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Continuum percolation of two-dimensional adaptive dynamics systems
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The percolation phase transition of a continuum adaptive neuron system with homeostasis is investigated.
In order to maintain their average activity at a particular level, each neuron (represented by a disk) varies
its connection radius until the sum of overlapping areas with neighboring neurons (representing the overall
connection strength in the network) has reached a fixed target area for each neuron. Tuning the two key
parameters in the model, i.e., the density defined as the number of neurons (disks) per unit area and the sum
of the overlapping area of each disk with its adjacent disks, can drive the system into the critical percolating
state. These two parameters are inversely proportional to each other at the critical state, and the critical filling
factors are fixed about 0.7157, which is much less than the case of the continuum percolation with uniform disks.
It is also confirmed that the critical exponents in this model are the same as the two-dimensional standard lattice
percolation. Although the critical state is relatively more sensitive and exhibits long-range spatial correlation,
local fluctuations do not propagate in a long-range manner through the system by the adaptive dynamics, which
renders the system overall robust against perturbations.
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I. INTRODUCTION

Percolation is probably the simplest model exhibiting
phase transition in physics [1–3]. It was first presented to
describe the connectivity property of the fluid flow in porous
media [4]. In general, percolation models can be grouped
into different universality classes, defined by a set of critical
exponents characterizing the scaling behavior of collective
quantities [5–8]. One typical example is the site percolation on
two-dimensional (2D) square lattices. Each site on the lattice
is occupied with probability p. Neighboring occupied sites
are considered to be connected and form clusters. With the
occupying probability p surpassing the percolation threshold
pc, the clusters merge into a spanning cluster, either reaching
the opposite sides of the infinite lattice or containing a nonzero
fraction of the sites in the thermodynamic limit. Besides the
discrete percolation model, there is a large class of percolation
phenomena in the continuum medium, where the number
of objects is countable, but the position and the connect-
ing radius are in the continuous space, including conducting
materials [9–12], elastic behavior of composites [13–15],
ad hoc networks [16,17], connectivity in cultured neuronal
networks [18,19], and so on. These investigations usually con-
sider that the objects are placed randomly in the system [20],
which takes regular shapes, such as squares [21], disks [22],
or sticks [23,24], and can overlap randomly with neighboring
objects with a uniform or a particular angular distribution [24]
or size distribution [25]. The emergence of the spanning clus-
ter is crucial to these systems, such as conductivity for fluid
flow or electronic currents, and connectivity for supporting
global site-to-site communications. Typically, the discrete and
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continuum percolation models with the same spatial dimen-
sion share the same critical exponents and thus belong to the
same universal class [26–28].

Adaptive dynamics are ubiquitous in natural and en-
gineered systems consisting of evolving and interacting
components, such as game theory [29,30], financial mar-
kets [31], power grid systems [32], engineered multilayer
systems with the target of enhancing the robustness [33],
growing neural systems [34,35], and so on. Particularly, the
formation of connectivity during the development of the ner-
vous system connects disjoint components into a spanning
cluster, which is the basis for the proper functioning of the
neural system. Abstracting from any details, we imagine that
in quasi-two-dimensional culturing systems, each neuron can
be represented by a disk, whose center corresponds to the
neuron’s location and whose radius determines the range over
which it can generate synapse connections with neighboring
neurons. Therefore, if the disks of two neighboring neurons
are overlapped, they are able to establish synapse connec-
tions. It is assumed that the synaptic coupling strength is
proportional to the overlapping areas. In general, neurons
exhibit homeostasis and maintain their average activity at a
particular level, i.e., those with low activity level extend their
neurites and form more activating connections, while highly
active cells reduce their connections [36]. For simplicity, it is
assumed that the target overlapping area is the same for all. In
this way, the system will evolve into an equilibrium critical
state with connected neuron clusters. This is similar to the
continuum percolation model, but with features that have not
been considered before.

In this work, we propose a model of continuum percolation
on a two-dimensional plane to take into account the adaptive
dynamical features of homeostasis in neuronal systems, where
each disk (neuron) adaptively expands or shrinks in time to
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approach a prescribed target overlapping area with its neigh-
boring disks. When for all the disks the target overlapping
area is reached, the dynamical evolution stops, and clusters
of connected (overlapped) disks are counted for percolation
analysis.

In addition to the aforementioned percolation models,
there is a “touch-and-stop” cluster growth percolation model
(CGP) [37–39], which belongs to the standard percolation
universality class [39]. In this model, a number of active seeds
placed on random locations are growing in all directions at a
constant rate to form clusters. Once a cluster is in contact with
another, its growth stops immediately. Intuitively, this model
could be a particular case for our model in the discrete lattices
when the overlapping area is set to 0. However, as we show
later, this is not the case.

Instead of only one control parameter for typical perco-
lation models, for our model, there are two parameters: one
is the target overlapping area � for each disk, and the other
is the density ρ of the disks in the domain. Therefore, in
the (ρ,�) parameter plane, there will be a line separating
the subcritical and supercritical phases. A critical curve has
been noticed before in different variants of the standard per-
colation model, e.g., the sol-to-gel transition (gelation) of
polymers [40], the dissociative adsorption of dimers [41], and
mixed site-bond percolation models [42–45]. However, for
our model, the effect of varying � is more like an implicit
spatial scale scaling in mathematics, which will be discussed
in the following section. It may be a succinct way to select any
one of the two parameters as the control parameter, while the
other is designated as the system parameter, though these two
parameters have separate physical meanings. In this paper,
the relation between ρ and � is determined numerically at
a critical point, and the critical exponents are also obtained,
which demonstrates the model belongs to the same universal
class as the other 2D percolation models. And an intriguing
phenomenon that may contradict common sense is that the
local fluctuation of the overlapping area does not propagate
in a long-range manner through the system by the adaptive
dynamics, even at percolation thresholds. This may be the
reason why the dynamics does not encounter frustration.

The rest of this paper is organized as follows. In Sec. II, we
discuss the adaptive dynamical model in detail. In Sec. III, we
present the main results of the critical behavior of the model,
and the propagation properties of the local fluctuation of the
model around critical state. Conclusions are summarized in
Sec. IV.

II. MODEL

The two-dimensional continuum percolation model gov-
erned by adaptive dynamics is as follows (see Fig. 1). The
system consists of N disks randomly scattered in a square of
length L. Initially, the radius of a disk is set to the shortest
distance to its neighboring disks. Thus the disks at the initial
state have overlapped areas. This setup speeds up the con-
vergence of the dynamics, but is irrelevant to the percolation
results. The radius ri of disk i evolves in two steps. First, ri is
incremented by

ri(n) = ri(n − 1) + Kri(n − 1), (1)

FIG. 1. The largest three clusters of the adaptive dynamical sys-
tem with periodic boundary conditions for three snapshots at the
steady state. The red (dark gray), blue (medium gray), and yellow
(light gray) correspond to the clusters with size decreasing. The
empty circles represent other disks. From left to right, the target
overlapping area � = 0.0445, 0.0945, and 0.1345, respectively. The
density is ρ = 2 and the side length of the system is L = 16, the
corresponding percolation threshold is �c � 0.0945. The center of
the disks for different cases have the same location configuration.

where n is the discrete time. K controls the growth rate of
all the disks of the system and is set to K = 0.01 in our
simulation. Then, the radius evolution equation for the second
step is decided based on the overlapping area. If the disk i has
no overlapping area with any disk, the radius ri evolves one
more step based on Eq. (1). Otherwise, ri changes as follows,

ri(n + 1) = ri(n − 1)+ �− ∑
j Ai j (n − 1)∑

j[Ai j (n) − Ai j (n − 1)]
Kri(n − 1),

(2)

where Ai j (n) is the overlapping areas between disk i and
disk j at the nth step. The radius of each disk is evolved to
achieve the objective of the adaptive dynamics, i.e., the target
overlapping area �. If each disk i satisfies

∑
j Ai j = �, the

system stops evolving and reaches a steady state. The extreme
situations of unrestricted growth or constriction are avoided
within the constraints of the adaptive dynamics. A detailed
explanation of the Eq. (2) is presented in the Appendix A.

In this model, there are two control parameters, one is the
density ρ = N/L2, defined as the ratio of the number of the
randomly scattered disks N to the area of the square system
of length L. The other control parameter is the target over-
lapping area �, which describes the adaptive dynamics and
determines whether the radius of disks will grow or contract. It
also determines the degree of the overlapping of the disks and
thus the connectivity of the neurons. Therefore, in the infinite
size limit, the percolation threshold depends on both of these
two parameters (ρ,�), whereas in most previous studies the
percolation threshold in general only depends on the density
ρ [1,20].

For an infinite system, the critical state does not change due
to the scaling of the spatial scale. Supposing that space shrinks
by a factor α, the density of disks and the overlapping areas
are rescaled as ρ → ρ/α2 and Ai j → Ai jα

2. Since the target
� is the linear summation of overlapping area Ai j , it can be
conjectured that the critical states with different parameters
can be regarded as an effect of space extending (or shrinking)
described by �. Therefore, the curve consisting of diverse
sets of critical points should follow a simple relation, i.e.,
ρc ∼ �−1, and then the critical state of the system on any
point of the critical curve should be identical. It should be
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noted that this discussion appears to be a consequence of the
linear summation of the overlapping area to reach the target
value � in the adaptive dynamics. For more complicated
target functions, the aforementioned relation might be broken.

III. RESULTS

A. Percolation properties

For continuous phase transition, the order parameters ex-
hibit power-law behavior at the phase transition point, where
the critical exponents are represented by the power exponents.
According to whether their values are the same, the critical
exponents are used to identify if the phase transitions on
different systems belong to the same universality class. In
this section, we calculate the critical exponents of this model
and find that it belongs to the same universality class as the
conventional two-dimensional discrete percolation.

Compared to the conventional continuum percolation, the
introduction of adaptive dynamics additionally introduces a
new control parameter �. These two control parameters can
be varied independently to achieve a critical state, and the
finite-size effects of varying the two parameters to approach
a critical state are similar. In the subsequent part of this sec-
tion, we focus on the control parameter density ρ, and the
target overlapping area �, as the system parameter, is set to
be 0.2. Additional numerical results of varying � as control
parameter are detailed in Appendix B.

Near the critical point, if the percolation phase transition
is continuous, the largest cluster S1 consisting of overlapping
disks in percolation should satisfy the finite-size scaling in the
form of [46]

S1(ρ, L; �) = Ld f F1,ρ (tρL1/ν ; �), (3)

where d f is the fractal dimension of the cluster, which should
be the same for the largest and the second largest cluster, F1

is the scaling function of the largest cluster. L is the system
length, and tρ = (ρ − ρc)/ρc represents the deviation of the
density from the critical point ρc. Due to the hyperscaling
relation for the equilibrium system, there are only two inde-
pendent critical exponents [26]. Here we choose the fractal
dimension of the cluster d f and the critical exponent ν of the
correlation length ξ ∼ |tρ |−ν in our study.

Likewise, the second largest cluster S2 can also be ex-
pressed in a finite-size scaling form around the critical point

S2(ρ, L; �) = Ld f F2,ρ (tρL1/ν ; �), (4)

where F2 is the scaling function for the second largest cluster.
Then the finite-size scaling form of the ratio can be ob-

tained by using Eqs. (3) and (4):

S1

S2
≡ Uρ (tρL1/ν ; �). (5)

At the critical point of the density, tρ = 0,

S1

S2

∣∣∣∣
tρ=0

= Uρ (0; �), (6)

indicating that the ratio is independent of the system size L.
As a side note, the largest cluster size S1(L) has high-order

FIG. 2. (a) The ratio of the size of the largest cluster and that of
the second largest cluster 〈S1〉/〈S2〉 for systems with different sizes.
The inset shows the zoom-in plots around the critical points, which
are ρc � 0.951. (b) Rescale the horizontal coordinate using tρ and
make the curves coincide by adjusting ν = 4/3. Each data point is
an average of 103 ensembles.

correction at the critical point, S1(L) = Ld f F1,ρ (0, L)(1 +
cL−x ), where c and x are constants [47]. The correction cL−x

usually results in an imperfect intersection, as shown in the
insets of Fig. 2. In estimation, the relative deviation (ρ ′

c −
ρc)/ρc of critical point caused by the correction approaches to
L−1/ν−x, and in this model, the relative deviation can be less
than 0.002, which is demonstrated subsequently. Thus, the
high-order correction of S1 can be disregarded in estimating
critical points. Consequently, the curves of S1/S2 cross at the
same point at ρc for different system sizes with the same �.
This feature can be used to determine the critical point of the
model.

Figure 2(a) shows the ratio of the mean largest cluster to
the mean second largest cluster 〈S1〉/〈S2〉 as a function of
ρ. The curves of 〈S1〉/〈S2〉 for different sizes L cross at a
single point in the (ρ, 〈S1〉/〈S2〉) plane, which is ρc ≈ 0.951
for � = 0.2. According to Eq. (6), the curves of 〈S1〉/〈S2〉 vs
L1/νtρ should be L independent, and the curves for different
size L will be overlapped on top of each other. Thus the
value of ν can be determined by tuning ν to make the curves
coincident. Figure 2(b) plots the curves of 〈S1〉/〈S2〉 vs L1/νtρ
with ν = 4/3. The curves overlap each other roughly, thus the
obtained critical exponent of the correlation length is about
ν = 4/3, which is the same as the critical exponent ν in lattice
percolation.

The critical exponent ν can also be estimated more accu-
rately from the position of the peak in S2(L). Similar to site
percolation, a peak appears in the size of the second largest
cluster near the critical point. According to the finite-size
scaling Eq. (4), the reduced control parameter tpeak

ρ of the
peak position has a scaling form, tpeak

ρ ∝ L−1/ν . The inverse
critical exponents −1/ν, that is the slope of the dashed line
in Fig. 3(a), is −0.7487 for controlling ρ. This value is con-
sistent with the theoretical exponent ν in the 2D percolation
universality class.

In general, for an equilibrium system, there are two
independent critical exponents to characterize the critical
properties, while all the others can be calculated by hyper-
scaling relations [6]. Here besides ν, we perform simulations
at ρc to determine the fractal dimension d f , which is defined
by 〈S〉 ∝ Ld f . Figure 3(b) shows the size of the largest cluster
〈S1〉 and the second largest cluster 〈S2〉 at ρc for different
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FIG. 3. (a) Reduced position of S2(L) peak varying with system
size. (b) The average size of the largest cluster 〈S1〉 (diamonds)
and the second largest cluster 〈S2〉 (triangles) at the critical point
as a function of the system size L. The slope of the fitting lines
corresponds to the fractal dimension df , which is about 1.886(8).
Each symbol is an average of 104 different realizations.

system sizes, the curves are fitted according to the scaling
form 〈S〉(L) = aLd f , where a is a fitting coefficient, and d f �
1.886(8) for all cases, which is approximately the same as the
fractal dimension d f = 91/48 ≈ 1.8958 for 2D lattice perco-
lation. The linearity of the S1(L) in the log-log coordinate can
measure the accuracy of the critical point. With ρ deviating ρc,
the linearity of the logarithmic order parameter log[S1(L)/N]
decreases, and as shown in Fig. 4(a), the accuracy of the
critical point estimated by the intersection of S1/S2 is about
0.002. The critical exponents β and γ can be estimated from
the order parameter at the critical, since the following scaling
relation

S1(ρc, L; �)/N ∝ Lβ/ν

χ (ρc, L; �) ∝ Lγ /ν, (7)

where χ is the fluctuation of the order parameter, i.e., χ =
N[〈(S1/N )2〉 − 〈S1/N〉2] [39] shown in Fig. 4(b). Combined
with the value of the exponent ν, the critical exponents are
0.144(8) and 2.42(5) corresponding β and γ , respectively,
which are also consistent with the 2D percolation universality
class. Based on these four obtained from the fitting data, it
can be considered that this percolation model with adaptive
dynamics belongs to the general universality class of the 2D

FIG. 4. (a) The logarithmic order parameter log[S1(L)/N] as a
function of the system size with different ρ. Each symbol cor-
responds to a different control parameter. At the critical point
ρ = 0.953 while � = 0.2, the slope corresponds to β/ν, which is
−0.1083. (b) The order parameter fluctuation χ at a critical point as
a function of system size. Fitting the different systems L results in
γ /ν = 1.815, which is consistent with the result of γ /ν = 43/24 for
the 2D percolation model. Each symbol is an average of 104 different
realizations.

FIG. 5. The phase diagram. (a) Each blue circle repre-
sents a percolation threshold obtained by averaging over 104

different configurations for each of the three different sys-
tem sizes. The fitting red curve of these percolation thresh-
olds is ρc = 0.1893/�, which divides the phase diagram into
two regions, i.e., subcritical (below the line) and supercrit-
ical (above the line). (b) The filling factor ηc vs target
overlapping area �. Despite the different parameter, the connectivity
of the system ηc is almost the same at criticality, which is 0.7157(39).
(c) The ratio between the target overlapping area � and the average
area of disks (π〈ri

2〉) at the critical point. The ratio approaches a
constant value, i.e., 0.2653(59). Each symbol in (b) and (c) is the
result of averaging 104 realizations.

lattice percolation. Note that the critical point in our model
depends on the value of the parameter �. We have determined
several pairs of thresholds (ρc,�) in the parameter plane, and
find that they can be fitted well by ρc = 0.1893/�. The results
are shown in Fig. 5(a). Below the curve, the clusters are all
small and the system is subcritical; above the curve, there is a
spanning cluster, and the system is in a percolated state. Our
model can be related to a 2D continuum percolation model of
randomly scattered N uniform disks with area A, where the
existence of the percolation cluster depends only on the filling
factor η = NA/L2, under the condition that L → ∞. For uni-
form disks, the critical filling factor is ηc ≈ 1.1281 [20]. For
our model, the area of disk i is πri

2, a similar filling factor can
be defined as,

η =
∑N

i=1 πri
2

L2
= ρπ

〈
ri

2
〉
, (8)

where π〈ri
2〉 is the average area of all the disks. For different

critical points (ρc,�), we can calculate the corresponding ηc.
It is found that although the critical points can be different,
ηc takes almost a constant value of 0.7157(39) independent
of �, as shown in Fig. 5(b), which suggests that the adaptive
dynamics is more efficient to form the spanning clusters. The
ratio of the overlapping area � to the mean area of disks is a
fixed value at the critical point,

�

π
〈
r2

i

〉 ≈ const., (9)

which is independent of ρc as shown in Fig. 5(c). The results
in Fig. 5 provide the evidence of the conjecture mentioned in
Sec. II that critical states with different � can be regarded as
a consequence of shrinking or expanding space.

It should also be noted that the limiting case of � →
0 of our adaptive dynamics model will not reduce to the
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TABLE I. Critical behavior, which characterizes the percolation phenomenon in two-dimensional systems with periodic boundary
conditions. The site percolation model (SP), bond percolation model (BP), and the CGP model (disk-shaped clusters) are on the 2D square
lattice, while the continuum percolation with disks (CPD) and our continuum percolation model with adaptive dynamics (CPA) are on the 2D
continuum square region. pc and ηc denote the threshold for discrete and continuum percolation, respectively. ν and df are two independent
critical exponents, and take the same values. The critical exponents β and γ are also the same as for 2D SP. Therefore, although the critical
thresholds are completely different, these models on discrete or continuum 2D media are in the same universal class.

pc ηc ν df β γ

SP 0.592 746 21(13) [48] − 4/3 [48] 91/48 [49] 5/36 [7] 43/18 [7]
BP 0.5 [50] − 4/3 [51] 91/48 [52] 5/36 [7] 43/18 [7]
CGP 0.4978(5) [39] − 1.32(4) [39] 1.8995(4) [39] 0.145(4) [39] 2.38(3) [39]
CPD − 1.128 087 37(6) [20] 4/3 [20] − 0.14(2) [26] 2.43(4) [26]
CPA − 0.7157(39) 1.33(4) 1.886(8) 0.144(8) 2.42(5)

touch-and-stop continuum percolation model where the disks
are not tangent to each other, as the ratio of the critical target
overlapping area to the average area of the disks �c/π〈r2〉 re-
mains a constant, and the disks still have significant overlaps.

Table I lists the critical thresholds and critical exponents for
the five different percolation models. Either discrete or con-
tinuous, they have the same critical exponents, giving a strong
indication that these models are in the same universality class.
The only difference is the value of the critical points pc or ηc,
which depends on the model details.

B. Properties of the system at different percolation phases

This model of continuous percolation originates from the
adaptive neuron system considering the homeostasis effects.
Since homeostatic plasticity adjusts the coupling strength of
neurons to a specific level, fluctuations in the activity level of a
single neuron can lead to adjustments in the coupling strength
of distant neurons. This relevant dynamical issue is then at
the steady state, if one neuron has a perturbation, how the
perturbation propagates to the other neurons, and whether this
property depends on the criticality of the percolating states.
In this case, we fix the ρ and discuss the propagation of the
fluctuation of the overlapping areas. Here, we fix L = 16 and
consider three cases, i.e., L1/ν (� − �c)/�c = ±a, 0, where
a = 7 is constant, for subcritical (−a), critical (0), and super-
critical (a) when ρ = 1. Due to the interneuron correlation, a
variation in the radius of a neuron not only affects its own size,
but also causes variations of its adjacent neurons. This effect
is not captured by other percolation models.

To be specific, a neuron or disk is randomly chosen when
the system arrives at the steady state, and adds a small pertur-
bation δ to its target overlapping area. Since the radius of the
disks is not the same in the steady state, a perturbation applied
on the radius causes a nonuniform relative magnitudes of the
perturbations. To overcome this issue, the target overlapping
area of the perturbed node i is increased or decreased not
by an absolute value, but by a certain percentage, i.e., �i →
(1 ± δ)�. After the system reaches the steady state again,
the average changes in the disks’ area, the size of the largest
cluster, the number of clusters, and the size of the cluster
containing the perturbed disk between the current state and
the initial state are recorded. Since the system is composed of
noncontact clusters, the perturbation typically only propagates
within the cluster containing the initially perturbed disk.

In Fig. 6(a) the perturbed disk is selected in the largest
cluster, and the propagation of the perturbation decays
exponentially with the distance from the perturbed disk i at
a critical point. Figure 6(b) demonstrates the absolute value
of the largest-cluster-size difference of the systems before and
after perturbation. In the three cases, the critical one is more
sensitive to the changes in δ than the other cases, while the
largest cluster size of the supercritical state is insensitive to the
perturbation intensity. In the critical state, as the perturbation
increases, the maximum difference does not exceed 1, that is,
the largest cluster size in the system is not drastically changed
after the perturbation due to adaptive dynamics. Similarly,
in Fig. 6(c), the variation in the number of clusters nc in
the system increases with the perturbation intensity δ, but
the variation 〈|nc|δ − nc|〉 is still less than 1. The amount
of variation in the number of clusters depends on the state
of the system. In subcritical, the system has a large number

FIG. 6. (a) The average changes of the disks’ area 〈π |r′
j
2 −

r j
2|〉 j vs the distance di j after the perturbation at the critical point.

The perturbation intensity on the perturbed disk i is δ = 0.01. Dif-
ferent symbols represent different system sizes. (b) Variation of the
mean absolute value of the largest-cluster-size difference before and
after the perturbation δ. (c) Similar to (b), the variation in the number
of clusters is due to the perturbation. (d) Variation of the size of the
cluster containing the perturbed disk, while the average size of the
perturbed cluster remains almost constant. Circles, squares, and tri-
angles represent the subcritical (t�L1/ν = −7), the critical (t� = 0),
and the supercritical (t�L1/ν = +7) cases. The above results are the
average of 100 configurations.
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FIG. 7. (a) The radius distributions corresponding to different ρ

at the critical state. (b) The rescaled radius r
√

ρ distributions for
tρL1/ν = ±10 and 0. For each case, the lines with the same symbol
are the results of eight densities ρ, which all collapse to each other.
The distributions of the systems with different sizes and the same
value of tρL1/ν are exactly identical. For simplicity, only the cases of
L = 64 are shown here. 104 samples are taken for histogram.

of clusters with small sizes, so the variation in cluster number
after the perturbation is the largest, while supercritical has a
small number of clusters but a large size in the system, so the
variation in cluster number is the smallest among the three
states, and the variation in the critical state lies in between the
two states.

Then considering the variation of the size Sp of the cluster
containing the perturbed disk, shown in Fig. 6(d), it can be
seen that the variation of the cluster with the perturbation
〈|Sp|δ − Sp|〉 is more distinct than the variation of S1, es-
pecially at the critical state. For the clusters, to which the
perturbed disk belongs, the perturbations can affect its size
significantly. However, the effect of the perturbation can be
absorbed by the surrounding disks quickly, i.e., the perturba-
tion decays exponentially with increasing distance, as a result,
the frustration or long-lasting oscillation of the disk area has
not been observed in our simulation.

The radius distribution at the critical state, as shown in
Fig. 7(a), is significantly different for different ρ. For small
ρ, the radius distribution is broad and the peak is low, while
as ρ gradually increases, the width of the distribution becomes
narrower and the peak becomes higher. This is intuitively con-
sistent with that smaller ri to achieve the overlapping area is
required for percolation at higher ρ. It should be emphasized
that the radius distribution has no observable finite-size effect.
The radius is mainly dominated by the distance of the adjacent
disks, i.e., 1/

√
ρ on average. This effect for different ρs can

be included by the rescaling radius r
√

ρ. For fixed tρL1/ν ,
the rescaled radius distributions are identical for systems with
different L and ρ, as shown in Fig. 7(b).

IV. CONCLUSION AND DISCUSSIONS

Percolation on a continuum medium is a commonly ob-
served phase transition phenomenon. Here we propose a
continuum percolation model with adaptive dynamics based
on a neuronal growth model with homeostatic plasticity. We
have confirmed that this model belongs to the same universal
class as the normal 2D percolation, by the correlation length
critical exponent ν and the fractal dimension d f . Besides the
density ρ, in this model there is another control parameter,
that is, the target overlapping area � due to the homeostatic

plasticity. However, for the linear summation of Ai j in the
dynamics of homeostatic plasticity, a critical configuration
of disks in infinite space can be deformed into a critical
configuration of different densities by shrinking or expanding
space, which corresponds to varying target overlapping area.
Therefore, these two control parameters are inversely related
at the critical point and can result in identical critical behavior.
Based on the same reason, the critical filling factor is 0.7157,
which is independent of the parameter target overlapping area.

Since the adaptive dynamics of the system is embodied
with the growth or contraction of the radius for the disks, once
there is a perturbation, it will propagate through the system.
However, we find numerically that, although at the critical
state, the system is relatively more sensitive in terms of the
size of the largest cluster or the cluster containing the initially
perturbed disk, the perturbation always decays exponentially
with increasing distance, thus the system is stable against
the perturbations, which could be a heritage of the neural
dynamics with homeostasis.

Introducing adaptive dynamics into continuum percolation
is an interesting point to enrich the universality class of per-
colation. From the perspective of investigations in complex
systems, our work constitutes an interesting piece for under-
standing the structural evolution of adaptive systems, which
are ubiquitous in natural and engineering systems, such as
neural networks, ad hoc systems, and the collective motion
of active matter systems.
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APPENDIX A: RADIUS EVOLUTION EQUATION

The system can evolve to the target state only based on the
dynamics of Eq. (1). To accelerate the rate of convergence,
Eq. (2) is introduced. For the final state of the adaptive dy-
namics, i.e., r∗ = [r∗

1 , · · · , r∗
N ]T , the total overlapping area∑

j Ai j (r∗) of each disk is �. Around the state, the total
overlapping area can be linearly approximated as

F(r∗) = F(r∗ + δ1) −
[
∂F
∂r

∣∣∣∣
r=r∗+δ1

]
δ1, (A1)

where F(r) is the function of total overlapping area defined
as F(r) ≡ [

∑
j A1 j (r), . . . ,

∑
j AN j (r)]T . After one-step evo-

lution of Eq. (1), the total overlapping area function F can be
expanded as

F(r∗ + δ2) = F(r∗ + δ1) +
[
∂F
∂r

∣∣∣∣
r=r∗+δ1

]
(δ2 − δ1), (A2)

where δ2 − δ1 is Kr(n − 1) and K is the constant in Eq. (1).
Around the critical point, the topological structure of the
disks’ connection is sparse, and most elements of matrix
[∂F/∂r], except for the diagonal elements, are 0. Then, ma-
trix [∂F/∂r] is approximated as a diagonal matrix to reduce
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FIG. 8. (a) The ratio of the size of the largest cluster to the
size of the second largest cluster 〈S1〉/〈S2〉 for systems of differ-
ent sizes when the control parameter is �, with ρ = 2. The inset
shows the zoom-in plots around the critical point, which is (ρ = 2,
�c � 0.0945). (b) The same plot as (a) but with a rescaled horizontal
axis by t�L1/ν . The curves of the data coincide by tuning ν to 4/3.
Thus this case has the same critical exponent of ν = 4/3 with Fig. 2.
Each data point is an average of 103 ensembles.

the amount of computation. Thus, combining Eq. (A1) and
Eq. (A2), the matrix [∂F/∂r] can be eliminated, i.e.,

Fi(r∗) − Fi(r∗ + δ1)

δ1(i)
= Fi(r∗ + δ2) − Fi(r∗ + δ1)

δ1(i) − δ2(i)
, (A3)

and an iterative algorithm can be constructed as

ri(n + 1) = ri(n − 1) + Fi(r∗) − Fi[r(n − 1)]

Fi[r(n)] − Fi[r(n − 1)]
Kri(n − 1),

(A4)

where Fi(r∗) ≡ � and Fi ≡ ∑
j Ai j . Essentially, this two-step

process provides a measure of information of the matrix
[∂F/∂r] so that it can accelerate evolution. In this model,
the convergence precision of the algorithm can be better than
10−8, i.e., max[|F1 − �|, · · · , |FN − �|] < 10−8�.

APPENDIX B: RESULTS FOR VARYING THE TARGET
OVERLAPPING AREAS

Here are the results related to the critical phenomenon of
varying the target overlapping area �. Near the critical point,
the largest cluster and the second largest cluster should follow
the finite-size scaling form similar to Eqs. (3) and (4) as
following,

S1(�, L; ρ) = Ld f F1,�(t�L1/ν ′
; ρ), (B1)

S2(�, L; ρ) = Ld f F2,�(t�L1/ν ′
; ρ), (B2)

where t� = (� − �c)/�c. Correspondingly, the ratio is given
by

S1

S2
≡ U�(t�L1/ν ′

; ρ). (B3)

FIG. 9. The critical exponents are calculated when the system is
in the percolation state, with the control parameter �. (a) Reduced
position of S2(L) peak varying with system size when ρ = 2. (b) The
average size of the largest cluster and the second largest cluster
at the critical point as a function of the system size L. The slope
of fitting lines corresponds to df = 1.886(8). (c) The logarithmic
order parameter log[S1(L)/N] as a function of the system size with
different �. At the critical point (�c = 0.2, ρ = 0.953), the slope
corresponds to β/ν, which equals −0.1083. (d) The order parameter
fluctuation χ at critical point (�c = 0.1906, ρ = 1) as a function of
system size, fitting the different systems L results in γ /ν = 1.815.
Each symbol is an average of 104 different realizations.

At the critical point, t� = 0,

S1

S2

∣∣∣∣
t�=0

= U�(0; ρ), (B4)

thus the ratio only depends on the parameter �, and the curves
for different system sizes L are expected to collapse together.
To be specific, we plot the ratio of 〈S1〉/〈S2〉 as the function
of the target overlapping area � for different system size L
in Fig. 8(a). It is clear that the critical point is �c ≈ 0.0945,
since different curves cross at this point, where the density of
disks is ρ = 2. After rescaling � to L1/ν ′

t�, the curves coin-
cide when ν ′ = 4/3, as shown in Fig. 8(b), thus the scaling
exponent ν ′ is the same as ν.

The critical exponent ν can also be estimated more ac-
curately from the position of the peak in S2(L), where the
reduced control parameter tpeak

� of the peak position has a scal-
ing form, tpeak

� ∝ L−1/ν , in Fig. 9(a) the slope of the dashed
line is −1/ν = −0.7506. Figure 9(b) shows the size of the
largest cluster 〈S1〉 and the second largest cluster 〈S2〉 at �c

for different system sizes, with the same results as in Fig. 3(b),
and the slopes derived from the fitted lines correspond to the
fractal dimensions, d f = 1.886(8). According to Eq. (7), the
ratio of the critical exponents β/ν and γ /ν can be obtained
when � is the control parameter, which corresponds to the
slopes −0.1083 and 1.815 in Figs. 9(c) and 9(d) respectively.
These critical behaviors of the setting � as control parameter
are identical with the behaviors of those of varying ρ.
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