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Statistical mechanics of stochastic quantum control: d-adic Rényi circuits
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The dynamics of quantum information in many-body systems with large onsite Hilbert space dimension admits
an enlightening description in terms of effective statistical mechanics models. Motivated by this fact, we reveal
a connection between three separate models: the classically chaotic d-adic Rényi map with stochastic control, a
quantum analog of this map for qudits, and a Potts model on a random graph. The classical model and its quantum
analog share a transition between chaotic and controlled phases, driven by a randomly applied control map that
attempts to order the system. In the quantum model, the control map necessitates measurements that concurrently
drive a phase transition in the entanglement content of the late-time steady state. To explore the interplay of the
control and entanglement transitions, we derive an effective Potts model from the quantum model and use it to
probe information-theoretic quantities that witness both transitions. The entanglement transition is found to be in
the bond-percolation universality class, consistent with other measurement-induced phase transitions, while the
control transition is governed by a classical random walk. These two phase transitions can be made to coincide by
varying a parameter in the model, producing a picture consistent with behavior observed in previous small-size
numerical studies of the quantum model.
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I. INTRODUCTION

Mappings between quantum systems and classical statisti-
cal mechanics models have proved useful for understanding
the dynamics of quantum information [1–12]. For example,
these models have aided in identifying the universal behavior
of random quantum circuits [13] and measurement-induced
phase transitions (MIPTs) [14–18]. Simultaneously, the study
of adaptive quantum dynamics driven by measurements and
unitary feedback operations has been a topic of growing inter-
est [19–30], with possible applications in state preparation and
measurement-based quantum computing [31–37]. In these
systems, information gained from measuring a quantum state
is used to steer its dynamics, and these control operations can
drive a phase transition between an uncontrolled phase, where
the system never reaches the target state, and a controlled
phase where it always does. Such “control transitions” have a
classical antecedent in chaotic maps under stochastic control
[38–40], where the dynamics of the chaotic map are randomly
interrupted by a control operation and the transition is driven
by the frequency of the interruptions. In quantum systems, a
control transition is generically preceded by an entanglement
transition driven by the measurements, where the late-time
entanglement content of the quantum state abruptly switches
from extensive volume-law to subextensive area-law scaling
at a critical control rate [41]. However, in certain circum-
stances the entanglement and control transitions can coincide.
To understand the interplay between and critical properties of
entanglement and control transitions, we construct a statistical
mechanics model for a family of adaptive quantum circuits
inspired by the d-adic Rényi map under stochastic control
[42]; this is illustrated in Fig. 1.

Exact numerical explorations of the entanglement dynam-
ics in systems of qubits are limited to small system sizes or
special types of circuits (e.g., Clifford [27,43] or free-fermion
[30] circuits). By promoting qubits, with two states per site,
to qudits, with onsite dimension d , and taking d → ∞, one
can often find a mapping between the entanglement entropy
of the system and the energetics of an effective statistical-
mechanics model in one higher dimension [5]. The power of
these mappings lies both in enabling scalable simulations and
in providing classical intuition that can enlighten the analysis
of the original quantum model at d = 2. Our statistical me-
chanics model adapts tools originally developed in Ref. [5] for
brickwork circuits of Haar random unitaries in the presence of
measurements and takes the form of a Potts model on a ran-
dom graph. This model, based on a stochastic quantum map
that is itself inspired by a chaotic classical map (see Fig. 1),
represents one of the central results of our work. We will use
it to elucidate and provide intuitive explanations for two crit-
ical behaviors, stemming from percolation and random-walk
physics, that have been observed in other systems.

The ingredient which precipitates a control transition is
the stochastic inclusion of a control map. In simple terms, a
control map is a corrective map that pushes the dynamics of
the system onto an unstable fixed point; the resulting control
transition occurs when an unstable fixed point becomes stable
(see Fig. 1, “Classical Inspiration” for an example of a con-
trol map onto the unstable fixed point x = 0 and Ref. [38]).
These transitions are often synonymous with absorbing state
transitions; however, we largely do not use this language since
the process can control onto trajectories as well as states.
Additionally, the type of transition studied here does not
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FIG. 1. The relationship between models considered in this work
we present. The classically chaotic d-adic map with stochastic
control inspires a quantum analog, from which we then derive a
statistical mechanics model via the procedure of Ref. [5]. Particular
limits of this model then exhibit percolation (p = 0) or random walk
(q = 0) universality.

generically follow the directed percolation universality class
as many absorbing state transitions do [44].

To study the interplay of these two criticalities, the quan-
tum model from which the Potts model is derived features
two types of measurements. One occurs during the applica-
tion of the control map, which happens with probability p at
each time step. If the control map is not applied, a chaotic,
entangling map based on the d-adic Rényi map is applied
instead. Following application of the chaotic map, we allow
additional measurements to occur with a probability q. This
leads to a phase diagram, shown in Fig. 2, with three phases: a
volume-law phase where the system remains highly entangled
at late times, an area-law phase driven by the measurements
with probability q, and a disentangled phase driven by the
control protocol with probability p. This phase diagram, and
associated information about critical properties, is obtained by
mapping certain information-theoretic quantities that witness
the transitions (e.g., entanglement entropies, mutual informa-
tions, and purification measures) onto correlation functions
in the Potts model. The transition between the volume- and
area-law phases is in the bond-percolation universality class
consistent with the “standard” MIPT. The transition between

FIG. 2. The two-dimensional phase diagram of the stochastic
circuit with additional random measurements. The parameter p is the
probability to apply the control map at each time step, and q is the
probability to measure the sites acted on by the unitary after each
chaotic step. We determine phase boundary labeled “percolation”
with three quantities, the ancilla entropy Sa, the half-cut entropy
SL/2, and the tripartite mutual information I3, and confirm the ver-
tical phase boundary labeled “random walk” using Sa and SL/2. All
methods are in good agreement.

the area-law and disentangled phases, described by a random
walk, is in the same universality class as the classical control
transition and was also previously observed in direct simu-
lations of the quantum model [19,29]. The two transitions
coalesce at q = 0, consistent with predictions from a finite-
size scaling analysis in Ref. [19].

The paper is organized as follows. In Sec. II we describe
the d-adic Rényi map and its quantum analog that forms the
basis of our study. We further introduce how adding measure-
ments with probability q will allow us to split the control and
entanglement transitions. In Sec. III we describe the derivation
of the Potts model, which describes the information content of
the quantum d-adic map as well as the observables we mea-
sure (in both information-theoretic terms and their analogs in
the statistical model). Following this, in Sec. IV we uncover
the phase diagram and critical properties and discuss their
implications for the quantum system. In Sec. V we conclude
with an outlook and open questions.

II. d-ADIC RÉNYI MAP UNDER STOCHASTIC CONTROL:
CLASSICAL MODEL AND QUANTUM ANALOG

We begin by describing the d-adic Rényi map under
stochastic control and the analogous quantum circuit. The
d-adic Rényi map [42] acts on a real number x ∈ [0, 1) as
follows:

x �→ d x mod 1. (1)
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The dynamics of any irrational number x0 under this map is
chaotic in the sense that its orbit under the map, x0 → x1 →
x2 → · · · , uniformly fills the unit interval. However, rational
initial conditions generically undergo periodic orbits. For ex-
ample, for d = 2 the initial condition x0 = 1/3 undergoes a
period-2 orbit 1/3 → 2/3 → 1/3 → · · · . In addition, for any
d , the origin x = 0 is a fixed point. These regular dynamical
trajectories and fixed points are unstable in the sense that any
rational x0 has an irrational number arbitrarily close, so that
any infinitesimal displacement of the initial condition will
generically lead to chaotic dynamics.

It was demonstrated in Ref. [38] that with a stochastic
control protocol these unstable orbits can be transmuted into
global attractors—regardless of how the system is initialized,
it is always eventually pushed onto the desired orbit. The
protocol defines a modified discrete-time dynamics wherein,
at each time step, a control operation is applied with probabil-
ity p, and otherwise the chaotic map Eq. (1) is applied. The
control map is designed to have fixed points corresponding
to each point on the orbit it targets. In the simplest case of
control onto the fixed point x = 0, the control map is given by
the contraction

x �→ (1 − a)x, (2)

where 0 � a � 1 parameterizes the strength of the control.
At fixed 0 < a < 1 the dynamics of the coupled chaotic and
control maps exhibits a phase transition at [40]

pc = ln(1 − a)

ln(1 − a) − ln(d )
. (3)

For p > pc, any initial condition eventually reaches the orbit,
whereas for p < pc it does not.

To define a quantum analog of this model, we need to
replace the classical state x with a quantum computational
basis (CB) state |x〉. To do this, we first expand x in a base-d
fraction,

x ≡ 0.d1d2 · · · =
∞∑

k=1

dk

dk
, (4)

where the individual “dits” dk may take values 0, 1, . . . , d −
1. The chaotic map Eq. (1) acts by “shifting the decimal
point” to the right in the dit string representation and throwing
away the most significant dit, 0.d1d2 · · · �→ 0.d2d3 · · · . Upon
setting a = (d − 1)/d the control map Eq. (2) becomes divi-
sion by d and takes a similarly simple form: a leftward shift
of the decimal point, 0.d1d2 · · · �→ 0.0d1d2 · · · . Putting these
together, we can define the full stochastic control protocol on
the deterministic Bernoulli map,

0.d1d2 · · · �→
{

0.d2d3 · · · , with probability 1 − p,
0.0d1 · · · , with probability p. (5)

For this value of a, the control transition occurs at pc = 1/2,
where the decimal point effectively undergoes an unbiased
random walk.

This is an exact rewriting of the classical model in a dis-
cretized form, and a quantum model is naturally obtained by
promoting dits to d-state qudits. In order for this quantum
model to remain tractable, however, we need a finite dimen-
sional Hilbert space, which we implement by first truncating

the classical system to L dits. This change necessitates modi-
fying details of the dynamics. First, instead of discarding the
leftmost (rightmost) dit with each application of the chaotic
(control) map, we cycle it to the end (beginning) of the string.
This can be done with either an ascending or descending
staircase of SWAP operations, or can be framed as leaving
the dits in place and moving the decimal point through the
system with periodic boundary conditions imposed. We use
the latter picture. After moving the decimal point, the control
map then sets the dit to the right of decimal point to zero,
and the chaotic map randomizes the two dits to the left of
the decimal. The randomization is introduced due to the fact
that truncation has removed the possibility of chaos—indeed,
without any randomization, such truncated numbers are ratio-
nal and therefore will not undergo chaotic dynamics under a
simple cyclic translation. This randomization operation can be
written

· · · di • di+1di+2 · · · �→ · · · d̃id̃i+1 • di+2 · · · (6)

and simulates the distribution of digits in almost all irrational
numbers [19,45]; this allows for a faithful representation of
the d-adic map’s chaotic properties while sacrificing deter-
minism [29]. This stochastic version of the d-adic map along
with the control can be written compactly as

d1 · · · di•di+1 · · · dL

�→
{

d1 · · · d̃id̃i+1•di+2 · · · dL, with prob. 1 − p,
d1 · · · di−1•0idi+1 · · · dL, with prob. p,

(7)

with periodic boundary conditions on the movement of the
decimal and random d̃i and d̃i+1.

Exchanging dits for qudits, we now have L quantum de-
grees of freedom and a single classical piece of information,
the position of the decimal point. The movement of the dec-
imal point determines the structure of the quantum circuit
that evolves the qudits in time as we now describe; formally,
we will have a quantum state |ψ〉 and classical information
about the location of the decimal point, represented by the
tuple {|ψ〉, •i}. To obtain quantum dynamics in the system,
we promote the random but classical scrambling function to a
random unitary transformation:

|· · · di • di+1di+2 · · ·〉 �→ Ui,i+1|· · · didi+1 • di+2 · · ·〉. (8)

First, the decimal point is translated to the right. Then a
random two-qudit unitary operator U , drawn uniformly from
the Haar measure on U (d2), is applied to the two sites imme-
diately to the left of the decimal point, so that Ui,i+1 = 1di−1 ⊗
U ⊗ 1dL−i−1 (1N is an N × N identity matrix) and its periodic
extension for UL,1. This generates superposition and entangle-
ment of the computational basis states, leading to quantum
chaotic behavior [19]. In this case the model becomes chal-
lenging to simulate owing to the exponential growth of the
dL-dimensional Hilbert space. A more modest polynomial
scaling can be achieved by restricting U to be a random two-
qudit Clifford gate [46,47] at the expense of modifying the
physics in a manner discussed at the end of this section. The
control map is implemented via a reset operation on the ith qu-
dit. This reset operation can be implemented as (i) a projective
measurement on the qudit to the left of the decimal point, (ii) a
unitary rotation on that qudit, conditional on the measurement
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outcome, to the |0〉 state, and (iii) a translation of the decimal
point to the left. Formally, we can implement this with the
Kraus operators Ka,i = 1di−1 ⊗ |0〉〈a| ⊗ 1dL−i which give us
the reset operation

Ri|ψ〉 =
{

Ka,i|ψ〉
‖Ka,i|ψ〉‖ , with prob. ‖Ka,i|ψ〉‖2. (9)

Note that where the chaotic and control maps are applied is
determined by the location of the decimal point •i, which
moves at each time step based on which map is randomly
chosen according to the value of p. This allows us to write
the full stochastic evolution as

{|ψ〉, •i} �→
{{Ui,i+1|ψ〉, •i+1}, with prob. 1 − p,
{Ri|ψ〉, •i−1}, with prob. p. (10)

Regardless of the nature of the scrambling operation U
(permutation, Haar-random, or Clifford), the location of the
classical control transition at pc = 1/2 is unchanged by the
modifications to the original classical model because it is
determined by the motion of the classical piece of information
•i, a fact verified in Refs. [19,29].

In addition to the control transition inherited from the
classical model, the quantum model exhibits a volume-to-
area-law entanglement transition driven by the measurements
performed as part of the control map. In Ref. [19], which
considered d = 2 and Haar-random gates, the control and
entanglement transitions were found to coincide to within the
precision set by the small-sized classical numerical methods
used. Nevertheless, it was argued there that the transitions
should coincide owing to the fact that entanglement spreads
throughout the system only via the translations applied as
part of the chaotic map. Reference [29] reached larger sys-
tem sizes by replacing the Haar-random gates with Clifford
gates, and it was found that the entanglement and control
transitions separate, with the former preceding the latter as
expected for generic measurement-and-feedback-driven tran-
sitions [22,23]. This was attributed to the fact that Clifford
gates have a finite probability of locally disentangling a sta-
bilizer state. Moreover, the criticality of the entanglement
transition was broadly consistent with that of the MIPT in
Clifford circuits. Note that in this setting of two separate
transitions, the control transition may also have entangle-
ment signatures: when controlling onto a product state as in
Ref. [29] the entanglement changes from area-law to fully
disentangled (i.e., from finite to zero) and exhibits distinct
critical scaling properties associated with the random walk.

To provide an independent perspective on this observation,
and to test whether the entanglement and control transitions
can be shown numerically to coincide in larger systems, we
add one final ingredient to the d-adic Rényi circuit described
above. Each time the chaotic map Eq. (8) is applied (which
happens with probability 1 − p at each time step), we allow a
computational basis measurements to occur with probability
q on the two qudits acted upon by the unitary gate. At p = 0,
the circuit becomes a brickwork lattice of two-qudit gates,
but with the boundary between the 1st and Lth qubits twisted
by L − 2 time steps, demonstrated in Fig. 3. In this limit, we
expect to recover the physics of the MIPT, where a volume-
to-area-law entanglement transition in the bond-percolation
universality class occurs at the percolation threshold q = 1/2.

FIG. 3. A schematic showing the twisted boundary conditions
generated by our protocol for p = 0. No measurements are shown
here, but would be performed with probability q after each gate.

In the opposite limit, where q = 0, we should recover the
picture suggested in Ref. [19] where the entanglement and
control transitions coincide. We expect the two transitions to
separate when p and q are both finite, and an example random
circuit for generic p and q is shown in Fig. 4(d). However,
the control transition line will remain fixed at p = 1/2 for
all q, with the entanglement transition line interpolating from
(p, q) = (1/2, 0) to (0, 1/2). The statistical mechanics model
we derive in the next section yields a phase diagram, Fig. 2,
that is consistent with this intuition.

III. STATISTICAL MECHANICS MODEL
AND OBSERVABLES

We follow the general recipe of Refs. [4,5] to obtain the
free energy of a 2+0d classical model starting from the Rényi
entropies of the 1+1d qudit circuits generated by the stochas-
tic process described above. The nth Rényi entropy is

Sn(A) = 1

1 − n
log TrA

(
ρn

A

)
, (11)

written here in terms of the reduced density matrix for a
subsystem A obtained by a partial trace of the full density
matrix over the degrees of freedom in the complement of A,
ρA = TrĀ|ψ〉〈ψ |; where the pure state density matrix can be
drawn as a tensor network

To compute the nth Rényi entropy, we introduce n replicas
and make use of the permutation operator Pn,A defined on n
copies of the Hilbert space of subsystem A such that

Pn,A|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 = |ψn〉 ⊗ |ψ1〉 ⊗ · · · |ψn−1〉.
For the full system consisting of A and Ā, we can find Trρn

A by
using Pn,A ⊗ 1n,Ā (for which, 1n,Ā operates as the identity on
qudits in Ā, across all n replicas); for shorthand, we will just

024113-4



STATISTICAL MECHANICS OF STOCHASTIC QUANTUM … PHYSICAL REVIEW E 110, 024113 (2024)

(a) (b) (c)

(d) (e) (f)

FIG. 4. Schematic diagrams showing the relation between quantum circuits, Potts models, and the minimal cut framework for determining
entanglement entropies. (a) An example brickwork circuit composed of two-site unitaries (blue rectangles) with random projective measure-
ments (red circles). Subsystem A is composed of the three sites at the final time circled by the dashed oval. (b) The tilted square lattice for
the Q!-state Potts model obtained from (a). Each site (large circles) corresponds to a unitary in the circuit and are where the Q!-state “spin”
variables of the model reside. Each measurement in the circuit yields a cut bond between these sites, i.e., no coupling between the respective
variables. The boundary conditions in A and Ā are encoded by the small circles at the final time and determine the state on each site (indicated
by color, blue or yellow) that minimizes the free energy FA. The bonds marked with stars are a minimal-length domain wall in this system, and
cutting these bonds disconnects the domains containing A and Ā—a minimal cut. (c) The dual graph representation of Potts model lattice in
(b), allowing for simple determination of the minimal cut via path length minimization. Vertices are shown as red diamonds, length-0 edges
as thick red lines, and length-1 edges as dashed red lines. A path corresponding to the domain walls in (b) is highlighted in yellow. (d) An
example stochastic circuit. As in (a) subsystem A is circled. The reset operation of the control steps are also shown, feeding measurement
outcomes into the dynamics of the circuit. (e) The irregular lattice for the Q!-state Potts model corresponding to the circuit (d). The only aspect
of the control steps relevant for obtaining this lattice are the measurements. (f) The dual graph representation of the Potts model in (e). In this
case the shortest path has length 1.

call this full operator Pn,A. The associated trace is then simply

Having now written our Rényi entropies as Sn =
1

1−n log Tr(Pn,A|ψ〉〈ψ |⊗n), we introduce more replicas [48]
to evaluate the logarithm (i.e., log x = limm→0

xm−1
m ). If we

further average over quantum trajectories, which introduces
one final replica to account for Born probabilities, we arrive
at the Rényi entropy in terms of a partition function

S̄n(A) = lim
m→0

ZA − Z∅
m(1 − n)

, (12)

where m indexes the artificial replicas and where, setting
|ψ〉 = C|ψ0〉 and Q = mn + 1,

ZA = EC Tr
[
(C|ψ0〉〈ψ0|C†)⊗QP⊗m

n,A

]
, (13)

Z∅ = EC Tr(C|ψ0〉〈ψ0|C†)⊗Q (14)

are the partition functions for the system with and with-
out the partial trace. The initial state of the system is |ψ0〉,
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C represents the entire quantum circuit, here the stochas-
tic product of projective measurements and unitary gates as
described in Sec. II, and EC is the average over these measure-
ments and gates (i.e., trajectories). In the replica limit m →
0 we have ZA → Z∅, so we can approximate ZA − Z∅ ≈
logZA − logZ∅ ≡ −(FA − F∅), defining “free energies” FA

and F∅ from partition functions in the usual way.
In the d → ∞ limit, this procedure maps a circuit onto a

Q!-state Potts model upon averaging over unitary gates. The
derivation involves the formal averaging of Q Haar unitary
gates [from U (2d )] and is discussed in detail in Ref. [5]. The
result is that unitary gates in the original circuit become sites
in a lattice where the variables of this Potts model reside,
those being elements of the permutation group acting on
the Q total replicas of the system, σ ∈ SQ. Measurements
in the circuit model remove the Potts interaction between
neighboring sites. The circuit time becomes a second spatial
dimension, and the partial trace at the final time imposes
boundary conditions on the Potts variables within A and
Ā: σ = e within Ā (the identity permutation, originating
from 1n,Ā), and σ = (12 · · · n)⊗m within A (originating from
Pn,A). The quantity FA − F∅ is the energy cost of satisfying
these boundary conditions above the energy of the system
with no such constraint, and is directly related to the averaged
entanglement entropy of the circuit. Note, however, that in this
procedure the state of the qudits themselves plays no role and
is not preserved, so there can be no sense of “control” in the
Potts model—it only contains information about the entropy.
The control operation in our protocol is therefore realized
as just a projective measurement followed by a translation
of the decimal point, with the measurement-conditioned
single-qudit unitary having no effect.

Furthermore, the index n, specifying which Rényi entropy
we are calculating no longer enters into the model due to the
infinite-d limit. Consequently, the same result is obtained for
all choices for n, equivalent to the case of n = 0, i.e., the
Hartley entropy. We will therefore drop the index moving
forward.

The model derived in Ref. [5] for the regular brickwork cir-
cuit of gates and random measurements yields a regular tilted
square lattice. An example circuit and its resulting lattice are
shown in Figs. 4(a) and 4(b). Because measurements remove
the interaction between neighboring lattice sites, for Q → 1
the Potts model reduces to a picture of bond percolation, so
phases of the system, their energies, and therefore the entan-
glement phases, are simple to deduce. For small measurement
rates few bonds are cut, so a typical realization contains a
cluster of connected bonds spanning between A and Ā, each
pinned to different states. The energy of the system is then de-
termined by the length of the shortest domain wall separating
domains in these different states, which is proportional to the
size of A or Ā, whichever is smaller. The entropy is therefore
proportional to the volume of the subsystem. For high mea-
surement rates many bonds are cut, leaving only small clusters
of connected bonds. Sites in A and Ā are only be connected
by small clusters at their boundary in typical realizations,
so the domain wall between them has length determined by
the size of this boundary. The entropy is thus proportional
to the surface area of the subsystem. Bond percolation in
two dimensions has a phase transition when bonds are cut

with probability 1/2, so this is also the critical measurement
rate for this model. The length of the domain wall between
different orderings can alternatively be conceived of as the
minimum number of additional bonds that must be cut in order
to completely separate these phases imposed by A and Ā. For
this reason the length of the domain wall is also referred to as
the “minimal cut” [2].

This domain wall/minimal cut picture can alternatively be
phrased in terms of a dual graph [15]: in the Potts model lattice
we identify faces as regions bounded by bonds (both cut and
uncut), and for each of these faces we draw a vertex. Two ver-
tices in the dual graph are connected by an edge of length 0 if
they are separated by a cut bond (measured qudit) in the orig-
inal graph, and by an edge of length 1 if they are separated by
an uncut bond (unmeasured qudit). At the final time boundary
of the circuit there are L vertices corresponding to the faces
between the L qudit lines. Choosing two of these vertices to
bound our complementary regions A and Ā, the entanglement
entropy is then the smallest length among all possible paths
between these vertices; each uncut bond contributes length 1,
so this path minimization counts the minimal number of bonds
needing to be cut. An example of this procedure is shown
in Fig. 4(c). We will use this conceptualization of minimal
cuts as minimal path lengths in the dual graph in our further
analysis.

Because our protocol is inherently stochastic, the Potts
model resulting from the above procedure for arbitrary p and
q is generically defined on an irregular lattice and cannot be
analytically analyzed as directly as the case of the regular
brickwork circuit. However, many of the same general results
carry through: we obtain precisely the same mapping from
unitary gates to sites in a lattice hosting Q!-valued degrees
of freedom with measurements cutting the bonds between
them, and we can analyze the entanglement entropy as the
minimal number of additional bonds that must be cut in order
to separate the domains containing subsystems A and Ā. We
can also similarly construct the dual graph from which this
minimal cut value, and therefore the entanglement entropy, is
ascertained via path minimization. In Figs. 4(d)–4(f) we show
an example stochastic circuit, the related Potts model lattice,
and the associated dual graph.

A. Minimal cut model

By analyzing how distances in the dual graph formulation
of our stochastic circuit model are updated as we apply entan-
gling or control steps, we obtain an exact procedure to update
the minimal cut for any choice of contiguous subsystem A as
the circuit is generated. We use an L × L matrix d̂ to track
the minimal path lengths between the L different possible
final-time vertices bounding our subsystem A; the element di j

is the distance through the dual graph between vertex i and
j, so d̂ is symmetric with zeroes along the diagonal. In each
simulation of the circuit we initialize this matrix with some
initial condition on these distances encoding the entanglement
of the initial state (e.g., di j = 0 for all i, j is a product state),
and at each time step this matrix is updated according to
whether we perform a chaotic or control step. We will label
the position of the decimal point and the vertices of the dual
graph by the qudit immediately to their left.
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Measuring qudit i cuts the corresponding bond in the Potts
model and sets the length of the link between the vertices at i
and i − 1 to zero, di,i−1 → 0. Consequently, the distance from
any other vertex j to i and i − 1 becomes the minimum of
the distances between j and either i or i − 1 before the map
is applied. We also need to enforce the triangle inequality
between all other pairs of vertices j, k; since the distances
from j and k to i or i − 1 have possibly decreased, the path
from j to k passing through i or i − 1 may be the new minimal
path. Altogether, we have that the effect of a measurement at
i is

di j
Mi−→ d ′

i j = min(di j, di−1, j ),

di−1, j
Mi−→ d ′

i−1, j = min(di j, di−1, j ),

d jk
Mi−→ d ′

jk = min(d jk, d ′
i j + d ′

ik ) ∀ j, k �= i, i − 1,

(15)

where d̂ is kept symmetric at all points. As noted previously,
since the model does not track the state of the qudits in the sys-
tem, the control map is simply a measurement implemented in
this way followed by a shift of the decimal point.

Applying the chaotic map first moves the decimal point
to the right from i to i + 1 then applies a random unitary
gate to qudits i and i + 1. This creates a new “face” in the
Potts model lattice, corresponding to a new vertex at position
i which is only connected to the vertices at i + 1 and i − 1.
Therefore, only paths with one endpoint at i are affected, and
the elements of d̂ are updated due to this unitary gate as

di j
Ui−→ d ′

i j = 1 + min(di+1, j, di−1, j ) ∀ j �= i. (16)

Since di j � dik + dk j for all k by the triangle inequality we
can be assured that this update is the minimal new distance
between i and j. We also need to enforce that the maximum
value of di j is the actual physical distance between i and j.
For instance, the distance between vertices 1 and 4 is never
greater than three for L � 6—at worst we can cut through the
three qudit lines between the corresponding faces. We then
allow for two measurements on sites i and i + 1, each with
probability q, as given in Eq. (15).

After stochastically running these dynamics, the elements
of d̂ record the minimal cut corresponding to any choice of
connected final-time subsystem A. A natural choice for A is
the leading L/2 qubits, using the location of the decimal point
to set one boundary, giving the half-cut entropy SL/2. The
other values in d̂ are useful in defining other measures of
entanglement such as the bipartite or tripartite mutual infor-
mation, I2 and I3.

B. Ancilla model

Another useful way to analyze the entanglement properties
of a system is in terms of a purification transition [49,50].
Consider maximally entangling an L qubit system at the initial
time with an ancilla qubit, which is not acted upon by the
subsequent dynamics. In the volume-law phase the system
remains in a mixed state for exponentially long time, while
in area-law or disentangled phases it purifies on much shorter
timescales. Therefore, by choosing an appropriate depth for

FIG. 5. Example Potts model lattices corresponding to stochas-
tically generated circuits including an ancilla qudit (far right line)
that is maximally entangled at the initial time. (a) A realization with
Sa = 1. The domain containing the ancilla can be disconnected from
the rest of the system by a single cut, indicated with a star. (b) A
realization with Sa = 0—the same sequence of chaotic and control
steps as in (a), but with more measurements following unitary gates.
There are enough cut bonds to disconnect the ancilla domain from
the domain containing the L qudits at final time; the dashed red line
shows the separation.

the circuit, the rank of the reduced density matrix of the ancilla
at the final time reveals the entanglement phase the system.

Applying the procedure outlined above but now with an
ancilla qudit maximally entangled at the initial time, we again
obtain a Q!-state Potts model that encodes this ancilla entropy
as the energy of a domain wall in the system. The subsystem
A is now the ancilla itself and the L qudits of the system
after stochastic evolution comprise Ā. Because all degrees of
freedom are maximally entangled at the initial time—all sites
in the Potts model lattice are connected—the domain wall
separating A and Ā is either (i) a space-like curve through the
L-qudit system separating these qudits at final-time from the
initial state, or (ii) a cut through the ancilla itself. The latter
of these sets the maximum value for the minimal cut to be 1,
and the only case where the former gives a smaller minimal
cut is if a trivial domain wall exists requiring 0 cuts, meaning
that the final-time state of the L-qudit system is entirely uncor-
related with its maximally entangled initial state—the system
has lost its memory of the initial state. These two cases are
demonstrated in Fig. 5.

Calculating the ancilla entropy is thus equivalent to deter-
mining if there exists a path through the Potts model lattice
from the ancilla, i.e., the initial-time boundary where all qudits
and the ancilla are connected, to at least one qudit at the final
time of the circuit. Just as we determined the minimal cut
number above via updating the matrix d̂ according to Eqs. (15)
and (16), we can determine if such a path exists now using
two pieces of classical information that are updated as the
circuit is constructed. First is an L-bit list a which tracks the
connection of the ancilla through the Potts model lattice to
each qudit at the present time step: if ai = 1 then there is
a path along uncut bonds from the ancilla to qubit i, and if
ai = 0 then there is not. Second is a symmetric L × L matrix
ĉ tracking the connectivity of the lattice at the present time
step. If ci j = 1 then there is a path along uncut bonds through
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TABLE I. Regions A, B, C, and D follow the geometry given in Fig. 6, so that A ∪ B and B ∪ C are contiguous regions. C is what we
refer to as the correlation function, and i and j are taken to be separated by L/2 throughout. Note that I2 and I3 are particular combinations of
minimal cuts inspired to cancel divergent terms (as L → ∞) present due to the geometry of the regions [51,52].

Notation Information theoretic quantity Percolation quantity

S(A) Entanglement entropy of region A Minimal cut connecting points on the boundary of A
Sa Ancilla entropy Crossing probability (in time direction)
C Mutual information of two ancillas coupled at i and j Probability i and j are in the same cluster
I2(A,C) Bipartite mutual information max{0, S(A) + S(C) − S(B) − S(D)}
I3(A, B,C) Tripartite mutual information I2(A,C) + S(B) + S(D) − S(A ∪ B) − S(B ∪ C)

the circuit between qudits i and j, and if ci j = 0 then there is
not. Initially, the system is in a maximally entangled state, so
all entries of a and ĉ are set to 1.

Whenever we measure a site i, it is disconnected from
every other qudit and from the ancilla, so

ci j
Mi−→ δi j, ai

Mi−→ 0. (17)

When a unitary gate is applied between i and i + 1 then they
become connected, so every site j connected to i also becomes
connected to i + 1, and vice versa. Additionally, all sites j
connected to i are now also connected to all sites k connected
to i + 1. Altogether the action of a unitary gate is

ci,i+1
Ui−→ 1,

ci j, ci+1, j
Ui−→ c′

i j, c′
i+1, j = ci j ∨ ci+1, j ∀ j �= i, i + 1,

c jk
Ui−→ c jk ∨ (c′

i j ∧ c′
ik ) ∀ j, k �= i, i + 1,

aj
Ui−→

{
0,

∑
k c jkak = 0,

1,
∑

k c jkak �= 0,
(18)

where ∨ is the bitwise OR operation and ∧ is the bitwise
AND operation. Note that in both Eqs. (17) and (18) we must
also ensure that ĉ remains symmetric. As for the algorithm
tracking the minimal path lengths above, the control map
is a measurement followed by a shift of the decimal point,
and a chaotic step entails is a shift of the decimal point, a
unitary gate, and two probabilistic additional measurements.
For a given realization of the stochastic circuit, the ancilla
entanglement entropy Sa is 0 if all the entries of a are 0, and 1
otherwise.

C. Observables

To examine the entanglement properties of this model we
consider the behavior of several quantities: the half-cut Rényi
entropy SL/2 and the entropy Sa of an initially entangled an-
cilla as described above, as well as the bipartite and tripartite
mutual informations I2 and I3, the purification time tpure, and
the correlation C between two ancillas coupled into the system
at equal time and L/2 sites apart; see Table I for a quick
reference on what these correspond to in different contexts.

The mutual information is a measure of the delocaliza-
tion of information, or, for our purposes here, the amount of
entanglement between different subsystems. For the bi- and
tripartite mutual informations we consider partitioning our
system into four subsystems, each of size L/4, which we label
A, B, C, and D, arranged as shown in Fig. 6. The bipartite

mutual information I2 is then expressed as

I2(A,C) = S(A) + S(C) − S(A ∪ C), (19)

where S(X ) is the Rényi entropy from tracing out subsystem
X , which for contiguous X corresponds to a particular element
of d̂ as discussed in Sec. III A—di j is the Rényi entropy for
the subsystem consisting of qudits i − 1 through j. The last
quantity in this expression, S(A ∪ C), is the Rényi entropy
associated with a noncontiguous subsystem and so is not itself
contained in d̂ , but can be constructed from its elements.
It is most easily understood as the minimal cut needed to
separate the domain(s) containing both A and C from the
domain(s) containing B and D, which can be made in two
possible ways—either we cut out A and C or we cut out B
and D. We therefore want the minimum of S(A) + S(C) and
S(B) + S(D), which are trivial to compute from d̂ .

The tripartite mutual information I3 considers the same
partitioning of the system as above, and can be expressed as

I3(A, B,C) = I2(A, B) + I2(B,C) − I2(B, A ∪ C)

= S(A) + S(B) + S(C) + S(A ∪ B ∪ C)

− S(A ∪ B) − S(B ∪ C) − S(A ∪ C). (20)

Since the regions A and B are adjacent, S(A ∪ B) is just
the half-cut entropy calculated for that particular subsystem
[similarly for S(B ∪ C)], and the quantity S(A ∪ B ∪ C) is
equivalent to S(D). For the model in question, I3 is always
nonpositive [43].

The purification time is defined in terms of the ancilla en-
tropy, since this is related to the system’s purity—for a given
circuit realization, tpure is the first time step at which Sa = 0.
In a volume-law phase this time is exponentially large in L,
but since we cannot simulate a circuit for exponentially long
time, we instead find the average purification time tpure in this
phase to saturate to the time depth of the circuit, tmax = 2L2.
In area-law and disentangled phases the value we find is more

FIG. 6. The division of the system into the four subregions la-
beled A, B, C, and D considered in computing I2 and I3.
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FIG. 7. Vertical slices: The q dependence of (a) the ancilla entropy Sa, (b) the half-cut entropy SL/2, and (c) the tripartite mutual information
I3 across the transition from volume-law to area-law entangled phases for the representative value p = 0.25. The insets of (a) and (c) show
collapse of Sa and I3 computed for different system sizes using qc = 0.4262 and νperc = 1.29. Quantities are evaluated after 2L2 time steps for
system sizes ranging from L = 8 (lightest blue) up to L = 120 (darkest blue).

representative of the actual time for the system to purify,
though still lower than the true average value because of the
rare circuit realizations that are still not pure by tmax.

Finally, we consider the correlation C between two ancil-
las locally entangled into the system at time t = tmax/2 and
separated by a distance L/2. This can be precisely formulated
as the mutual information I2, defined above, between these
two ancilla qubits. In our classical model, however, it is more
simply understood via the percolation picture of connected
clusters—the correlation is 1 if both ancillas are connected to
sites in the same cluster and 0 otherwise—and it is with this
perspective that we calculate it. We first evolve the system
for time tmax/2 while tracking the connectivity matrix ĉ as in
Sec. III B, then couple the ancillas into the system with two
vectors a1 and a2, initialized as

a1,i = c1,i a2,i = cL/2+1,i, (21)

so that ancilla 1 is coupled to site 1 and therefore connected
to all sites connected to site 1, and similarly for ancilla 2 with
site L/2 + 1. We then evolve the system for the remaining
time, updating a1,2 in the same way as a in Sec. III B. Be-
cause the elements of a1 track the connectivity of ancilla 1
to the L sites of the system, and similarly for a2 with ancilla
2, if a1,L/2+1 = 1 (or equivalently a2,1 = 1) at any point in
this process then C = 1, and otherwise C = 0. All of these
observables are listed in Table I in terms of their notation
and what they corresponds to in the quantum information and
Potts model contexts.

In all cases we examine these quantities averaged over
many realizations of our stochastic circuit protocol, which
we denote with a bar, e.g., SL/2. We use 1000 realiza-
tions for these averages all quantities except the correlation
function, for which we use 10 000 realizations. Addi-
tionally, we will consider a range of system sizes—L =
8, 12, 16, 20, 24, 36, 48, 60, 72, 84, 96, 108, and 120—with
the ranges used different circumstances indicated on cor-
responding plots. Criticality only truly manifests in the
thermodynamic limit L → ∞, so we use the change in the
behavior of observables with increasing L to determine critical
properties. To locate the boundaries between different phases
we evaluate Sa, SL/2, I2, I3, and tpure along various slices
through the phase diagram, for example, varying q while hold-

ing p constant. After locating the phase boundaries, we further
examine their critical properties using the time dependence of
Sa and SL/2 and the form of the correlation C at the critical
points.

IV. RESULTS AND DISCUSSION

A. Percolation criticality

First, we identify and examine the critical properties of
the phase boundary between volume- and area-law entan-
gled phases by considering vertical slices through the phase
space—varying q for fixed values of p. In Fig. 7 we show Sa,
SL/2, and I3 as functions of q for p = 0.25, representative of
the generic behavior along the phase boundary. The value of
qc for each p, identifying the critical line, can be determined in
several ways—from crossings in Sa and I3 for different values
of L, and the point where the coefficient of the linear-in-L be-
havior of SL/2 well within the volume-law phase extrapolates
to 0. The results from all three methods are in good agreement
and are used to draw the phase diagram (Fig. 2). The crossing
of the ancilla entropy gives the most precise value, and two-
parameter collapse of these data lets us additionally extract the
correlation length critical exponent νperc along the critical line.
Because small systems are affected by the twist in the periodic
boundary conditions, causing a drift in the crossing for small
L, we consider systematically eliminating small L to identify
these critical properties, discussed in Appendix B. Values of
qc and νperc obtained from this process are given in Table II.
The values of νperc are consistent with the percolation value
ν = 4/3 for p � 0.4, but for larger p the critical behavior is
overwhelmed by the critical fan of the control transition at
p = 1/2, analyzed in Sec. IV B below.

For p = 0 the circuit has a regular structure, and in addition
to the analysis above we can determine SL/2 and Sa via a
wetting algorithm as in Ref. [15]. The two methods are found
to give the same results (see Appendix A), confirming that the
p = 0 critical point can be understood via percolation.

To further characterize the critical behavior of this transi-
tion, we examine the time dependence of Sa and SL/2, and the
correlation function C along the phase boundary as determined
from the ancilla entropy. The time dependence of the half-cut
entropy is expected to have a logarithmic form for early times
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TABLE II. The values of the critical measurement probability
qc, correlation length exponent νperc, dynamical exponent zperc, and
correlation exponent η along the volume-law to area-law transition
determined by data collapse of the ancilla entropy Sa. Because the
crossing of the ancilla entropy drifts for small systems, to obtain qc

and νperc values we have considered only L � 36. (See Appendix B
for values obtained with other choices of this minimum size.) The
percolation universality class has ν = 4/3 = 1.33, z = 1, and η =
5/24 = 0.20833, and we find good agreement with these values
along most of this critical line; The largest values of p, marked with
an asterisk, show the most significant deviation due to the critical fan
of the random walk at p = 1/2.

p qc νperc zperc η

0.00 0.5012(20) 1.38(18) 0.99+0.07
−0.05 0.236+0.053

−0.045

0.05 0.4909(19) 1.35(16) 1.01+0.10
−0.05 0.224+0.068

−0.033

0.10 0.4790(16) 1.30(15) 1.00+0.08
−0.05 0.203+0.061

−0.011

0.15 0.4646(17) 1.36(17) 1.02+0.05
−0.05 0.207+0.026

−0.026

0.20 0.4488(17) 1.28(14) 1.00+0.05
−0.06 0.231+0.059

−0.043

0.25 0.4266(19) 1.31(15) 1.01+0.05
−0.06 0.205+0.048

−0.050

0.30 0.4004(22) 1.34(16) 1.01+0.10
−0.06 0.205+0.059

−0.032

0.35 0.3623(25) 1.27(17) 1.01+0.07
−0.05 0.187+0.046

−0.027

0.40 0.3046(32) 1.34(17) 1.07+0.08
−0.10 0.128+0.047

−0.038

0.45* 0.221(4) 1.20(15) 1.09+0.09
−0.10 0.120+0.058

−0.036

0.48* 0.153(7) 0.97(9) 1.000+0.004
−0.004 0.390+0.103

−0.113

due to conformal symmetry at the phase transition, just as the
L dependence at criticality is logarithmic for late times,

SL/2 ∼
{
αL log(L), T � L,

αT log(T ), T � L,
(22)

where αL,T are universal coefficients that we can extract nu-
merically. The dynamical critical exponent z relates spatial
and temporal scaling, T ∼ Lz, which gives the relation αT =
αL/z. Similarly, the ancilla entropy collapses as a function
of T/Lz, giving us two independent methods to obtain this
exponent. The L dependence of the correlation function is
expected to have power-law form C ∼ L−η. In the percolation
universality class, these quantities have the known values

z = 1, αL = αT ≈ 0.54, and η = 5/24 = 0.20833. Because
there is uncertainty in the value of the critical point qc for any
given p, we evaluate these quantities not at just qc, but also
at qc ± σqc and use the results at these additional points to set
uncertainties for our estimates of these quantities.

The collapse of Sa and SL/2 as functions of time, and the
behavior of the correlation function, are shown in Fig. 8 for
the representative point at p = 0.25 along the critical line. We
find that fitting the early-time behavior of the half-cut entropy
to the logarithmic form 22 requires a rescaling of time [29];
if t counts the time steps of the simulations then the time
relevant for the dynamics of the entanglement at criticality is
T ∝ t/L. With this rescaling in mind we collapse the ancilla
entropy as a function of T/Lzperc , and we also fit the correlation
C to a power law form, with exponent η. The values of zperc

and η thus obtained are given in Table II, and show good
agreement with percolation criticality along nearly the entire
critical line. The coefficient αT characterizing the half-cut
entropy dynamics, and therefore the values of zperc determined
from it, are much more sensitive to the uncertainty in the value
of qc than the ancilla, but still yield values consistent with
percolation criticality (see Appendix C).

The need for this rescaling of time can be understood by
considering how the sequential chaotic and control operations
that build the circuit are correlated in space; the decimal point,
determining where operations are applied, moves left or right
through the system with each time step based on the value of
p. At long times there is an overall drift of this reference point
with a velocity vp = 2p − 1, producing a circuit comprised of
primarily gates (p < 1/2) or measurements (p > 1/2) along
its trajectory. For example, in Fig. 4(d) we see a chain of gates
moving to the right. Starting at a fixed position x in the system,
it takes L/|vp| time steps (on average) for the decimal point
to travel completely around the system so that operations are
applied near x again, and after t time steps the decimal point
returns to its starting point T = |vp|t/L times. Therefore for
p < 1/2, for which there is an excess of chaotic steps each
coming with a unitary gate, this T can be interpreted as an
effective circuit depth, explaining why it is the relevant time
for entanglement dynamics. We stress that this is not circuit
depth as normally understood in quantum algorithms.

FIG. 8. The time dependence of (a) the ancilla entropy Sa and (b) the half-cut entropy SL/2, both collapsed as functions of T = t/L,
and (c) the correlation function C, all evaluated at the point along the volume-to-area-law transition at p = 0.25. The dashed red line in
(b) demonstrates the logarithmic growth of SL/2 before saturation at late time. In (a) and (b) the different curves correspond to system sizes
L = 24 (lightest blue) up to L = 120 (darkest blue). Note that (c) uses a log-log plot, showing the power-law behavior of C.
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FIG. 9. Horizontal slices: The p dependence of (a) the ancilla entropy Sa, (b) the half-cut entropy SL/2, and (c) the tripartite mutual
information I3 at fixed value q = 0.4 to identify the transitions from volume-law to area-law entanglement, and from area-law to disentangled.
The insets of (a) and (c) show collapse of Sa and I3 computed for different system sizes using pc = 0.3 and νperc = 1.35. Quantities are
evaluated after 2L2 time steps for system sizes ranging from L = 8 (lightest blue) up to L = 120 (darkest blue).

B. Criticality along p = 1/2 line

As demonstrated in Fig. 7, for p < 1/2 a nontrivial amount
of entanglement remains in the system at long times—we find
either volume- or area-law-entangled phases. On the other
hand, for p > 1/2 there is an excess of control steps, so in typ-
ical realization of the system almost all sites are measured at
late times and we are left with a disentangled state. At p = 1/2
the same number of chaotic and control steps are applied on
average; the bias velocity vp of the decimal point vanishes,
and it instead executes a random walk through the system, so
we expect the disentangling transition to display the universal
behavior associated with this random walk. We investigate the
nature of this transition by evaluating our chosen observables
on horizontal slices through the phase diagram—sweeping
p for fixed values of q. The case of q = 0.4, representative
of the generic behavior for all q ∈ (0.0, 0.5), is shown in
Fig. 9.

As expected from the results of Sec. IV A, for q = 0.4
the transition from volume- to area-law behavior occurs at
p ≈ 0.3. The presence of small but nonzero values of Sa in the
range 0.3 < p < 0.5 for the smaller values of L considered is
indicative of area-law behavior; the system does not purify in
O(1) time as it does in the disentangled phase, and realizations
that do not purify by the final time t = 2L2, more common
in smaller systems, yield nonzero average ancilla entropy.
The clearest indication of two distinct transitions, however,
is the behavior of the half-cut entropy, Fig. 9(b). Here we see
SL/2 ∼ L behavior collapse to an L-independent O(1) value
in the range 0.3 � p < 1/2, followed by a sharp drop to
very small values for p > 1/2. Though not shown, the lower
critical point is found to move to smaller p with increasing q
until it reaches p = 0 at q = 1/2, and for q > 1/2 the system
has only a single transition from area-law to disentangled at
p = 1/2.

We also see indications of these two transitions in the aver-
age purification time tpure, shown scaled by the square of the
system size in Fig. 10(a) for q = 0.4. As already noted above,
in the volume-law phase the purification time is exponential
in L, much larger than the 2L2 time steps that we run our
simulations for, so tpure saturates to this value. However, even
with this caveat we see that rescaling the average purification
time by L2 causes the curves for different L to cross or pinch

together for the same two points, identified via the behavior
of SL/2 as indicative of the two transitions.

We can understand this behavior and furthermore how both
random-walk and percolation behavior emerge by returning to
the motion of the decimal point. As previously discussed, for
p < 1/2 this point drifts with nonzero velocity vp = 2p − 1,

(a)

(b)

FIG. 10. The p dependence of the time for the ancilla to purify
scaled by the square of the system size for (a) q = 0.4 and (b) q = 1.
In (a) we see clear features at two values, p ≈ 0.3 and p = 1/2,
corresponding the the transitions between volume- and area-law en-
tangled phases, and between area-law and disentangled phases. In
(b) points (with error bars) are obtained from ancilla simulations,
and dashed lines are from modeling the random walk of the deci-
mal point—the two agree very precisely. We see a single feature at
p = 1/2 consistent with the argument in the main text. Purification
time data are averaged over 1000 circuit realizations, and for the
random walker over 1.6 million realizations.

024113-11



ALLOCCA, LEMAIRE, IADECOLA, AND WILSON PHYSICAL REVIEW E 110, 024113 (2024)

FIG. 11. (a) A random walk that wraps the system, giving a finite
purification time. (b) A random walk that does not wrap the system,
leaving some sites unmeasured, so the system is not purified.

resulting in an effective circuit depth T = |vp|t/L—the total
number of time steps divided by the average time to wrap the
system—and we needed to consider the time dependence of
Sa and SL/2 in terms of T to find consistent critical properties.
At p = 1/2 the velocity vanishes and the decimal point in-
stead executes an unbiased random walk, so the time to wrap
the system changes parametrically to O(L2) and the effective
depth is T ∼ t/L2. Reasoning in terms of T now helps us
determine the purification time based on what we know from
percolation and normal MIPTs. At the percolation transition
the ancilla purifies at a depth of T ∼ O(L); this corresponds
to a time tpure ∼ O(L2). In the area-law phase, however, the
ancilla purifies at a depth T ∼ O(1), which gives tpure ∼ O(L)
for p < 1/2, but for p ≈ 1/2 instead gives tpure ∼ O(L2). All
of this is confirmed by our plot of the purification time for
q = 0.4 in Fig. 10(a). Furthermore, this reasoning also ap-
plies for purification in the extreme q = 1 case, which now
corresponds to the time for the random walk to traverse all
points on the cylinder. For example, notice in Fig. 11(a) that
the random walker wraps the cylinder and in Fig. 11(b) it does
not; these correspond to a disentangled ancilla and entangled
ancilla, respectively. This can be separately simulated and the
two are found to match, as shown in Fig. 10(b).

To see the interplay between this transition and the nearby
percolation phase boundary for small q we focus closer to p =
1/2 and evaluate our chosen quantities at a time t = L2/2,
closer to the average purification time of the random walk
so that the disentangling transition is more readily observed.
This change has the desired effect on the ancilla and half-
cut entropies, however the crossing in the tripartite mutual
information I3 only tracks the percolation phase boundary.

Collapsing the obtained values of the ancilla and half-cut
entropies for p > 0.5 we extract both the critical point pc as a
function of q as well as the correlation length critical exponent
νRW, given in Table III. From both entropies we find pc ≈ 0.5
and correlation length exponents νRW ≈ 1 for all values of q
considered, demonstrating that this random walk behavior is
unaffected by the nearby percolation transition.

We also examine the time dependence of Sa and SL/2 and
the correlation function C for points along this critical line,
shown in Fig. 12. The ancilla and half-cut entropies for dif-
ferent L collapse by rescaling time as t/LzRW with zRW ≈ 2
for all q. The values of this exponent extracted from the time
dependence of the ancilla entropy are given in Table III. We
expect the value that SL/2 saturates to at late times to be a uni-
versal quantity, but fluctuations from the volume-to-area-law
transition very close to this vertical line for small q strongly
affect small systems. This lead to a deviation for small L,
seen most clearly in Fig. 12(e), and making it difficult to
estimate zRW from SL/2. The correlation function C is found to
have exponential form along p = 1/2; because this quantity
is taken directly from percolation theory (it is the probability
that the two sites spatially separated by L/2 are in the same
cluster), it should only behave critically, i.e., as a power law,
at the percolation transition. At p = 1/2 (and q �= 0) only
small connected clusters remain in a typical realization of
the circuit, so we should expect only exponentially small
correlations at distances ∼L.

C. Properties of the volume-law phase

We have already noted some features of the volume-law
phase with the quantities that identified the volume-law phase
boundary. The behavior of the tripartite mutual information
demonstrates the presence of long-range entanglement in the
system, purification takes exponentially long in L as evi-
denced by the ancilla entropy, and the half-cut entanglement
entropy scales linearly with L. Now looking to the bipartite
mutual information I2, we can examine the subleading L-
dependence of the Rényi entropies as well.

Within the volume-law phase of systems exhibiting stan-
dard MIPTs, the entanglement of a region A of size 	 grows
like S̄(A) = a	 + b	β + · · · at long times, with universal ex-
ponent β = 1/3 obtained from Kardar-Parisi-Zhang (KPZ)
universality [13,18]. This quantity is captured by I2(A,C) ∼
Lβ , and indeed when q = 0.4 we observe a scaling consistent
with this, shown in Fig. 13(b), and extract β = 0.37(10). This
ceases to be the case for the more correlated dynamics when

TABLE III. The values of pc and νRW that collapse the half-cut SL/2 and ancilla Sa entropies evaluated at a final time L2/2 for several fixed
values of q across p = 1/2, and the values of zRW that collapse Sa as a function of time (up to time L2/2) when evaluated at p = 1/2.

q pc (half-cut) νRW (half-cut) pc (ancilla) νRW (ancilla) zRW (ancilla)

0.0 0.5018(21) 0.88(20) 0.4996(27) 1.02(16) 1.991(9)

0.1 0.4959(29) 1.14(24) 0.4983(27) 1.06(17) 1.977(16)

0.2 0.5007(32) 0.85(26) 0.4973(31) 1.12(17) 1.943(9)

0.3 0.5001(34) 0.88(30) 0.497(4) 1.04(24) 1.978(6)

0.4 0.499(4) 0.97(26) 0.500(6) 1.01(32) 1.943(10)
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FIG. 12. The time dependence of the ancilla (a), (b), (c) and half-cut (d), (e), (f) entropies, and the correlation function (g), (h), (i) along
the line p = 1/2 for three representative values of q: q = 0 for (a), (d), (g), q = 0.1 for (b), (e), (h), and q = 0.4 for (c), (f), (i). In (a) through
(f) different colors are used to indicate these quantities for different system sizes, from L = 24 (lightest blue) up to L = 120 (darkest blue).

q = 0, and indeed we start to get a new, larger exponent
β = 0.57(10), as seen in Fig. 13(a). For q = 0, “cuts” in the
entanglement are strictly performed during the control step
as one can see in the schematic Fig. 4(d); due to this, even
a heuristic mapping to a Poisson growth process for a height
model should not apply, and indeed we find that subleading
entanglement growth exceeds KPZ. While we do not have a
full theory for this subleading growth, we speculate that it is
unstable for finite q, flowing to KPZ for q > 0.

V. CONCLUSION AND OUTLOOK

Here we have developed a classical statistical mechanics
model that provides insight into the entanglement properties
of a quantum analog of the d-adic Rényi map under stochastic
control. By including both stochastic control operations and
additional random projective measurements this model yields
two distinct classical critical behaviors—bond percolation in
two dimensions and a random walk in one—each characteriz-
ing a specific entanglement transition of the original quantum
model. We therefore have three distinct classical models giv-
ing us insight into the entanglement and controllability of

our single quantum model: the volume-to-area-law entangle-
ment transition is dual to a model of bond percolation, the
disentangling transition can be understood as arising from
random-walk physics, and the controllability transition (con-
current with disentangling) is captured by the original d-adic
map with stochastic control.

This unifies these three models from previous work in a
model that has each as particular limits; the MIPT of a brick-
work circuit with random measurements emerges here for
p = 0, and the disentangling/controllability transition char-
acterized by a random walk studied in Ref. [19] is obtained
here for q = 0—two boundaries of the phase diagram Fig. 2.
The model developed here is able to flesh out the details of
the 2D phase space in between, continuously interpolating be-
tween these two distinct models and showing how their unique
critical properties interact within the entanglement and pu-
rification structure. Specifically, along the volume-law phase
boundary we see percolation criticality become overwhelmed
by the random walk as we approach the transition at p = 1/2.

It is important to note that the details of our results depend
on an implicit assumption regarding the control operation,
namely that it involves only local operations. Indeed, as
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(a)

(b)

FIG. 13. The bipartite mutual information I2 as a function of p
for (a) q = 0 and (b) q = 0.4, scaled by Lβ to collapse for large
L. For q = 0 we find collapse with β = 0.57(10), and for q = 0.4
we find β = 0.37(10). Vertical dotted lines mark the entanglement
transitions present for each q.

described in Sec. II, control onto the state |00 . . . 0〉 can be
accomplished via a reset operation built from solely local
measurements and feedback. As conceptualized, this feedback
can be implemented with single-qudit operations and has no
impact on the statistical mechanics model. The Potts model
we obtain lives on a random lattice due to the stochastic nature
of its generation, but contains only local connectivity between
its degrees of freedom. If we were to consider a different
target state, however, control would in general require a more

FIG. 14. Comparison of the half-cut entropy determined as mini-
mal cuts via algorithm described in Sec. III A for p = 0 (blue points)
and the wetting algorithm on the tilted square lattice with twisted
boundary conditions (red points). The two are in very good agree-
ment. We use system sizes L = 30, 40, 50, 60, 70, 80, 90, and 100,
and averages are taken over 1000 circuit realizations.

complicated feedback involving nonlocal operations, such as
an adder circuit [19], which will introduce nonlocal spreading
of entanglement and therefore must result in nonlocal connec-
tivity within the statistical mechanics mapping. We also note
that if the target state possesses nontrivial entanglement, then
the control transition will no longer be synonymous with a
complete disentangling transition as it is here, and identifying
the control transition from the behavior of entanglement alone
may become less straightforward. Understanding how to in-
corporate such nonlocal control into the statistical mechanics
model is an interesting direction for future work.

Another open question concerns the effect of finite-d cor-
rections to the infinite-d results obtained here. For example,
it would be interesting to determine whether the coincidence
of the entanglement and control transitions on the q = 0 line
persists at finite d . Indeed, in Ref. [28] it was found that such
coincidence occurs for long-range control protocols and is

TABLE IV. The values of the critical measurement probability qc and correlation length exponent νperc along the volume-law to area-law
transition determined by data collapse of the ancilla entropy Sa. The three columns for each quantity correspond to the range of system sizes
used in this process—the drift in the crossing of the ancilla entropy for small systems, a finite-size effect, motivates discarding smaller system
sizes. The largest values of p, marked with an asterisk, show the most significant deviation from percolation universality due to the critical fan
of the random walk at p = 1/2.

qc νperc

p L � 24 L � 36 L � 48 L � 24 L � 36 L � 48

0.00 0.5012(15) 0.5012(20) 0.5007(18) 1.38(14) 1.38(18) 1.32(19)
0.05 0.4908(15) 0.4909(19) 0.4906(21) 1.37(14) 1.35(16) 1.34(20)
0.10 0.4796(16) 0.4790(16) 0.4789(20) 1.31(13) 1.30(15) 1.32(17)
0.15 0.4651(13) 0.4646(17) 0.4641(18) 1.22(10) 1.36(17) 1.31(19)
0.20 0.4488(14) 0.4488(17) 0.4488(22) 1.27(11) 1.28(14) 1.29(17)
0.25 0.4277(17) 0.4266(19) 0.4262(21) 1.29(12) 1.31(15) 1.29(16)
0.30 0.3999(19) 0.4004(22) 0.4001(27) 1.36(14) 1.34(16) 1.35(19)
0.35 0.3628(24) 0.3623(25) 0.3617(31) 1.38(16) 1.27(17) 1.30(21)
0.40 0.3073(26) 0.3046(32) 0.3053(35) 1.24(12) 1.34(17) 1.32(19)
0.45* 0.2251(33) 0.221(4) 0.218(4) 1.16(12) 1.20(15) 1.13(13)
0.48* 0.163(6) 0.153(7) 0.149(8) 0.87(8) 0.97(9) 0.9(1)
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TABLE V. The values of pc and νRW that collapse the ancilla entropy Sa evaluated at a final time L2/2 for several fixed values of q across
p = 1/2 and several choices for the smallest system size retained. We see that these values are not greatly affected by systematic removal
of small systems, and that we obtain values consistent with random walk universality, pc = 1/2 and νRW = 1, in all cases; unlike for the
percolation critical line, there is no drift in the ancilla entropy crossing.

pc (ancilla) νRW (ancilla)

q L � 8 L � 12 L � 16 L � 8 L � 12 L � 16

0.0 0.4996(27) 0.4994(25) 0.4998(24) 1.02(16) 1.04(15) 1.01(14)
0.1 0.4983(27) 0.4984(27) 0.4993(25) 1.06(17) 1.05(17) 1.02(16)
0.2 0.4973(31) 0.4979(32). 0.498(3) 1.12(17) 1.04(20) 1.10(17)
0.3 0.497(4) 0.498(4) 0.498(4) 1.04(24) 1.10(21) 1.10(21)
0.4 0.500(6) 0.497(4) 0.500(4) 1.01(32) 1.14(21) 1.01(24)

generically absent in short-range ones. The control operation
considered in this work is strictly local, but the large-d limit
may also affect the interplay of control and entanglement [26].
This further emphasizes the need to develop an improved
understanding of the necessary and sufficient conditions for
control and entanglement transitions to coincide.
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APPENDIX A: PERCOLATION LIMIT

In the p = 0 limit, we recover percolation with a particular
twist in the boundary conditions as illustrated in Fig. 3. In
order to both verify this claim and validate the stat-mech
algorithm used throughout the main text to evaluate SL/2,
we implement a wetting algorithm [15] with these boundary
conditions. We see in Fig. 14 that the resulting entropies match
what was found for p = 0 in the main text.

APPENDIX B: FINITE-SIZE EFFECTS AND COLLAPSE

The nature of our circuit protocol induces a small shift in
the periodic boundary condition of our system. Small systems

are most sensitive to the effects of this shift, which is real-
ized as a drift in the crossing of the ancilla entropy Sa for
small L, which vanishes in the thermodynamic limit. To de-
termine the value of the percolation critical line via the ancilla
crossing, we therefore consider systematically removing the
smallest systems until the obtained values of qc and νperc for
each p becomes sufficiently insensitive to further removals. In
Table II we quote values for qc and νperc keeping systems of
size L = 36 and above. Here in Table IV we show how the
effect of changing this small system cutoff, either by keeping
or excluding an additional system size. We see that keeping
only L � 48 yields values that differ from those obtained with
L � 36 by less than the error in either case, while the same
cannot be said for the values obtained with L � 24. Therefore,
we use the L � 36 values in our analysis.

For the transition at p = 1/2, characterized by the univer-
sality of a random walk, we do not find the same sensitivity to
the periodic boundary condition, as evidenced by the insensi-
tivity of pc and νRW determined from both Sa and SL/2, shown
in Tables V and VI, to this same procedure.

APPENDIX C: TIME DEPENDENCE OF SL/2 ALONG
PERCOLATION TRANSITION

Here we discuss the time dependence of the half-cut en-
tropy SL/2 along the percolation critical line. For our chosen
points along this critical line the coefficient αT is extracted
from a fit of the time dependence of SL/2 for L = 120 to
the expected logarithmic behavior at early times. Examining

TABLE VI. The values of pc and νRW that collapse the half-cut entropy SL/2 evaluated at a final time L2/2 for several fixed values of q
across p = 1/2. We see that these values are not greatly affected by systematic removal of small systems, and that we obtain values consistent
with random walk universality, pc = 1/2 and νRW = 1, in all cases.

pc (half-cut) νRW (half-cut)

q L � 8 L � 12 L � 16 L � 8 L � 12 L � 16

0.0 0.5018(21) 0.5016(24) 0.5004(20) 0.88(20) 0.91(22) 0.97(19)
0.1 0.4959(29) 0.4976(28) 0.4977(28) 1.14(24) 1.02(25) 1.09(24)
0.2 0.5007(32) 0.5003(29). 0.5009(29) 0.85(26) 0.89(25) 0.84(28)
0.3 0.5001(34) 0.4972(31) 0.5009(32) 0.88(30) 1.10(18) 0.84(33)
0.4 0.499(4) 0.498(4) 0.497(4) 0.97(26) 1.1(4) 1.1(4)
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TABLE VII. The values of the coefficients of the logarithmic behavior of the half-cut entropy for T � L (αL) and T � L (αT ), and the
dynamical critical exponent zperc determined as their ratio for points along the volume-law to area-law transition. The percolation universality
class has αL = αT ≈ 0.54, and z = 1. We find values for zperc and αL largely consistent with this universality for most of this phase boundary,
though αT tends to be too small. The largest values of p, marked with an asterisk, show the most significant deviation from percolation
universality due to the critical fan of the random walk at p = 1/2.

p αL αT zperc = αL/αT

0.00 0.516+0.077
−0.044 0.499+0.026

−0.117 1.03(29)

0.05 0.527+0.069
−0.057 0.471+0.026

−0.096 1.12(27)

0.10 0.536+0.050
−0.040 0.446+0.067

−0.030 1.20(21)

0.15 0.562+0.054
−0.054 0.477+0.042

−0.049 1.18(17)

0.20 0.514+0.051
−0.037 0.459+0.046

−0.030 1.12(16)

0.25 0.547+0.053
−0.044 0.502+0.024

−0.078 1.09(20)

0.30 0.516+0.059
−0.043 0.447+0.024

−0.025 1.15(15)

0.35 0.519+0.046
−0.061 0.476+0.023

−0.062 1.09(19)

0.40 0.563+0.046
−0.081 0.522+0.026

−0.024 1.08(16)

0.45* 0.468+0.070
−0.046 0.546+0.019

−0.065 0.86(16)

0.48* 0.279+0.063
−0.036 0.529+0.015

−0.024 0.53(12)

the value the half-cut entropy saturates to at late times for
different L, we can likewise determine the coefficient αL, then
determine the dynamic critical exponent zperc as the ratio of
these α’s. The values obtained for αL, αT , and zperc = αL/αT

are given in Table VII. We find that αL and zperc are consistent
with the universal values α ≈ 0.54 and z = 1 due to fairly
large uncertainties, though αT tends to be too small along most
of the phase boundary.
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