − p0

z (i) = eJ/T /(1 + eJ/T ). Note that this sampling
is performed in perfect equilibrium, and all sampled config-
urations are statistically independent for arbitrary values of
temperature T and force f . To sample one configuration it
takes a linear O(N ) number of steps. While sampling, one can
directly record the size L of the free length and the number M
of bonded sites.

V. NUMERICAL RESULTS FOR THE UNZIPPING
TRANSITION

In Fig. 4 the result for the average length 〈L〉 is shown for
T = J = 1 as a function of the force strength f . To investigate
the finite-size effects, two different system sizes N = 102

and N = 104 are displayed. For the numerical result, an av-
erage over 106 randomly sampled configurations was taken
for N = 102, while 104 configurations were considered for
N = 104. An excellent agreement with the analytical results
from Eq. (16) is observed. In particular, the first-order nature
of the transition is very well visible for N = 104.
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FIG. 5. Distribution of the free length L for T = J = 1, N =
100, and for force values f = 0.6 < fc, f = fc ≈ 0.6566, and f =
0.7 > fc, respectively. The symbols denote numerical results, while
the lines show the analytical asymptotic distributions from Eqs. (18),
(20), and (21). The δ peak at L = N is for some cases only slightly
visible, in particular, for f = 0.6, where the relative fluctuations are
large and therefore highlighted in the figure by arrows, respectively.

In Fig. 5 examples for the distributions PN (L) of the free
length are shown for the case T = J = 1 and N = 100. Three
cases f < fc, f = fc, and f > fc are presented. The numer-
ical results are histograms obtained from 107 independently
sampled configurations. For f < fc a clear decreasing expo-
nential function is visible. Despite the rather small system size
N = 100, a very good match with the limiting N → ∞ ana-
lytical result from Eq. (18) is visible, apart from the statistical
fluctuations for large values of L. For f = fc an almost full
uniform distribution is found, as obtained in Eq. (20), plus a
small peak at L = 100, which is present in the full distribution
Eq. (15), but should decrease in weight for N → ∞. For
f > fc a rising exponential matching the result of Eq. (21)
is clearly visible. Here also a finite peak at L = N appears,
which should remain also for large system sizes. In general,
finite-size effects appear very small. Thus, the rather small
size N = 100 almost represents the limiting N → ∞ behav-
ior.

VI. WORK DISTRIBUTION IN THE ZIPPER MODEL
IN THE ZIPPED PHASE

In this section we compute the work distribution in the
zipper model in the zipped phase by increasing the applied
force quasistatically. Here, we will consider increasing the
applied force in discrete steps in units of f0 > 0. In other
words, the applied force at the mth step is given by

f (m) = f0 m where m = 0, 1, 2, . . . , Ns, (25)

where Ns is the total number of steps. We restrict ourself in the
present work to the zipped phase μ < 1, because the simple
shape of the distribution PN (L) → (1 − μ) μL (as N → ∞)

in this phase allows us to perform all computations analyti-
cally. Therefore, the final force f (Ns) = f0 Ns stays below the
critical force fc = ln(1 + eβJ )/(2β ) as given by Eq. (13).

To define the work appropriately, consider the following
general situation. Suppose we have a system with a Hamil-
tonian that depends on the local degrees of freedom such as
the spins {si} on a lattice and also contains a parameter λ(t )
that evolves in continuous time (for example, the external
magnetic field). We write this Hamiltonian as H ({si}, λ(t )).
Now, we evolve the system up to a final time ts following λ(t ).
Then, quite generally, the work done to the system up to the
final time ts is defined as [3]

W ≡
∫ ts

0
dt λ̇(t )

∂H[{si}, λ(t )]

∂λ(t )
. (26)

For a fixed set of spins {si}, as λ evolves, the Hamiltonian
changes, i.e., the energy changes. Hence, when integrated up
to ts as in Eq. (26), this gives the total energy pumped into
or released from the system, defined as work, just due to the
change of the parameter and not due to spin fluctuations.

We now adapt the general definition of work in Eq. (26)
to our zipper model. Here, the external force f in the Hamil-
tonian in Eq. (1) plays the role of the parameter λ(t ), but we
assume that our evolution occurs in discrete steps and not in
continuous time. Then from Eq. (25), we get the discrete-
time analog of λ̇(t ) in Eq. (26), namely, λ̇(t ) ≡ f0. Using,
furthermore, ∂λH ≡ −2 Lm, where Lm is the random variable
describing the free length of the chain after the mth step, we
get the discrete-time equivalent of Eq. (26):

W = −2 f0

Ns−1∑
m=0

Lm. (27)

We further assume that the system equilibrates after each
step (quasistatic), i.e., at the mth step, the probability distri-
bution of a configuration is given by the Boltzmann weight
∝ e−β Em (M,L) with inverse temperature β and with the energy
function

Em(M, Lm) = −J M − 2 f (m) Lm. (28)

It is convenient to define the rescaled work

w = − W

2 f0
=

Ns−1∑
m=0

Lm � 0. (29)

Our goal is to find the distribution of the random variable
w in Eq. (29). To compute this, we will use the fact that Lm at
the mth step is distributed via the equilibrium distribution in
the zipped phase as given in Eq. (18), i.e.,

P(Lm) = (1 − μm) μLm
m , where μm = e2 β f0 m

1 + eβ J
. (30)

Note that we have already taken the thermodynamic limit
N → ∞. A consequence of Eq. (30) is

〈zLm〉 =
∞∑

Lm=0

zLm P(Lm) = 1 − μm

1 − μm z
. (31)

We now consider the generating function of the rescaled work
w in Eq. (29) and use the fact that the Lm’s for different m’s
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are statistically independent. This gives, using the result in
Eq. (31), a rather nice and simple expression,

〈zw〉 =
Ns−1∏
m=0

〈zLm〉 =
Ns−1∏
m=0

1 − μm

1 − μm z
, (32)

where we recall that μm is given in Eq. (30).
From the generating function in Eq. (32), one can easily

compute all the moments and cumulants by taking derivatives
with respect to z and setting z = 1. For this purpose, it is
convenient to write z = e−s and derive the cumulants by tak-
ing derivatives with respect to s and set s = 0. Thus Eq. (32)
reads, in the variable s,

〈e−s w〉 =
Ns−1∏
m=0

(1 − μm)

[1 − μm e−s]
. (33)

Consequently, the cumulant generating function is given by

ln[〈e−s w〉] =
∞∑

n=1

κn
(−s)n

n!
, (34)

where κn is the nth cumulant. Taking the logarithm of Eq. (33)
and expanding for small s, one can obtain all the cumulants.
For example, the first two cumulants are given by

κ1 = 〈w〉 =
Ns−1∑
m=0

μm

1 − μm
, (35)

κ2 = 〈w2〉 − 〈w〉2 =
Ns−1∑
n=0

μm

(1 − μm)2
. (36)

Let us now turn to the generating function of the full dis-
tribution in Eq. (33). First, we want to point out an interesting
fact. Substituting s = −2 f0β in Eq. (33), we get

〈e−β W 〉 = 〈e2β f0 w〉 =
Ns−1∏
m=0

(1 − μm)[
1 − μm e2β f0

]

=
Ns−1∏
m=0

1 + eβ J − e2 β f0 m

1 + eβ J − e2 β f0 (m+1)
. (37)

However, now the cross terms in the numerator and denomi-
nator of Eq. (37) cancel telescopically, leaving behind

〈e−β W 〉 = eβ J

1 + eβ J − e2 β f0 Ns
. (38)

However, in the zipped phase where μ < 1 it is then easy to
see that in the thermodynamic limit the partition function in
Eq. (8) reduces, with f = f (m), to

ZN (β, f (m)) −−−→
N→∞

(1 + eβ J )N+1

(1 + e−β J )[1 + eβ J − e2 β f0 m]
. (39)

Hence Eq. (38) can then be expressed as

〈e−β W 〉 = ZN→∞(β, f Ns)

ZN→∞[β, f (0)]

= exp [−β (F[β, f (m = Ns)] − F[β, f (m = 0)])],

(40)

FIG. 6. Analytical N → ∞ work distribution (solid line) in
Eq. (43), measured in terms of integers k = −W/(2 f0 ), for the case
β = J = 1 and for Ns = 502. The symbols denote results obtained
from numerical large-deviation sampling, as described in Sec. VIII,
for three different chain lengths N . Error bars are smaller than sym-
bol size.

where F[β, f (m)] = −(1/β ) ln Z[β, f (m)] is the free en-
ergy of the system at the mth step. In fact, Eq. (40) is nothing
but the discrete version of the Jarzynski equality [3].

Note that the Jarzynski equality holds only when we set
s = −2β f0. It does not help us to compute the full work
distribution. To compute this, we need to keep a general s
in Eq. (33) and try to invert this generating function. In fact,
since w in Eq. (29) is an integer, we first rewrite Eq. (32) as

〈zk〉 =
∞∑

k=0

Prob. [w = k|Ns] zk =
Ns−1∏
m=0

(1 − μm)

[1 − μm z]
. (41)

Now, one can formally invert the generating function in
Eq. (41) using Cauchy’s theorem,

Prob. [w = k|Ns] =
∫

C

dz

2π i

1

zk+1

Ns−1∏
m=0

(1 − μm)

[1 − μm z]
, (42)

where C denotes a closed contour in the complex z plane
around z = 0. The integrand in Eq. (42) has simple poles at
zm = 1/μm. Hence, one can evaluate the contour integral by
computing the residue at each pole and summing them up
(with a negative sign). This gives, after some straightforward
algebra, the following explicit result:

Prob. [w = k|Ns] =
[

Ns−1∏
l=0

(1 − μl )

]
Ns−1∑
m=0

μNs+k
m∏

n �=m(μm − μn)
,

(43)

where μm is given in Eq. (30). An example of the resulting
distribution is shown in Fig. 6. Also, a comparison to nu-
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merical large-deviation data is included, which is presented
in Sec. VIII.

VII. THE LARGE-Ns BEHAVIOR OF THE MEAN, THE
VARIANCE, AND THE FULL DISTRIBUTION

In this section, we will derive the behavior of the work
distribution in the scaling limit when Ns → ∞, f0 → 0 but
with the product

u = 2 β f0 Ns (44)

fixed, corresponding to a constant final force. We consider be-
low the mean, the variance, and the full distribution separately.

A. The mean

For the mean work 〈w〉, we have the exact formula in
Eq. (35), namely,

〈w〉 =
Ns−1∑
m=0

μm

1 − μm
=

Ns−1∑
m=0

e2 β f0 m

1 + eβJ − e2 β f0 m
, (45)

where we recall that e2 β f0 Ns < 1 + eβ J . Let us define x =
2 β f0 m. As m changes by 1, the variable x changes by 
x =
2 β f0. In the limit f0 → 0, this change 
x → 0. Hence, one
can replace the sum over m in Eq. (45) by an integral over x
in this scaling limit. We get

〈w〉 ≈ 1

2 β f0

∫ u

0
dx

ex

1 + eβ J − ex

= 1

2 β f0
ln

[
eβ J

1 + eβJ − eu

]
. (46)

Thus, the mean work, in the scaling limit where Ns → ∞,
f0 → 0 with u = 2 β f0 Ns fixed, can be expressed in a nice
scaling form,

〈w〉 ≈ Ns M1(u = 2 β f0 Ns), (47)

where the scaling function M1(u) is given for 0 � u � uc =
ln(1 + eβ J ) by

M1(u) = 1

u
ln

[
eβ J

1 + eβJ − eu

]
. (48)

The scaling function M1(u) is plotted in Fig. 7 and has the
following asymptotic behaviors:

M1(u) ≈
{

e−β J as u → 0

− 1
uc

ln(uc − u) as u → uc.
(49)

Thus the mean diverges very slowly (logarithmically) as u →
uc from below.

Physical significance. The scaling behavior of the mean
work in Eqs. (47) and (48) has an interesting physical sig-
nificance. In fact, for this model in the thermodynamics limit
N → ∞ the partition function at step m where fm = f0 m is
given by Eq. (39). Let us now consider the ratio

ZN→∞[β, f (m = Ns)]

ZN→∞[β, f (m = 0)]
= eβ J

1 + eβ J − e2 β f0 Ns
, (50)

where f (m = 0) = 0 and we used Eq. (39). Now consider
the scaling limit Ns → ∞, f0 → 0, but with the product u =

FIG. 7. The lines show the scaling functions M1(u) for the mean
work of Eq. (48) and M2(u) for the variance Eq. (57). We chose β =
1, J = 1 and consequently, uc = ln(1 + eβ J ) ≈ 1.31. The symbols
show the numerical results as presented in Sec. VIII.

2 β f0 Ns kept fixed. Then the ratio in Eq. (50) reduces to

ZN→∞[β, f (m = Ns)]

ZN→∞[β, f (m = 0)]
= eβ J

1 + eβ J − eu
. (51)

Now, from Eqs. (47) and (48) we have the mean work (un-
scaled),

〈W 〉 = −2 f0 〈w〉 = − 1

β
ln

[
eβ J

1 + eβJ − eu

]
. (52)

Now taking logarithm on both sides of Eq. (51), we can
express the right-hand side of Eq. (52) as

〈W 〉 = − 1

β
ln

[
ZN→∞[β, f (m = Ns)]

ZN→∞[β, f (m = 0)]

]

= F[β, f (m = Ns)] − F[β, f (m = 0)]. (53)

Thus the mean work is exactly the free-energy difference
between the final equilibrium state and the initial equilibrium
state, which is expected for quasistatic evolution.

B. The variance

Also for the variance, we have the exact formula in Eq. (36)
that reads

Var(w) = 〈w2〉 − 〈w〉2 =
Ns−1∑
m=0

μm

(1 − μm)2

= (1 + eβ J )
Ns−1∑
m=0

e2 β f0 m[
1 + eβ J − e2 β f0 m

]2 . (54)

As in the case of the mean, we define the variable x =
2 β f0 m, which becomes continuous in the f0 → 0 limit.

024115-9



WERNER, HARTMANN, AND MAJUMDAR PHYSICAL REVIEW E 110, 024115 (2024)

Hence, in the scaling limit in Eq. (44) we can replace the sum
by an integral and write

Var(w) ≈ Ns (1 + eβ J )
1

u

∫ u

0
dx

ex

[1 + eβ J − ex]2 . (55)

Performing the integral explicitly, we then have the scaling
behavior

Var(w) ≈ Ns M2(u = 2 β f0 Ns), (56)

where the scaling function M2(u) is for 0 � u � uc = ln(1 +
eβ J ), given explicitly by

M2(u) = (1 + e−β J )
(eu − 1)

u (1 + eβ J − eu)
. (57)

The scaling function M2(u) is plotted in Fig. 7 and has the
following asymptotic behaviors:

M2(u) ≈
{

e−β J (1 + e−β J ) as u → 0
1

uc (uc−u) as u → uc.
(58)

Thus as u → uc from below, the variance diverges as 1/(uc −
u), which is faster as compared to the mean in Eq. (49).

C. The full work distribution

Here, we will consider the full work distribution in the scal-
ing limit Ns → ∞, f0 → 0 with their product u = 2 β f0 Ns

kept fixed. Our starting point is the exact Cauchy represen-
tation of the work distribution in Eq. (42), which can be
rewritten as

Prob. [w = k|Ns]

= A
∫

C

dz

2π i
exp

[
−(k + 1) ln(z) −

Ns−1∑
m=0

ln(1 − μm z)

]
,

(59)

where A = ∏Ns−1
m=0 (1 − μm), and we recall that μm is given by

Eq. (30).
To proceed we set k = y Ns, where y is of O(1) in the large-

Ns limit. Taking the scaling limit as usual, i.e., by defining
x = 2 β f0 m and replacing the sum inside the exponential by
an integral, one finds, after straightforward algebra, for y = k

Ns

and u = 2 β f0 Ns,

Prob. [w = k|Ns] ≈ A eNs ln(1+eβ J )
∫

C

dz

2π i

× exp [−Ns S(z|y, u)], (60)

where the action S is given explicitly by

S(z|y, u) = y ln z + 1

u

∫ u

0
ln(1 + eβ J − z ex ) dx. (61)

The idea is now to perform a saddle point analysis of the inte-
gral in the large-Ns limit. Taking the derivative with respect to
z and setting

∂zS(z|y, u) = 0 (62)

gives the saddle point explicitly,

z∗(y|u) = (1 + eβ J ) (eu y − 1)

(eu (y+1) − 1)
. (63)

Similarly, the prefactor A eNs ln(1+eβ J ) in Eq. (60) can be ana-
lyzed in the large-Ns limit, giving

A eNs ln(1+eβ J ) ≈ exp

[
Ns

1

u

∫ u

0
ln(1 + eβ J − ex ) dx

]
. (64)

Evaluating the integral by the saddle point method for large
Ns and using the result in Eq. (64), the work distribution
can be expressed in a nice large-deviation form (for fixed
u = 2 β f0 Ns and Ns large),

Prob. [w = k|Ns] ≈ exp

[
−Ns �u

(
k

Ns
= y

)]
, (65)

where the rate function �u(y) is given by

�u(y) = y ln [z∗(y|u)] + 1

u

∫ u

0
ln

[
1 + eβ J − z∗(y|u) ex

1 + eβ J − ex

]
dx,

(66)

with z∗(y|u) given in Eq. (63). Performing the integral explic-
itly, we get

�u(y) = y ln [z∗(y|u)] + 1

u

[
Li2

(
z∗(y|u)

1 + eβ J

)
− Li2

(
1

1 + eβ J

)

+ Li2

(
eu

1 + eβ J

)
− Li2

(
eu z∗(y|u)

1 + eβ J

)]
, (67)

where

Li2(z) =
∞∑

n=1

zn

n2
(68)

is the dilogarithm function. A plot of the rate function �u(y)
vs y (for fixed u) is given in Fig. 8. By taking the derivative
with respect to y (for fixed u) and setting ∂y�u(y) = 0 gives
the value ymin(u), where the rate function �u(y) has its mini-
mum. It is not difficult, then, to show that

ymin(u) = 1

u
ln

[
eβ J

1 + eβJ − eu

]
≡ M1(u), (69)

where M1(u) defined in Eq. (47) is just 〈w〉/Ns. Indeed, one
expects the rate function �u(y) to be a convex function with a
minimum at y = ymin(u) = M1(u) and must have a quadratic
form near this minimum,

�u(y) ≈ [y − M1(u)]2

2 M2(u)
, (70)

where M2(u) is the scaling function associated to the variance
in Eq. (56) and computed explicitly in Eq. (57). Indeed, by ex-
panding �u(y) up to quadratic order around y = ymin(u), one
does recover M2(u) from the rate function. The asymptotic
behaviors of �u(y) as y → 0 and y → ∞ can also be deduced
easily. Let us define the parameter

a = 1 + eβ J . (71)
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FIG. 8. Analytical (line) Ns → ∞ rate function �u(y) from
Eq. (67) for fixed u = 1.2. The rate function has a minimum at
ymin = M1(u = 1.2) ≈ 1.6 and has the quadratic behavior near the
minimum as in Eq. (70). Also shown is the analytical result for
finite Ns = 502 (broken line) and numerical estimates �N

num.(y) as
obtained from large-deviation simulations, see Sec. VIII. Error bars
are smaller than symbol size.

In terms of this parameter a, we can express the small- and
large-y asymptotics of �u(y) (for fixed u) as follows:

�u(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
u

[
Li2

(
eu

a

) − Li2
(

1
a

)]
+ y ln y + O(y), as y → 0

1
u

[
−Li2

(
1
a

) + Li2
(

eu

a

) + Li2(e−u) − π2

6

]
+ ln(a e−u) y + O

(
1
y

)
as y → ∞.

(72)

Interestingly, �u(0) = [Li2( eu

a ) − Li2( 1
a )]/u is a positive con-

stant. This implies, from Eq. (65), that the probability of
vanishing work, i.e., w << Ns, decays exponentially with
increasing Ns as

Prob. [w = k|Ns] −−−→
k�Ns

exp [−θ (u) Ns],

where θ (u) = �u(0) = 1

u

[
Li2

(
eu

a

)
− Li2

(
1

a

)]
.

(73)

Also, since �u(y) increases linearly with y for large y, see
the second line of Eq. (72), it follows again from Eq. (65)
that the probability of a very large work w = k � Ns becomes
independent of Ns and decays exponentially with increasing k:

Prob. [w = k|Ns] −−−→
k�Ns

exp [−k ln(a eu)] = 1

(a eu)k
. (74)

FIG. 9. A sample force-extension curve where the free length Lm

at step m is shown as a function of the force f for a single random
realization of the unzipping process, here for length N = 100, Ns =
12 steps, and parameters T = J = 1. The area under the curve is the
work times a factor of −2 by Eq. (26).

VIII. LARGE-DEVIATION SIMULATIONS

Complementary to the analytical calculations of the work
distribution, numerical simulations were performed, specif-
ically to study finite-size effects. The simulation works
as follows: The linear protocol is discretized into, here,
Ns = 502 points, resulting in force values fm = m f0, m ∈
[0, 1, 2, . . . , Ns], where f0 is a constant chosen such that the fi-
nal force is Ns f0 = 0.6, which is smaller than the critical force
fc ≈ 0.6566 for the case β = J = 1. Therefore the phase
transition should not contribute significantly. At each force
value a sample from the equilibrium distribution is drawn
using the algorithm as described Sec. IV, yielding a total of
Ns configurations where each one exhibits a free length Lm,
i.e., seen from the beginning (left), a corresponding number
Lm of 0’s before the first occurrence of a 1. A sample of such
a force-extension curve is shown in Fig. 9. The work of an
entire process is then given Eq. (27), which is twice the area
under the curve in the figure. We considered the chain lengths
N ∈ {50, 100, 200}.

By running the process many times, for the desired values
of f0 and Ns one can obtain histograms of the work in the
high-probability region. This allowed us to measure directly
the mean and the variance of the work. The resulting rescaled
work and variance functions, M1(u) and M2(u), see Eqs. (47)
and (56), are shown in Fig. 7. An almost perfect agreement
of analytical results (for Ns = ∞) and numerical results is
visible, except for very small values of the rescaled force
u, where the finiteness of the number of steps and sequence
length becomes slightly visible.

For a meaningful comparison of the full distribution to the
analytical result, it is necessary to resolve the work distribu-
tion over a large range of support, down to probabilities as
small as 10−200. For this purpose a large-deviation algorithm
[8] was employed. Note that this approach was already used
to measure work distributions for unzipping processes of a
more sophisticated RNA model [9]. The method’s basic idea
is to treat the underlying random numbers ξ = (ξ1, . . . , ξK ),
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required by a single simulation of one full work process, as a
state variable in a Markov-chain Monte Carlo process ξ (1) →
ξ (2) → . . . with a target distribution that has an additional bias
proportional to exp (W/θ ). Here θ ∈ [−0.0005, . . . , 0.0005]
is a temperaturelike parameter allowing control of the regime
in which work values are predominantly generated. Since
every equilibrium sample needs N random numbers and each
work process requires Ns samples at different force values, the
state vector ξ of random numbers has a size of K = N × Ns.
Each unzipping process is fully determined by ξ , and there-
fore the work is a deterministic function W = W (ξ ).

One Monte Carlo step in the Markov chain of random
number vectors consists of the following steps.

(i) Randomly selecting some entries of the current state
vector ξ (t ) and redrawing them, resulting in a trial state ξ ′.

(ii) Performing one full work simulation with this trial
state of random numbers.

(iii) Obtaining the corresponding work W ′ = W (ξ ′).
(iv) Finally accepting or rejecting the trial state with

Metropolis probability pMetr. = min {1, exp (
W/θ )}, where

W = W ′ − W (ξ (t ) ) is the work difference between the cur-
rent and trial state.

Equilibration was ensured as follows: One starts the
Markov chain with random as well as with extreme vectors of
random numbers, such that the corresponding initial work val-
ues are very different, respectively. If for these very different
initial conditions after a while the work values agree within
fluctuations, the chain can be considered as equilibrated. For
more details see Ref. [66]. We considered 90 different values
of θ . For each one, a separate MC simulation is performed
with at most 3.2 × 108 MC steps. This has yielded up to
40 000 sample points each after the initial equilibration phase,
and correlations were removed from the chain of work values.
Hence, for each value of θ a distribution Pθ (W ) is obtained.
These are then combined to the final overall work distribution
via the Ferrenberg-Swendsen method [67] using a convenient
tool [68].

Figure 6 shows the exact analytical and numerically es-
timated work distributions for the rescaled work w = k =
−W/2 f0. The distributions could be obtained down to prob-
ability values as small as 10−200. For k < 1250, they show
good agreement for all simulated system sizes. The finite-size
effects become relevant in the regime k > 1250. Nevertheless,
the curves tend toward the analytical distribution as the system
size increases.

Due to the quasistatic nature, i.e., sampling in perfect ther-
mal equilibrium, each work value is a sum of Ns statistical
independent values Lm. But these values are not identically
distributed due to the different force parameter values at each
of the process steps. This explains why the conditions of the
central limit theorem are not fulfilled. The resulting distri-
butions therefore do not need to be Gaussian, which they
apparently are not.

An estimate of the rate functions from the numerical deter-
mined work distribution PN

num. is given by

�N
num.(y) = − 1

Ns
ln

[
PN

num.(k = yNs)
]
. (75)

Since the analytical rate function in Eq. (67) considers the case
Ns → ∞, it is also worth looking at

�analy.(y) = − 1

Ns
ln(Prob. [w = yNs|Ns]), (76)

determined from the exact work distribution but for finite Ns

in Eq. (43).
The different rate functions are displayed in Fig. 8. Again,

the numerical curves tend towards the analytical rate functions
with increasing system size, where they are matching each
other for y < 3. Finite-size effects become relevant for y >

3. The analytical rate function for finite Ns is only slightly
different from the Ns → ∞ limiting one towards higher values
of y. This indicates that the influence of a finite number of
protocol points Ns is minor compared to that of a finite system
size N .

IX. SUMMARY AND DISCUSSION

In summary, we have calculated analytically and verified
numerically the distribution P(W ) of work performed in un-
zipping an infinitely long closed hairpin structure under an
external force, applied quasistatically in the zipped phase.
This model has many interacting degrees of freedom and
goes beyond past analytical works where either single-particle
systems or models with simple, i.e., harmonic, interactions
were considered.

As one of the main steps leading to this calculation of the
work distribution, we computed exactly the full equilibrium
distribution PN (L) of the free length L of an infinitely long
hairpin (N → ∞ limit), thus going beyond previous studies
that focused mainly on the average 〈L〉 as a function of system
parameters. We find that the large-N distribution PN→∞(L)
drastically changes its shape at the unzipping transition point
f = fc, and is, in particular, very broad right at the transition.

Based on this result, we were able to compute P(W ) in the
zipped phase analytically for all W . It also allowed us to evalu-
ate P(W ) numerically over its full range of support, resulting
in probabilities as small as 10−200 for the selected value pa-
rameters. We find generally a very good agreement between
analytical and numerical approaches, except expected finite-
size effects which are present in the numerical simulations.
There is also a dependence on the number of steps of changes
of the force, but here the influence on the results is rather
limited.

With respect to the comparison to experiments, the general
shape is the same, i.e., a typical value and a bell-shaped
decay away from it [5,6]. But it should be stressed that our
result gives the distribution even down to the low-probability
tails of the distribution. On the other hand, in experiments
one is restricted to, say, a few thousands of repetitions, thus
the tails are not accessible. Also, properties like the mean
or the variance of the experimentally measured work distri-
bution depend a lot on the details of the studied molecules,
while we study a very simple chain here. Thus, a detailed
comparison of our results with experiments does not seem
meaningful.

As mentioned above, the distribution P(L) has an expo-
nential shape like the distribution of states of the quantum
harmonic oscillator. Still, the complex dependence of the pa-
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rameter μ on the force and the temperature is very different,
leading to a phase transition of the unzipping process. Such a
phase transition does not occur for a harmonic oscillator. Note
that many processes in nature follow an exponential distribu-
tion, like radioactive decay, but there is also no connection to
a harmonic oscillator.

Correspondingly, the previously calculated work distri-
butions for the quantum harmonic oscillator obtained at
low temperature are very different from the present one.
Specifically, for a setup somehow close to ours, either a
two-sided exponential [25], an almost Gaussian [26,27], or
a two-peak δ distribution [31] were obtained. The reason
for these differences is likely that the coupling to the ex-
ternal force of an oscillator is different from the unzipping
case. Furthermore, in these works the large deviations are not
discussed.

In this paper, we have restricted our calculation of P(W )
only in the zipped phase, for simplicity. It would be interesting
to extend our calculation so that it encompasses both phases.

Also, we have considered a very simple energy model
corresponding to a homogeneous chain. It would be certainly
interesting to include heterogeneous chains. This has been
done for the calculation of basic measurable quantities to
some extent by considering disordered chains and applying
the replica trick [58]. Whether this allows for a calculation
of the work distribution is not clear to us. Also, for real

molecules one is usually interested in actual realizations, not
in disorder averages.

Finally, our results are valid for quasistatic processes. It
would also be interesting to study the work distribution for a
genuinely far-from-equilibrium process. One could describe
them, e.g., by considering the distribution P(L, t ), t being a
time or step counter, and describing the dynamics by allowing
for transitions between neighboring states. Still, for this model
the part beyond the first pair is “shielded” from the external
force, i.e., is always in equilibrium. Only the free part couples
to the external force and is influenced by the rate of force
change. Thus, one could expect an only small influence of the
speed of the process, but this remains to be verified in future
work.
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