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Spatial dependence of microscopic percolation conduction
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In two dimensions, the average electrical conductance from a point in a percolating network to the network
boundary can be related by a conformal transformation to the conductance from one point to another in an
unbounded network. We verify that this works at the percolation threshold for the square.

DOI: 10.1103/PhysRevE.110.024112

I. MICROSCOPIC PERCOLATION

The percolation model studies the properties of networks
derived from a lattice by random deletions of bonds [1]. It
comprises several different questions. The earliest studies es-
tablished that, as the fraction p of bonds that are present is
increased, there is a kind of phase transition: when p is small,
likely configurations only contain finite connected clusters;
but above a threshold value pc it is highly likely that there
is an “infinite” connected cluster (or one that spans a large
finite network from side to side) [2]. In two dimensions this
“connectedness” model can be understood as the limiting case
Q → 1 of the Q-component Potts models; the exponents char-
acterizing the correlation length and probability of a lattice
site belonging to the infinite cluster are given by the den
Nijs [3–5] relationships that describe all exponents of Potts
models. Relevant to this study are the correlation length ξ ,

ξ ≈ |p − pc|−ν, (1)

and the probability P that an arbitrary site belongs to the
infinite cluster,

P ≈ |p − pc|β, (2)

where ν = 4/3 and β = 5/36. These basic properties of
a percolating system can be readily studied in computer
simulations.

Connectedness is not a very useful property of a real-
world experimental system. This has led to the study of the
properties of a percolating system that can be measured by
established experimental methods. A paradigm model is to
assign unit conductance to the bonds and measure the “macro-
scopic” electrical conductivity: the average current density
produced by a uniform electric field [6]. In two dimensions
the macroscopic electrical conductance is well described for
p > pc by

G = G0(p − pc)t (3)

and at p = pc by

G = G0L−t/ν . (4)

Simulations [7] indicate t/ν = 0.973, independent of details
of the model (e.g., periodic boundary conditions vs assigned
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potentials at the boundaries, as well as the details of how the
sites are connected). The relationship between this exponent
and those for the connectedness problem is unclear; unusual
for a two-dimensional model, the exponent does not appear to
be a rational number.

Another model problem, the subject of the present paper,
is the “microscopic” conductance [8,9]: the conductance from
a small source to a small sink at distance D, or the current
from a small source to a grounded boundary at distance D/2.
This seems to be a simpler and more prospective model to
study than the macroscopic conductance, because for a chosen
boundary shape it depends on just p and the distance D.

When the current is injected at the center of a square of
edge L, the probability at pc that the site is connected to
the boundary is expected to vary as L−β̃ , where β̃ = β/ν =
5/48 = 0.1048. The average conductance of the connected
configurations vary as L−u, where u is the corresponding
exponent. With all boundaries conducting, we made 20 000
random realizations of the system for L = 21, 41, 81, and 161
and averaged the resulting conductance from the center to the
edge, finding β̃ = 0.11 ± .01 (in agreement with the expected
result [10]) and u = 1.01 ± 0.01. The latter is rather similar
to t̃ = t/ν = 0.972, but it is not clear that they are, in fact, the
same; for the Cayley tree (which represents the behavior at the
upper critical dimension D = 6), they are not [9].

In studying the microscopic conductance we found it use-
ful to ignore configurations for which the chosen site does
not have a connected path to the boundary, and only average
the conductance over the remainder, because the variance of
the distribution of conductances is smaller than the variance
of connectedness itself (the distribution of connectedness is
binary), and the connectedness problem is well studied. Thus,
for conductance from one point to another at distance D in an
infinite system, we define

gconnected = g0D−u. (5)

The conductance defined in terms of all configurations would
include the statistics of connectedness, so that

gall = D−β/νgconnected. (6)

The variance of the conductance is not negligible. The
values obtained from a large sample of realizations of the
random lattice of finite size form a distribution whose width
is comparable to its average, with the consequence that the
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arithmetic, geometric, and harmonic means differ and lead to
slightly different estimates for the exponent. Lobb and Frank
[7] showed that these estimates converge in the limit of large
lattice size and that the geometric mean (the exponential of the
average of the logarithms) is the least subject to this finite-size
effect. We note that the geometric mean of the conductance is
the reciprocal of the geometric mean of the resistance (this
property does not hold for other central measures). For these
reasons the analysis that follows is for the geometrical mean
[11].

II. CONFORMAL INVARIANCE

Theoretical understanding of the percolation conduction
models has been hindered by a lack of understanding how to
incorporate these effects into the theoretical framework, since
what is measured is not the derivative of a free energy with re-
spect to an applied field, nor the correlation function of known
operators. As a step towards gaining a better understanding of
these problems, we studied how the microscopic conductance
from an interior point to the boundary depends on the position
of the interior point.

At the critical point, two-dimensional critical models often
have conformal invariance [12,13], which is a symmetry that
contains translational, rotational, and scale invariance. Rep-
resenting the (X,Y ) coordinates of a point by the complex
number Z = X + iY , all analytic functions give conformal
transformations. Cardy [14] has used ideas from conformal
field theory to derive a formula for the probability of the
presence of a percolating path joining opposite sides of a
rectangle containing a percolating network at the percolation
threshold. This suggests there may be a conformal field theory
that governs other aspects of a percolating system, such as the
microscopic percolation conductance.

Conformal invariance implies a relationship between the
critical behavior of correlation functions for systems of differ-
ent shapes; in the present case, the average conductance C(Z )
from the point Z to the boundary of a square can be related
to the simpler problem of the resistance from the point W in
an infinite half-plane to its boundary and thereby predicts a
specific form for the positional dependence.

The rectangle [−K < X < K, 0 < Y < K ′] is mapped into
the upper half plane by the Jacobi elliptic function sn(X +
iY, m), where K (m) is the complete elliptic integral and
K ′(m) = K (1 − m). The rectangle becomes a square when
2K (m) = K ′, which occurs for m = [(

√
2 − 1)/(

√
2 + 1)]2 =

0.0294 37 (and then K = 1.582 55). The square −L/2 < X <

L/2, 0 < Y < L is then mapped into the upper half plane by
the transformation W (Z ) = sn(2KZ/L, m) for those choices
of parameters.

On the half plane, the only special distance is the imaginary
part of W ; scaling theory says the conductance should be a
power law of this distance [C(W ) ≈ |Im W |−u]; and for the
most common case of conformal field theory (the “quasipri-
mary field of spin zero”), this implies the conductance to the
boundary of the square to be
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FIG. 1. Resistance to the boundary along paths through a square.
Comparison of numerical experiment (black dots) and Eq. (7) (solid
red line) for L = 180. The curves represent the geometrical average
resistance of the connected configurations for various 5 � X � 90,
for Y = 15, 40, 65, and 90. The scaling exponent is 1.05 ± 0.03. The
inset is a cartoon indicating the paths across the square where data
were taken. The data for this figure are given in the Supplemental
Material [16].

where the argument list is (2KZ/L, m) for all of the elliptic
functions.

Despite the asymmetrical appearance, this function has the
symmetry of the square; for points near one of the edges
of the square, it is a power law of the distance to the edge
and smoothly interpolates this rule for points that are nearly
equidistant to more than one edge.

III. NUMERICAL STUDY

We calculated the microscopic conductance for a source
point in the square in a computer simulation. For a chosen
realization and chosen interior point, we first verified that the
interior point belongs to a cluster that touches a “conducting”
boundary (that is, one that completes a circuit from the interior
point) by means of the Hoshen-Kopelman algorithm [15].
Sites that had only a single connecting link (and thus were
not part of the current-carrying circuit) were removed. Kirch-
hoff’s equations give relationships between the voltages of
neighboring points; these were solved by a pivoted Gaussian
elimination.

Figure 1 compares the numerical results with Eq. (7) with
u = 1.03 ± 0.02, where the confidence range was determined
by the condition that changing u by 0.02 doubles the mean
square variation of the ratio of theory to experiment. We
believe the discrepancy between theory and numerical experi-
ment to be due to finite lattice spacing; the statistical errors are
smaller. We observed that the discrepancy is larger for smaller
lattice sizes.

IV. CONCLUSION

The agreement between the theoretical representation of
the dependence of the conductance on position given by
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Eq. (7) and the results of simulations shown in Fig. 1 supports
the idea that the microscopic conductance can be regarded to
be a kind of conformally invariant correlation function and
thus hints at the existence of a continuum field theory for this
and other percolation conduction problems.

See the Supplemental Material [16] for the numerical val-
ues used in constructing the figure in this paper.
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