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The current/height fluctuation statistics of Kardar-Parisi-Zhang (KPZ) universality in 1+1 dimensions are
sensitive to the initial state. We find that the averages over the initial states exhibit universal and scale-invariant
patterns when conditioning on fluctuations. To establish universality of our findings, we demonstrate scale
invariance at different times and heights using large-scale Monte Carlo simulations of the totally asym-
metric simple exclusion process, which belongs to the KPZ universality class. Here we focus on current
(or height) fluctuations in the steady-state regime described by the Baik-Rains distribution. The conditioned
probability distribution of an initial-state order parameter shows a transition from uni- to bimodal. Bimodal-
ity occurs for negative current/height fluctuations that are dominated by superdiffusive shock dynamics.
It is caused by two possible point-symmetric shock profiles and the KPZ mirror symmetry breakdown.
Similar surprising relations between initial states and fluctuations might exist in other universality classes
as well.
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I. INTRODUCTION

Anomalous and exotic types of dynamical laws have been
at the forefront in recent years. Understanding the rela-
tionship between initial states and fluctuations of conserved
currents is essential for diagnosing dynamic phenomena in
and out of equilibrium. Besides the wide interest in the
Kardar-Parisi-Zhang (KPZ) universality class, fluctuations are
non-Gaussian, superdiffusive, and sensitive to initial states. In
this paper we show for the KPZ universality class a pervasive
mirror symmetry breakdown. By establishing scaling laws
for probability distributions and conditioned observables, we
demonstrate universality and provide a strategy to analyze
dynamical structures. One of the seminal models in this class
is the totally asymmetric simple exclusion process (TASEP)
and its relatives [1–3]. The TASEP has been extensively stud-
ied both in physics and mathematics and by now many of
its properties are rather well understood. It has been real-
ized that its behavior is paradigmatic for a large class of
driven diffusive systems that typically belong to the KPZ
universality class [4,5]. The KPZ class has been found to
be rather robust, e.g., generic generalizations of the TASEP
to multilane situations or longer-ranged hopping, as in the
Nagel-Schreckenberg model of traffic flow belonging to the
same class [6]. In the following we will take a closer look
at the importance of initial states for current/height fluctua-
tions in the steady-state regime. This way new insights are
obtained, e.g., about the possible relation between fluctuations
and the occurrence of symmetry breaking. The results are
important not only for the particular class of systems studied
here, as they provide us with tools for understanding trans-
port phenomena with non-Gaussian fluctuations in and out of
equilibrium [7–9].

II. THEORY

In recent years it has been shown that the dynamical
properties of driven diffusive lattice gases, not only those in
the KPZ universality class [10,11], are rather well described
by their hydrodynamic density field u(x, t ) = �(x, t ) − ρ,
which is the deviation of the local density field �(x, t ) from
its stationary background ρ. Based on the conservation law
∂t�(x, t ) + ∂xj(x, t ) = 0 and steady-state current-density re-
lation j(ρ), the nonlinear fluctuating hydrodynamic (NLFH)
equation describes the evolution of u(x, t ) [6] as

∂tu = −∂x

(
vu + λ

2
u2 − ν∂xu +

√
Bη

)
, (1)

with the collective velocity v = j′(ρ), nonlinearity λ = j′′(ρ),
diffusion constant ν, and space-time white noise η of strength
B. After a Galilean transformation ã(x̃, t ) = a(x, t ) with x̃ =
x − vt removing the drift term −v∂xu and introducing a new
variable ~h(x̃, t ) by

∂x̃h̃(x̃, t ) = −u(x̃ + vt, t ), (2)

the NLFH equation turns into the KPZ equation [4],

∂t h̃ = ν∂2
x̃ h̃ + λ

2
(∂x̃h̃)2 +

√
Bη̃ , (3)

where ~h(x̃, t ) is a surface height profile growing at average
speed j(ρ). Note the mirror symmetry of the KPZ equa-
tion under the transformation x̃ → −x̃. For the lattice model
the substitution ∂x̃h̃ = −ũ is motivated by the exact mapping
of the TASEP to a discrete surface growth process [12–16]
that is known as the single-step model (Fig. 1). The univer-
sal large-scale properties for typical fluctuations of the KPZ
equation are by now well understood; see Ref. [5] for a review.
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FIG. 1. Mapping the TASEP dynamics to surface growth. Shown
is a TASEP configuration evolving in time. The colored particles will
hop at the next time step. By mapping a particle to a down-slope
(� → �) and a hole to an up-slope (� → �) one obtains a height
profile for each TASEP configuration. If a particle hops to the right,
a diamond is added to the surface between the particle’s initial and
final position.

The dynamical exponent that relates the scaling of space and
time variables as x ∼ t1/z takes the value z = 3/2, as opposed
to z = 2 for normal diffusion or z = 1 of the deterministic
Eulerian scaling. Our goal is to study the interplay between
typical fluctuations of current/height and the underlying initial
states within the steady-state regime. Time-integrated currents
or height fluctuations are given as

Jt =
∫ t

0
[j(vt, s) − j(ρ)]ds −

∫ vt

0
u(x, 0)dx, (4)

= h̃(0, t ) − h̃(0, 0) − j(ρ)t, (5)

and its fluctuations are of general interest [17–19]. A promi-
nent exact result is the Baik-Rains (BR) distribution [20] for
the steady-state regime,

PBR(Jt ) � (�t )−
1
3 fBR(Jt (�t )−

1
3 ), (6)

with scaling parameter � = 4|λ|ν2/B2 (Fig. 2). The initial-
state region around the measure point that contributes to
typical current/height fluctuations can be specified by the dy-
namical structure function S(x, t ) [21]. At large times it has
the form

S(x, t ) ≡ B

ν
〈u(x, t )u(0, 0)〉 � (Et )−

2
3 fPS((Et )−

2
3 (x − vt )),

(7)

with scaling parameter E = |λ|√2ν/B (Fig. 2). From this
scaling behavior, we infer a significance length ξα,t =
cα (Et )2/3. Here cα is a significance factor that ensures a 1 − α

confidence level that current/height fluctuations are dominated
by the initial state within a radius ξα,t around the measure
point. The confidence level is determined through 1 − α =∫ cα

−cα
fPS(x)dx. The scaling functions fBR and fPS (Fig. 2) have

analytical expressions that cannot be expressed in terms of
most usual special functions. They are tabulated with high
precision in [22].1

1 fBR(J ) = 2F ′
0 (−2J ), with F0(·) defined in Ref. [22].

FIG. 2. Baik-Rains distribution in log-scale (left bottom axes)
and Prhofer-Spohn scaling function (right top axes). The data shown
were recorded in a TASEP with hopping probability p = 1/2. The
rescaling has been made according to Eqs. (6) and (7), showing a nice
agreement to their asymptotic forms. The scaling functions fBR(J )
and fPS(J ) are tabulated with high precision in Ref. [22], where
fBR(J ) = 2F ′

0 (−2J ) with F0(·) defined in [22].

III. SIMULATIONS

To numerically investigate the KPZ universality class in
the steady-state regime, the TASEP model with parallel up-
date rule and periodic boundary conditions offers analytical
and computational advantages [6,23]. The TASEP model is
defined on a one-dimensional uniform lattice of size L. Each
lattice site can be occupied by a maximum of one particle. For
the parallel update rule the time is uniformly discretized. In
one time step, the particles jump to the right with probability
p given that the neighboring site is free (Fig. 1). Initial states
are drawn according to the steady-state measure [24]

P ({nx,0}) =
L∏

x=1

Pnx,0,nx+1,0 , (8)

with

P1,0 = 1

2p

√
1 − 4pρ(1 − ρ), (9)

P1,0 = P0,1; P1,1 = ρ − P1,0; P0,0 = 1 − ρ − P1,0, (10)

where nx,t ∈ {0, 1} is the occupation number of site x at time t
and ρ = 〈nx,t 〉 the average density. The resulting steady-state
current-density and fluctuation-dissipation relations are

j(ρ) = 1
2 [1 −

√
1 − 4pρ(1 − ρ)], (11)

ν/B = ρ(1 − ρ)
√

1 − 4pρ(1 − ρ). (12)

Note that Eqs. (10)–(12) are only valid for TASEP with a
parallel update rule. Knowing the model’s steady-state mea-
sure allows construction of the initial states directly and
avoid numerically expensive relaxations. Due to the fastest
convergence into the asymptotic scaling regime and by the
particle-hole symmetry improved statistics, all simulations
are performed with ρ = 1/2 [6]. To validate that the model
enters the asymptotic regime, described by the KPZ univer-
sality, we test for the scaling relations Eqs. (6) and (7), see
Fig. 2. To optimize the memory usage, the TASEP’s state
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is encoded bitwise into a int32 datatype. Further, limiting
the hopping probabilities to p ∈ { 1

2 , 1
4 } allows us to use the

int32 random numbers bitwise and propagate the model with
bitwise operations. This efficiency gain allows the system
size and observation times to be increased. Larger systems
allow suppression of finite-size effects of order O(L−1) and
increased statistics by using the translational invariance. All
states are propagated independently, and random numbers are
generated using a MT19937 pseudo random number genera-
tor. To get the time-integrated current for a discrete model, one
simply replaces the integrals in Eq. (4) by sums and uses the
discrete instantaneous current jx,t = nx,t (1 − nx,t )nx+1,t+1 and
fluctuation ux,t = nx,t − ρ fields. Monte Carlo simulations are
performed with systems of length L = 2 × 109. For the sys-
tem with p = 1/2 (p = 1/4), we used 705 (1305) independent
realizations. In order to treat the regions around the current
measure point as independent, we demand that the measure
points are at least 3ξα,t apart. This results in at least 40 initial-
state samples for J = −4 and up to 2.8 × 108 for J = 0. The
number of expected initial-state samples for a given current
J and time t can be roughly estimated using the Baik-Rains
distribution Eq. (6) and the system size.

IV. RESULTS

To focus on individual initial states, we use the order pa-
rameter defined in [25], which measures the initial mass or
height difference around the measure point but modified with
a scaled significance cutoff ξα,t , i.e.,

� = −
∫ ξα,t

−ξα,t

u(x, 0)dx, (13)

= h̃(ξα,t , 0) − h̃(−ξα,t , 0). (14)

Space correlation of u decays exponentially, so the central
limit theorem reveals � to be Gaussian distributed. By mir-
ror symmetry one has 〈�〉 = 0, and using the stationary
fluctuation-dissipation relation ν/B = ∫ ∞

−∞〈u(0, t )u(x, t )〉dx
one finds for the variance 〈�2〉 � cα (�t )2/3. Therefore, the
distribution of the order parameter fulfills a simple scaling
law,

Pα (�) � (�t )−1/3gα ((�t )−1/3�), (15)

gα (Δ) = 1√
2πcα

exp

(
− Δ2

2cα

)
, (16)

where gα solely depends on the significance factor cα . As ξα,t

grows logarithmically slow in α, we expect our study to be
qualitatively independent of α and limit our observations to
cα = 2, leading to a significance factor α < 0.4%. To analyze
the role of initial states given a time-integrated current, we
investigate the probability distribution of the order parameter
given a measured current, i.e., Pα (�|Jt ). Due to a missing
theoretical prediction we measure Pα (�|Jt ) via TASEP data
and establish its scaling property as

Pα (�|Jt ) � (�t )−
1
3 gα ((�t )−

1
3 �|(�t )−

1
3 Jt ), (17)

where gα (Δ | J ) is an universal conditioned scaling function
(Fig. 3). The conditioned distribution gα (Δ | J ) is related to

FIG. 3. Distributions for the rescaled order parameter Δ at dif-
ferent times conditioned on different rescaled currents J . The data
shown were recorded in a TASEP with hopping probability p = 1/2.
The rescaling has been made according to Eq. (17) and shows a nice
collapse.

gα (Δ) through the law of total probability, i.e.,∫ ∞

−∞
gα (Δ | J ) fBR(J )dJ = gα (Δ). (18)

Remarkably, gα (Δ | J ) reveal for J < 0 a bimodal and J > 0
a unimodal structure. The bimodality indicates a breakdown
of the KPZ mirror symmetry within the slow decaying tail
(J < 0) of the BR distribution. For a decreasing current we
observe a continuous transition from a uni- to bimodal dis-
tribution, resulting in two well-separated peaks at ±J , where
the resolution of the transition to bimodality is sensitive α. A
similar effect, a bimodality with two sharp peaks at ±J , has
been predicted for large deviations in the early time regime
for J > Jc [25,26] and is supported by a recent numerical
study [25]. Different to typical fluctuations, large deviations
scale as Jt ∼ t , and the significance length grows as ξ ∼ t .
Here we stress that the effect of bimodality or symmetry
breaking appears in the asymptotic regime for negative fluc-
tuations of typical scale Jt ∼ t1/3. Therefore we argue that
symmetry breaking plays an important role in general and
is likely to be observed in experimental settings. The order
parameter distribution shows that fluctuations are linked to
specific initial states. Therefore, we quantify the expected
density profiles around the measure point when conditioning
on a realized current/height. From TASEP data (Fig. 4) we
find the universal scaling property

〈u(x, 0)|Jt
〉 �

(
�

tE2

) 1
3

u((Et )−
2
3 x|(�t )−

1
3 Jt ) (19)

with ∫ ∞

−∞
|u(x|J )|dx � J, (20)

and limited by the support of the fPS scaling function. This
suggests that initial states realizing a current fluctuation of
strength J show on average an absolute height change or
absolute mass difference of J . To extract the two possible ex-
pected density profiles in the mirror symmetry broken regime,
we limit our investigation to J = −4, where the distribution
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FIG. 4. Space-rescaled initial density profiles conditioned on the
rescaled current. The figure shows how deviations from the expected
current impact the initial density profiles. The rescaling is according
to Eq. (19) and shows a nice collapse. The data shown were recorded
in a TASEP with hopping probability p = 1/2.

gα (�|J ) has two well-separated peaks. Using Eq. (19), but
additionally conditioning on �, the symmetry broken profiles
are obtained via

u±(x|J ) = u(x|J,±� > 0) (21)

and show a nice collapse for two different TASEP systems at
different times underlying the universality (Fig. 4). The KPZ
mirror symmetry now is reflected in u+(x|J ) = −u−(−x|J )
and we find

∫ ∞
−∞ u±(x|J )dx � ±J . The symmetry broken

initial-state profiles (Fig. 5) turn out to be superdiffusive
shocks. Different to a typical shock [26–28], the size scales
as ∼(Et )2/3 and its velocity as ∼( �

E2t )1/3. This means the size
of shock and its within time t moved distance are similar to the
spread of fluctuations. We stress that these conditioned density
profiles appear after averaging over many initial states. The
distribution of the lack of mass Eq. (17) indicates how strong a
single realization may deviate from the expected profile. This
is in contrast to the large deviation regime [29], where a single
realization is close to the expected profile.

V. CONCLUSIONS

The results presented here shed light on the relation be-
tween initial states and the statistics of fluctuations. They
generalize previous findings and put them into a different
perspective, e.g., the connection with a breaking of the KPZ
mirror symmetry for negative current fluctuations. Further-
more, universal scaling properties for conditioned observables

FIG. 5. Rescaled mirror symmetry broken initial density profiles.
The rescaling is according to Eqs. (19) and (21), showing a nice
collapse. The data shown were recorded in a TASEP with hopping
probabilities p = 1/2 and p = 1/4.

have been established, which shows the generality of the re-
sults and could be useful for further studies.

Although we have considered only the KPZ universality
class in the steady-state regime and its representation by the
TASEP, we point out that the results are far more general. It
is remarkable that even though given a Gaussian distributed
order parameter, conditioning on a non-Gaussian current
fluctuation reveals a bimodal distribution that indicates a sym-
metry breaking. Similar connections can be made even for
systems with non-Gaussian fluctuations belonging to other
universality classes in and out of equilibrium [7–9], explicitly
pointed out in Ref. [8]. The observed results are related to
the fact that small currents can be realized at two different
densities. In the TASEP this is related to the particle-hole
symmetry. It would be interesting to investigate what happens
in models like the variant of the Katz-Lebowitz-Spohn model
studied in [30]. Here the same current can be realized at up
to four different densities, which might lead to multimodal
distributions.
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