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Entropy production from maximum entropy principle: A unifying approach
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Entropy production is the crucial quantity characterizing irreversible phenomena and the second law of
thermodynamics. Yet, a ubiquitous definition eludes consensus. Given that entropy production arises from
incomplete access to information, in this work we use Jaynes’ maximum entropy principle to establish a
framework that brings together prominent and apparently conflicting definitions. More generally, our definition
of entropy production addresses any tomographically incomplete quantum measurement and/or the action of a
quantum channel on a system.
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I. INTRODUCTION

Irreversible processes are omnipresent in nature. Their
quantitative specification is provided in terms of entropy pro-
duction [1,2]. This characterization allows the formalization
of the second law of thermodynamics and the examination of
a plethora of nonequilibrium phenomena, such as fluctuation
theorems [3–5], thermodynamic uncertainty relations [6–8],
the erasure of information [9–13], the thermodynamic role
of coherences [14–19], and the operation of thermal ma-
chines [20–24]. Furthermore, entropy production restricts
state transformations and is an important monotone in ther-
modynamic resource theories [14,25,26]. It can also be used
to characterize phase transitions [27–31] and the effect of
measurements on quantum systems [32,33].

Despite its significance and applicability, a consensual def-
inition of entropy production is still lacking. Indeed, several
definitions in the literature depend, for instance, on whether
the system is open or closed and on whether one has access
to individual trajectories [3–5,34]. It can start from a thermo-
dynamic entropy function [35,36], from the definition of an
entropy flux combined with an entropy change [37–39], or
from the identification of a non-negative contribution to the
latter [24,40,41].

In this work, we take a step in the direction of generaliza-
tion. Entropy is produced as a consequence of one’s inability
to retrieve information. Therefore, it emerges whenever an
observer does not have access to a tomographically complete
set of observables or cannot perform a measurement on the
system state eigenbasis. Crucially, this comprises the usual
system-environment split.

Explicitly, founded on the maximum entropy principle
(MEP) [42], an observer measuring a limited set of observ-
ables assigns to the system an unbiased state �max-S solely
based on the available information from these measurements.
Generically, this state will differ from the system state ρ as
determined by an observer with tomographically complete
access. We then define the entropy production as the relative
entropy between ρ and �max-S.

From this framework we recover several definitions of en-
tropy production in quantum thermodynamics. For instance,

when considering an observer performing local measure-
ments, we obtain the definition in [2,40]. If we regard an
observer performing fine- or coarse-grained energy mea-
surements, we recover, respectively, the diagonal [35] and
observational [36,43,44] entropy productions as particular
cases.

Fundamentally, our procedure applies to any tomographi-
cally incomplete measurement. Since �max-S will depend on
what observables are or are not being measured, our formula
allows us to understand how specific observables and control
levels affect the entropy production.

Besides, since quantum channels can be seen as resulting
from nonselective measurements [38,45,46], our reasoning
also defines the entropy production associated with their ac-
tion. As an example, we show that our entropy production for
a system subjected to complete dephasing matches the relative
entropy of coherence [47].

This article is organized as follows. In Sec. II, we present
our main result: a definition of entropy production derived
from MEP. Section III discusses key particular scenarios that
demonstrate our approach, and they enable us to derive promi-
nent definitions of thermodynamic entropy productions in
Sec. IV. Section V provides a brief overview of the role of
entropy production in the second law of thermodynamics. In
Sec. VI, we examine the production of entropy in one-to-
one and many-to-one quantum channels. Finally, in Secs. VII
and VIII, we discuss the limitations of our approach, its con-
nection with the second law of thermodynamics, and we offer
final remarks on the generality and further applications of our
results.

II. MAXIMUM ENTROPY STATE AND ENTROPY
PRODUCTION

Let L(Hn) denote the set of linear operators acting on a
Hilbert space Hn of dimension n, and let ρ ∈ L(HD) denote
a system state according to a complete tomography. Unless D
is very small, a realistic observer has control over a limited
number of degrees of freedom of this system, or it can mea-
sure a limited set of observables (Hermitian operators) {Xj}.
Consider an observer whose limited knowledge of this system
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is expressed by a set of measured numbers {x j} corresponding
to the expected values of {Xj}: x j = tr{Xjρ}.

Furthermore, let us assume this system goes through a
process described by a known completely positive and trace
preserving (CPTP) map [45,46] � : L(HD) → L(Hd ), D �
d , resulting in the output state �(ρ) ∈ L(Hd ).

Generically, after the process represented by �, the ob-
server acquires information about the output state �(ρ). Let
{Oi} be a set of linear operators allowing such information
to be obtained through the experimental determination of the
expected values oi = tr{Oi�(ρ)}. Not knowing beforehand
the system input state, but in possession of knowledge ex-
pressed by the constraints {oi; x j}, the observer may assign to
the input system a compatible state � following some criteria
[42,48–50]. The unique assignment consistent with all infor-
mation available, while avoiding any bias, is the maximum en-
tropy state (MES) upholding this set of constraints [42,48,50].

Formally, this goes as follows: The principle of maxi-
mum entropy dictates that we assign to the input system
the state � with maximum von Neumann entropy S(�) =
−tr{� ln �}, subjected to the constraints {oi; x j}. The solution
of this problem involves finding the stationary point of the La-
grangian function L(ρ; {ξ j, λi}) = S(�) − ∑

j ξ j (tr{Xj�} −
x j ) − ∑

i λi(tr{Oi�(�)} − oi ), where {λi} and {ξ j} are La-
grange multipliers.

Let �∗ denote the adjoint of �, defined by tr{�∗(Oi )ρ} =
tr{Oi�(ρ)}. Then the state maximizing entropy abiding by all
constraints is given by [42,48–50]

�
{oi ;x j}
max-S = 1

Z
exp

⎛
⎝−

∑
j

ξ jXj −
∑

i

λi�
∗(Oi )

⎞
⎠, (1)

where Z = tr{exp(−∑
j ξ jXj − ∑

i λi�
∗(Oi ))} normalizes

�
{oi;x j }
max-S . The relation between ξ j and the associated constraint

x j reads x j = − ∂
∂ξ j

ln Z and must be such that �
{oi;x j }
max-S pre-

dicts the correct measured expected value x j = tr{Xj�
{oi;x j }
max-S}.

Similarly λi, implicitly given by oi = − ∂
∂λi

ln Z is such that

tr{Oi�(�{oi;x j}
max-S )} = oi.

Now, whenever the constraints {oi; x j} are insufficient to
tomographically characterize the system, there must exist an
entropy production. In this case, given the input state of the
system ρ [51], we can compare it with the unbiased assign-
ment �

{oi,x j }
max-S to obtain the entropy production associated with

the available knowledge {oi; x j}. More precisely, we define
this entropy production by

�{oi,x j} = S
(
ρ || �{oi,x j }

max-S

)
, (2)

where S(ρ||σ ) = tr{ρ(ln ρ − ln σ )} � 0 is the quantum rela-
tive entropy.

Equation (2) constitutes our main result. By construction,
we see that this definition is conveniently adjustable to distinct
scenarios, with distinct accessible data.

III. NOTABLE EXAMPLES

In this section, we explore key examples of Eqs. (1) and (2),
which we use in Sec. IV to derive some prominent definitions
of thermodynamic entropy productions from our main result.

Suppose an experimenter performs a measurement de-
scribed by the complete and orthogonal set of rank-1
projectors {|a〉〈a|} associated with an observable A.

Let ρ denote the state of the system as characterized by a
full tomography. If ρ is not diagonal in the basis {|a〉}, this
single measurement is not sufficient to completely determine
the system state. What this experimenter determines, never-
theless, is the set of populations pa = tr{|a〉〈a|ρ}. From this
available knowledge, one might try to infer the state of the
system. The only unbiased inference is the MES consistent
with the constraints {pa}. In connection with Eq. (1), we
regard {|a〉〈a|} and {pa} as the sets of linear operators {Xj} and
constraints {x j} [52]. This leads to the following MES (A4):

�
{pa}
max-S =

∑
a

pa|a〉〈a|. (3)

Since the full characterization of the system is given by ρ,
there is an entropy production associated with the incomplete
knowledge of the observer measuring A that reads

�{pa} = S
(
ρ
∣∣∣∣�{pa}

max-S

) = SA(ρ) − S(ρ), (4)

where SA(ρ) ≡ −∑
a pa ln pa is the so-called diagonal en-

tropy of ρ in the basis {|a〉} [35].
In Appendix A, we show we can use Eqs. (1) and (2)

to compute the entropy production associated with the
completely dephasing map: DA(ρ) = ∑

a |a〉〈a|ρ|a〉〈a|. Not
coincidentally, this entropy production equals (4). The reason
is because DA can be regarded as originating from the above
measurement when the outcome is nonselected [38,45,46].
In this case, Eq. (4) equals the relative entropy of coher-
ence [47,53] and quantifies the entropy production due to the
loss of {|a〉}-basis coherences in ρ enforced by the completely
dephasing process.

Consider now an observer performing a coarse-grained
measurement [36,43] with a family of projectors 
i =∑

μ |aiμ〉〈aiμ|, with rank Vi = tr{
i} � 1, which are orthogo-
nal, 
i
 j = δi j
i, and complete,

∑
i 
i = 1. As motivation,

we imagine the observable A = ∑
i

∑
μ aiμ|aiμ〉〈aiμ| as hav-

ing blocks of size Vi of nearly degenerate eigenvalues {aiμ},
such that this observer cannot experimentally resolve between
eigenvalues in the same block. This is necessarily the case
in a macroscopic system, where, for instance, the separation
between energy levels is exponentially small in the system
number of particles [54,55].

Denoting again by ρ the full tomographic characterization
of the system, this measurement allows the acquisition of the
probabilities pi = tr{
iρ} of finding the system in subspace

i. Preceding as in the first example—with {pi} and {
i} in
place of {x j} and {Xj}—an inference of the system state based
on the MEP leads to (B4)

�
{pi}
max-S =

∑
i

pi

i

Vi
. (5)

Hence, the incomplete determination of the system state in
this case results in an entropy production given by (B5)

�{pi} = S
(
ρ
∣∣∣∣�{pi}

max-S

) = S{
i}
obs (ρ) − S(ρ), (6)

where S{
i}
obs (ρ) = −∑

i pi ln(pi/Vi ) is the so-called observa-
tional entropy of ρ [36,43,44]. We might think of this entropy
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production as resulting from a lack of knowledge of the ob-
server about the precise population of each state |aiμ〉 and
about the coherences between these states. In Appendix B we
also consider a quantum channel leading to the same entropy
production.

Moving forward, we consider henceforth an open system S
interacting with an environment E . The reason for splitting the
global system into parts S and E is the assumption that an ob-
server has access only to local operations in the former; hence,
the observer only acquires information about S. Equivalently
we might think of the global state ρSE subjected to a process
represented by the partial trace over E channel, resulting in
the reduced state ρS = trE {ρSE }.

Let us assume ρS to be fully known by the observer,
meaning she/he has access to a tomographic complete set of
observables {OS

i } with known expected values oS
i = tr{OS

i ρS}.
Note that tr∗

E (OS
i ) = OS

i ⊗ 1E , where 1E is the identity over
the environment. Applying (1), the MES associated with the
action of trE under the constraints {oS

i } is (see Appendix C
and [49])

�
{oS

i }
max-S = ρS ⊗ 1E

dE
, (7)

where dE = tr{1E } is the dimension of the environment
Hilbert space, and we used that ρS is fixed by the constraints
{oS

i }.
Hence, the discarding of E—represented by the partial

trace—when the reduced state of S is known to be ρS , pro-
duces entropy by an amount

�{oS
i } = S(ρSE ||ρS ⊗ 1E/dE ). (8)

Essentially, these examples and those in the Appendixes il-
lustrate the versatility of Eq. (2) and how it adapts to different
scenarios. The first two examples show how different control
levels affect the entropy production. The effects of access
to different observables also become clear below when we
consider thermodynamic processes and assume an observer
with some knowledge of the environment.

IV. APPLICATIONS TO THERMODYNAMICS

Building on the results of the previous section, we now
demonstrate how our approach recovers the diagonal [35]
and observational [36,43,44] definitions of thermodynamic
entropy production as particular cases for when an observer
performs fine- or coarse-grained energy measurements, re-
spectively. Additionally, we show that, when considering an
observer performing local measurements, we obtain the defi-
nition in [2,40].

Consider a system evolving unitarily driven by a
time-dependent Hamiltonian H (t ) = ∑

i ε
t
i |εt

i 〉〈εt
i |. Let Ut =

T exp{i ∫ t
0 H (t ′)dt ′} denote the unitary time-evolution op-

erator up to time t—here T represents the time-ordering
operator. We assume the system is initially in a state ρ0 =∑

i p0
i |ε0

i 〉〈ε0
i |, diagonal in the initial energy basis. This means

a measurement in this basis completely determines ρ0 [56]. It
further means SH0 (ρ0) = S(ρ0)—i.e., the diagonal entropy of
ρ0 in the H0 basis equals its von Neumann entropy.

Consider that after an evolution up to time t , the observer
measures the system in the current energy basis {|εt

i 〉}. In

general, ρt = Utρ0U
†
t will not be diagonal in this basis, and

therefore this measurement cannot tomographically identify
the system state. As seen in the previous section—Eq. (4)—
this leads to an entropy production given by

�d = SH (t )(ρt ) − S(ρt ) = SH (t )(ρt ) − SH0 (ρ0), (9)

where we used S(ρt ) = S(ρ0) = SH0 (ρ0).
In [35], Polkovnikov proposes the use of diagonal entropy

as the thermodynamic entropy. He then showed that for a
closed system initially diagonal in the energy basis, we would
have SH (t )(ρt ) � SH0 (ρ0), meaning the thermodynamic en-
tropy of the system had increased—agreeing with the second
law. In this case, the entropy produced would be precisely (9),
which we can see here as a particular case of our definition
in (2).

Next, we continue considering a closed system evolving
unitarily. But now, instead of fully resolved, we consider a
coarse-grained energy measurement with the complete and
orthogonal set of projectors {
t

i = ∑
μ |εt

iμ〉〈εt
iμ|}, where we

write the system Hamiltonian as H (t ) = ∑
iμ εt

iμ|εt
iμ〉〈εt

iμ|.
We assume the system’s initial state is ρ0 = ∑

i p0
i 


0
i /V 0

i , so
that a measurement with {
0

i } is sufficient to completely de-
termine ρ0. Consequently, its observational and von Neumann

entropies equal S{
0
i }

obs (ρ0) = S(ρ0).
Again, let ρt = Utρ0U

†
t denote a system state evolved

up to time t , when a measurement with the up-to-the-time
projectors {
t

i} is performed to probe the system. As seen
above, Eq. (6), this generically leads to an entropy production
given by

�obs = S{
t
i }

obs (ρt ) − S{
0
i }

obs (ρ0), (10)

where we used S(ρt ) = S(ρ0) = S{
0
i }

obs (ρ0).
Equation (10) is the definition of thermodynamic entropy

production for a unitarily evolving system in [36]. In [36,43]
the authors propose the use of observational entropy as the
thermodynamic entropy since it interpolates between the von
Neumann and Boltzmann entropies. We notice that this defi-
nition of entropy production follows directly from Eq. (2) by
considering the appropriate scenario.

Continuing the applications of Eq. (2), we assume hence-
forth an open system S interacting with an environment E .
Typically one considers the situation in which the system, in
a state ρ0

S , is made to interact with the environment in a state
ρ0

E . The global state then evolves unitarily to ρSE = USE (ρ0
S ⊗

ρ0
E )U †

SE . At the end of the interaction, the environment is
disregarded and a set of local measurements is performed to
determine the system’s reduced state ρS = trE {ρSE }.

Equation (8) computes the entropy produced in the pro-
cess when nothing is known about the environment. Usually,
however, that is not the case. Suppose, for instance, the en-
vironment initial energy E0

E is known. In Appendix C, we
show that we may use this as a further constraint leading to

the MES �
{oS

i ;E0
E }

max-S = ρS ⊗ e−β0HE /ZE and the entropy produc-
tion �{oS

i ;E0
E } = �SS + β0�EE . Here �SS = S(ρS ) − S(ρ0

S )
is the change in von Neumann entropy of the system, �EE =
tr{(ρE − ρ0

E )HE } is the change in energy of the environment,
and β0 is defined by E0

E = −∂β0 ln ZE , where ZE = tr{e−β0HE }.
According to [2,40], this is exactly the entropy produced in a
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process in which the environment is initially in a thermal state
ρ0

E = e−β0HE /ZE at inverse temperature β0.
Ultimately, if the set of constraints {oE0

j = tr{OE
j ρ

0
E }} com-

pletely specifies the environment initial state ρ0
E , we can use

them in Eq. (1) to obtain �
{oS

i ;o
E0
j }

max-S = ρS ⊗ ρ0
E (C8). This leads

to the general definition of entropy production in [2,40]:

�info = S
(
ρSE ||ρS ⊗ ρ0

E

) = S
(
ρE ||ρ0

E

) + ISE (t ), (11)

where ρE = trS{ρSE } is the final environment state, and
ISE (t ) = S(ρSE ||ρS ⊗ ρE ) is the quantum mutual informa-
tion, quantifying the total amount of correlations in the global
state ρSE . The last equality in (11) shows that this entropy
production emerges from the loss of information about the
final environment state and the correlations between S and E
when the environment is discarded. This discussion reveals
how access to different observables, here particularly of E ,
modifies the entropy production. In Appendix C, we further
show that when the observer knows the final (local) state of
the environment, the entropy production reduces to ISE (t ).

Moving forward, we consider now an observer who can
perform only coarse-grained energy measurements on a large
environment. Particularly, we denote by {|st

i〉〈st
i |} the eigen-

projectors of the reduced system state at any time t ; by
HE = ∑

jμ εE
jμ|εE

jμ〉〈εE
jμ| the environment Hamiltonian and by

{
E
j = ∑

μ |εE
jμ〉〈εE

jμ|} the complete and orthogonal set of
energy projectors used to probe E . For simplicity, we take
HE to be time-independent. We assume the observer can
perform, at any time t , a joint measurement of system and
environment described by the set {|st

i〉〈st
i | ⊗ 
E

j }. Moreover,
we assume the initial joint global state to be of the form
ρ0

SE = ∑
i j s0

i |s0
i 〉〈s0

i | ⊗ p0
j


E
j /V E

j , with V E
j = tr{
E

j }, such
that its observational entropy equals its von Neumann entropy:

S
{|s0

i 〉〈s0
i |⊗
E

j }
obs (ρ0

SE ) = S(ρ0
SE ).

After a global unitary evolution leading to the final state
ρSE = USEρ0

SEU †
SE at time t , the observer performs the afore-

mentioned joint coarse-grained measurement. This allows the
determination of the probabilities pi j = tr{|st

i〉〈st
i | ⊗ 
E

j ρSE }
of finding the system in state |st

i〉 while the environment is in
the energy subspace 
E

j . From them the MES associated with
the available knowledge is (D5)

�
{pi j}
max-S =

∑
i j

pi j

∣∣st
i

〉〈
st

i

∣∣ ⊗ 
E
j /V E

j . (12)

The entropy production in this case becomes [see Eq. (6)]

�obs = S
{|st

i 〉〈st
i |⊗
E

j }
obs (ρSE ) − S

{|s0
i 〉〈s0

i |⊗
E
j }

obs

(
ρ0

SE

)
, (13)

where S
{|st

i 〉〈st
i |⊗
E

j }
obs (ρSE ) = −∑

i j pi j ln(pi j/V E
j ) is the obser-

vational entropy of the final state, and we used S(ρSE ) =
S(ρ0

SE ). Equation (13) constitutes the definition of entropy
production for an open system in [36] based on observational
entropy. In Appendix D, we further discuss the case of inde-
pendent local measurements on S and E .

Hence, several prominent definitions of thermodynamic
entropy production are encapsulated in the MEP combined
with Eq. (2). Our approach operationally unveils how these
distinct definitions arise from different assumptions over what
is being measured.

V. ENTROPY PRODUCTION AND THE SECOND LAW
OF THERMODYNAMICS

Broadly there are currently two views on the meaning of
the second law of thermodynamics. On the one hand, many
consider that given a system with its specific properties and
dynamics, any identification of a strictly non-negative contri-
bution to the change in its von Neumann entropy constitutes
a statement of the second law. This is the position adopted
implicitly or explicitly, for instance, in [2,24,37,40,41]. In this
case, Eq. (2) can be seen as a generalized statement of the
second law.

Specifically, regarding a system environment in an initial
state ρ0

S ⊗ ρ0
E evolving unitarily, we may write �SS = � + �.

Here, �Sα is the change in von Neumann entropy of α, and
� = S(ρSE ||�max-S) is the entropy production in the process.
� = −�SE − tr{ρSE (ln ρS ⊗ ρE − ln �max-S)} is the entropy
flux into/out of S, having no definite sign. Hence, � in Eq. (2)
gives the strictly non-negative contribution to the change in
entropy of the system.

Contrastingly, some assume any statement of the second
law necessarily starts from the definition of a strictly non-
decreasing thermodynamic entropy function, applicable also
for closed systems. This position is endorsed, for instance,
by [23,35,36,43]. In this view, the von Neumann entropy
cannot, in general, be used as the thermodynamic entropy
because of its invariance in closed systems. One then must
adopt some other function such as diagonal or observational
entropies. In this case, Eq. (2) serves to quantify the increase
in this function.

Interestingly, the increase in diagonal and observational
entropies in Eqs. (9) and (10) is equivalent to the increase
in von Neumann entropy of the respective maximum entropy
states. This suggests we can always use the von Neumann
entropy as the thermodynamic entropy, as long as we apply
it to the unbiased state encoding only and all available infor-
mation about the system: �max-S. This advocates further the
interpretation of �max-S as a macrostate representation of the
system, specifying solely the expected values of the measur-
able physical quantities in a given setup.

VI. MANY-TO-ONE AND ONE-TO-ONE CHANNELS

We already mentioned, and show in Appendixes A and C,
how Eqs. (4) and (8) may be seen as the entropy production
resulting from the full dephasing and partial trace operations,
respectively. Indeed, Eqs. (1) and (2) are directly applicable to
many-to-one channels: those � for which many input ρ lead
to the same output �(ρ)—in Appendix B we give a further
example of such a channel in connection with Eq. (6). For
such channels, knowledge of the output state generically does
not determine the input. In other words, �max-S 
= ρ, leading to
a nonzero entropy production characterizing the irreversibility
of the process �.

Still, many important quantum channels are of the one-
to-one type—these include noisy channels like the bit-flip,
phase-flip, depolarizing, and amplitude damping [45,46]. For
these channels, direct application of Eqs. (1) and (2) leads to a
zero entropy production. This is because �max-S must be such
that �(�max-S) = �(ρ). Hence, a one-to-one relation between
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the input and output of � forces �max-S = ρ, culminating in
Eq. (2) vanishing. Nevertheless, in Appendix E we show we
can still use Eq. (2) to compute the change in von Neumann
entropy of the system after passing through a one-to-one
channel.

VII. LIMITATIONS

The MES in Eq. (1) is valid for constraints given by
the expected values of linear operators. Some definitions of
entropy production do not fit this paradigm [24,41]. For ex-
ample, in [24] the authors consider the system-environment
state ρ0

S ⊗ ρ0
E evolving unitarily. They then assume knowl-

edge of the initial and final von Neumann entropies of the
environment and use them to define nonequilibrium ini-
tial and final temperatures for E . Particularly, they define
the nonequilibrium inverse temperature of a system with
Hamiltonian H in a state ρ as the number β such that
S(ρ) = S(ρβ ), where ρβ = e−βH/tre−βH . This allows the in-
troduction of a so-called thermal energy E th(t ) = tr{Hρβ(t )},
which they use to define an entropy production: � = �SS +
β0�E th

E (t ) = ISE (t ) + S(ρβ(t )
E ||ρβ0

E ), where �SS is the change
in von Neumann entropy of the system, and �E th

E (t ) is the
change in thermal energy of the environment.

Since the von Neumann entropy of a state cannot be written
as the expected value of a linear operator, such a definition of
entropy production cannot be derived from our framework.
We note, however, that computing the entropy of the envi-
ronmental final state generally requires full tomography of
this state. As mentioned earlier, it is possible to show using
Eq. (2), though, that full knowledge of the final environmental
state should lead to a smaller entropy production, given solely
by ISE (t ).

VIII. CONCLUSION

Understanding the emergence of thermodynamics, espe-
cially the second law, from the microscopic description of
systems is a fundamental goal in quantum thermodynamics.
Many definitions of entropy production—the quantity iden-
tifying irreversibility—have been proposed already. Here we
presented a resourceful framework grounded on the maximum
entropy principle that reconciles several prominent proposals.

Beyond that, our approach operationally connects entropy
production with the accessible properties of a system. This
is achieved through the introduction of a macrostate (1) of
Gibbs-like form, suggesting deep relations with thermody-
namics. Particularly, we expect the identification of Lagrange
multipliers in (1) with standard thermodynamic variables.
Indeed, something in this direction is already done in [36],
where the nonequilibrium temperature of a system is de-
fined as the temperature of a fictitious Gibbs state giving the
same internal energy as that of the system. Such a definition
emerges naturally in our framework.

Exploring the link between quantum measurements and
maps [38,45,46], our definition of entropy production extends
to general quantum channels. In this direction, we hope to
explore the entropy production in systems whose degrees
of freedom cannot be split in the usual system-environment
form [49,57–60].
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APPENDIX A: ENTROPY PRODUCTION IN
FINE-GRAINED MEASUREMENT AND DEPHASING

CHANNEL

As in the main text, we consider here a measurement de-
scribed by the projectors set {|a〉〈a|} such that tr|a〉〈a| = 1,
〈a|a′〉 = δa,a′ , and

∑
a |a〉〈a| = 1. Given a system preparation

ρ, this measurement allows the determination of the probabil-
ities pa = tr{|a〉〈a|ρ} = 〈a|ρ|a〉.

Referring to Eqs. (1) and (2), here the set {pa}, associated
with the linear operators {|a〉〈a|}, corresponds to the con-
straints {x j} representing knowledge of the observer about the
system. Using the orthogonality of the projectors {|a〉〈a|}, we
have that the state of maximum entropy consistent with this
knowledge is given by

�
{pa}
max-S = 1

Z
exp

(
−

∑
a

ξa|a〉〈a|
)

=
∑

a

e−ξa

Z
|a〉〈a|, (A1)

where

Z = tr

{
exp

(
−

∑
a

ξa|a〉〈a|
)}

=
∑

a

e−ξa , (A2)

and the Lagrange multipliers {ξa} must be such that

pa ≡ − ∂

∂ξa
ln Z = − ∂

∂ξa
ln

∑
a

e−ξa = e−ξa

Z
. (A3)

Hence,

�
{pa}
max-S =

∑
a

pa|a〉〈a|. (A4)

Accordingly, the accompanying entropy production is
given by

�{pa} = S
(
ρ||�{pa}

max-S

) = tr
{
ρ
(

ln ρ − ln �
{pa}
max-S

)}
= SA(ρ) − S(ρ), (A5)

where S(ρ) = −tr{ρ ln ρ} is the von Neumann entropy of ρ,
and

SA(ρ) = −tr

{
ρ ln

∑
a

pa|a〉〈a|
}

= −
∑

a

pa ln pa (A6)

is the diagonal entropy [35] of ρ in the basis {|a〉}.
As stated in the main text, Eq. (A5) is also equal to the

entropy production associated with the action of the (many-
to-one) completely dephasing map:

DA(ρ) =
∑

a

|a〉〈a|ρ|a〉〈a| =
∑

a

pa|a〉〈a|. (A7)

Let us assume an experimenter with access to a tomograph-
ically complete set of observables {Oi} used to determine
the output state DA(ρ). The expected values of these ob-
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servables are given by oi = tr{OiDA(ρ)} = ∑
a pa〈a|Oi|a〉 =∑

a paOi
aa. Furthermore, we assume this experimenter has no

information about the input state ρ. It is easy to show that the
trace dual of the channel DA is DA itself. Then the maximum
entropy state associated with these constraints is given by

�
{oi}
max-S = 1

Z
exp

{
−

∑
i

λiDA(Oi )

}

= 1

Z
exp

{
−

∑
i,a

λiO
i
aa|a〉〈a|

}

=
∑

a

e− ∑
i λiOi

aa

Z
|a〉〈a|, (A8)

where

Z = tr

{
exp

[
−

∑
i

λiDA(Oi )

]}
=

∑
a

e− ∑
i λiOi

aa . (A9)

The Lagrange multipliers {λi} must be such that

oi =
∑

a

paOi
aa ≡ − ∂

∂λi
ln Z =

∑
a

e− ∑
i λiOi

aa

Z
Oi

aa. (A10)

Hence, e− ∑
i λiOi

aa/Z = pa and

�
{oi}
max-S =

∑
a

pa|a〉〈a| = DA(ρ). (A11)

Consequently, the entropy produced when the system
passes through the dephasing process is given by (A5), which
is equivalent to the relative entropy of coherence [47] of ρ in
the basis {|a〉}.

APPENDIX B: ENTROPY PRODUCTION IN
COARSE-GRAINED MEASUREMENT

Let us consider now a coarse-grained measurement [36,43]
described by the set of projectors {
i} with ranks Vi = tr{
i},
satisfying the orthogonality condition 
i
 j = δi j
 j and the
completeness relation

∑
i 
i = 1.

For a system prepared in a state ρ, an observer performing
this measurement will acquire knowledge about the system
in the probabilities pi = tr{
iρ}. The maximum entropy state
constrained by this knowledge reads

�
{pi}
max-S = 1

Z
exp

{
−

∑
i

ξi
i

}
=

∑
i

e−ξi

Z

i, (B1)

with

Z = tr

{
exp

{
−

∑
i

ξi
i

}}
=

∑
i

Vie
−ξi , (B2)

where the Lagrange multipliers {ξi} must be such that

pi ≡ − ∂

∂ξi
ln Z = Vi

e−ξi

Z
. (B3)

Therefore, e−ξi/Z = pi/Vi and

�
{pi}
max-S =

∑
i

pi

i

Vi
. (B4)

Thus, the entropy production associated with the limited
knowledge about the system encoded in the constraints {pi}
reads

�{pi} = S
(
ρ||ρ{pi}

max-S

) = tr
{
ρ
(

ln ρ − ln �
{pi}
max-S

)}
= S{
i}

obs (ρ) − S(ρ), (B5)

where

S{
i}
obs (ρ) = −tr

{
ρ ln

∑
i

pi

i

Vi

}
= −

∑
i

pi ln
pi

Vi
(B6)

is the observational entropy [36,43] of ρ associated with the
coarse-graining {
i}.

There is also a many-to-one channel that leads to the same
entropy production in (B5). Let us denote by {|aiμ〉〈aiμ|} the
set of rank-1 projectors such that 
i = ∑

μ |aiμ〉〈aiμ|. We
specify the many-to-one channel �obs by the Kraus operators:

Kiμν = 1√
Vi

|aiμ〉〈aiν |. (B7)

The action of �obs on state ρ leads to the output

�obs(ρ) =
∑
iμν

KiμνρK†
iμν =

∑
i

pi

i

Vi
. (B8)

Let {Oα} denote the tomographically complete set of ob-
servables an experimenter uses to determine the output state
�(ρ). The expected values of these observables on the final
state read oα = tr{Oα�obs(ρ)} = ∑

i(pi/Vi )Oα
i , where Oα

i =
tr{Oα
i}. We assume an observer with no knowledge of the
input ρ. The action of the trace-dual of �obs is given by
�∗

obs(•) = ∑
iμν K†

iμν (•)Kiμν . The maximum entropy state as-
sociated with the constraints {oα} is given by

�
{oα}
max-S = 1

Z
exp

{
−

∑
α

λα�∗
obs(O

α )

}

= 1

Z
exp

{
−

∑
α

λα

∑
i

Oα
i 
i/Vi

}

=
∑

i

e−(1/Vi )
∑

α λαOα
i

Z

i, (B9)

where

Z = tr

{
exp

{
−

∑
α

λα�∗
obs(O

α )

}}
=

∑
i

Vie
−(1/Vi )

∑
α λαOα

i .

(B10)

The Lagrange multipliers {λα} must be such that

oα =
∑

i

pi

Vi
Oα

i ≡ − ∂

∂λα

ln Z =
∑

i

e−(1/Vi )
∑

α λαOα
i

Z
Oα

i .

(B11)

Consequently, e−(1/Vi )
∑

α λαOα
i /Z = pi/Vi and �

{oα}
max-S =

�obs(ρ) = ∑
i pi
i/Vi. Hence, the entropy production asso-

ciated with the action of the channel �obs is equal to (B5).
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APPENDIX C: ENTROPY PRODUCTION IN A
SYSTEM-ENVIRONMENT SETTING

Let us consider a system S coupled to an environment E
prepared in a global state ρSE . The reduced states of system
and environment—ρS and ρE , respectively—are connected
with the global state ρSE by the actions of the many-to-one
channels trE and trS: ρS = trE {ρSE } and ρE = trS{ρSE }.

We assume ρS has been fully determined by the observer
by usage of a tomographically complete set of observables
{OS

i } with expected values oS
i = tr{OS

i ρS}. Furthermore, we
consider initially that the observer has no information what-
soever about the environment.

The trace-dual of the channel trE over a linear operator OS

acting on the system subspace results in the extended operator
OS ⊗ 1E , where 1E is the identity over the environment sub-
space. Thus, the maximum entropy state associated with the
constraints {oS

i } reads

�
{oS

i }
max-S = 1

Z
exp

{
−

∑
i

λiO
S
i ⊗ 1E

}

= 1

Z
exp

{
−

∑
i

λiO
S
i

}
⊗ 1E

= e− ∑
i λiOS

i

ZS
⊗ 1E

dE
, (C1)

where

Z = tr

{
exp

{
−

∑
i

λiO
S
i ⊗ 1E

}}

= tr

{
exp

{
−

∑
i

λiO
S
i

}
⊗ 1E

}

= ZS dE , (C2)

with ZS = tr{e− ∑
i λiOS

i } and dE = tr{1E }.
Now, since the set {OS

i } is tomographically complete, the
state ρS is uniquely settled by the constraints {oS

i } [49]. There-

fore, {λi} must be such that e− ∑
i λiOS

i /ZS = ρS [49], and �
{oS

i }
max-S

is given by

�
{oS

i }
max-S = ρS ⊗ 1E/dE . (C3)

Hence, the entropy produced when the observer discards
E—by tracing it out—is given by

�{oS
i } = S(ρSE ||ρS ⊗ 1E/dE ). (C4)

As discussed in the main text, usually in thermodynamics
one considers a process in which ρSE is the result of a unitary
evolution from an initially decoupled state ρ0

S ⊗ ρ0
E . More-

over, in this case the observer commonly has at least partial
knowledge of the initial state of the environment. First, we
assume its initial energy to be known. Let us denote by HE and
E0

E = tr{1 ⊗ HEρ0
S ⊗ ρ0

E } the Hamiltonian and initial energy
of the environment. We can look at E0

E as an additional con-
straint to which the maximum entropy state should abide. This

leads to

�
{oS

i ;E0
E }

max-S = 1

Z
exp

{
−

∑
i

λiO
S
i ⊗ 1E − β01S ⊗ HE

}

= e− ∑
i λiOS

i

ZS
⊗ e−β0HE

Zβ0
E

= ρS ⊗ ρ
β0
E , (C5)

where Zβ0
E = tr{e−β0HE }, ρ

β0
E = e−β0HE /Zβ0

E , and β0 is the
Lagrange multiplier satisfying E0

E = −∂β0 ln Zβ0
E .

The entropy production associated with the observer’s
knowledge in this case becomes

�{oS
i ;E0

E } = S
(
ρSE ||ρS ⊗ ρ

β0
E

)
. (C6)

Let us assume the initial environment state is ρ
β0
E . Then, the

entropy production (C6) acquires the more thermodynamic-
like form

�{oS
i ;E0

E } = −tr
{
ρSE ln ρS ⊗ ρ

β0
E

} − S(ρSE )

= S(ρS ) − tr
{
ρE ln ρ

β0
E

} − S
(
ρ0

S ⊗ ρ
β0
E

)
= �SS − tr

{(
ρE − ρ

β0
E

)
ln ρ

β0
E

}
= �SS + β0tr

{(
ρE − ρ

β0
E

)
HE

}
= �SS + β0�EE , (C7)

where we used the invariance of the von Neumann en-
tropy under unitary evolutions to make S(ρSE ) = S(ρ0

S ⊗
ρ

β0
E ); �SS = S(ρS ) − S(ρ0

S ) is the entropy change of the sys-
tem S, and �E = tr{(ρE − ρ

β0
E )HE } is the change in energy

of the environment—which is often interpreted as the heat
leaving S. In this scenario, Eq. (C6) was defined in [2,40]
as the entropy produced in a system made to interact with a
thermal environment at inverse temperature β0.

Crucially, Eq. (C6) can be generalized to arbitrary initial
environment states. Let {OE

j } denote a tomographically com-
plete set of observables that can be used to determine the
environment state ρ0

E . Let oE0
j = tr{OE

j ρ
0
E } be the expected

value of OE
j in this state. The maximum entropy state abiding

to the constraints {oS
i ; oE0

j } is given by

�
{oS

i ;o
E0
j }

max-S = 1

Z
exp

⎧⎨
⎩−

∑
i

λiO
S
i ⊗ 1E −

∑
j

ξ 0
j 1S ⊗ OE

j

⎫⎬
⎭

= e− ∑
i λiOS

i

ZS
⊗ e− ∑

j ξ 0
j OE

j

Z0
E

= ρS ⊗ ρ0
E , (C8)

where Z0
E = tr{e−∑

j ξ 0
j OE

j } and we used the fact that the
Lagrange multiples {ξ 0

j } must be such that e− ∑
j ξ 0

j OE
j /Z0

E =
ρ0

E .
The entropy production thus becomes

�{oS
i ;o

E0
j } = S

(
ρSE ||ρS ⊗ ρ0

E

) = I (ρSE ) + S
(
ρE ||ρ0

E

)
, (C9)

where I (ρSE ) = S(ρSE ||ρS ⊗ ρE ) = S(ρS ) + S(ρE ) − S(ρSE )
is the quantum mutual information in ρSE . Equation (C9) is
defined in [2,40] as the entropy produced when a system S
is made to interact with an environment initially in a state ρ0

E ,
and the latter is discarded at the end of the interaction. The last
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equality in (C9) shows that this entropy production is related
to the observer’s lack of information about the correlations
between S and E in the final state ρSE —computed by I (ρSE )—
and the absence of information about the final environmental
state ρE .

Next, let us also consider the situation in which the en-
vironment is not discarded: at the end of the interaction the
observer can perform local measurements on both S and E .
Let {oS

i = tr{OS
i ρS}} and {oE

j = tr{OE
j ρE }} be the sets of con-

straints that completely specify the final (reduced) states of
system ρS and environment ρE . The maximum entropy state
associated with these constraints is given by

�
{oS

i ;oE
j }

max-S = 1

Z
exp

⎧⎨
⎩−

∑
i

λiO
S
i ⊗ 1E −

∑
j

ξ j1S ⊗ OE
j

⎫⎬
⎭

= e− ∑
i λiOS

i

ZS
⊗ e− ∑

j ξ j OE
j

ZE
= ρS ⊗ ρE , (C10)

where ZE = tr{e− ∑
j ξ j OE

j }, and we used the fact that {ξi} must
be such that e− ∑

j ξ j OE
j /ZE = ρE .

The entropy production in this case amounts to

�{oS
i ;oE

j } = S(ρSE ||ρS ⊗ ρE ) = I (ρSE ), (C11)

and it is solely related to the lack of knowledge of the observer
about the correlations in the global state ρSE .

APPENDIX D: ENTROPY PRODUCTION WITH
COARSE-GRAINED MEASUREMENT ON THE

ENVIRONMENT

Let us continue to consider the thermodynamic scenario
of a system and environment initially in an uncorrelated state
ρ0

S ⊗ ρ0
E evolving unitarily to ρSE at time t .

Let HE = ∑
jμ εE

jμ|εE
jμ〉〈εE

jμ| denote the (time-
independent) environmental Hamiltonian, and let {|st

i〉}
denote the orthonormal eigenbasis of the system’s local state
ρS (t ) = trE {ρSE (t )} = ∑

i st
i |st

i〉〈st
i | at time t . Moreover, let

{
E
j = ∑

μ |εE
jμ〉〈εE

jμ|} be a complete,
∑

j 

E
j = 1E , and

orthogonal, 
E
j 


E
j′ = δ j j′


E
j , set of energy-projectors with

ranks V E
j = tr{
E

j }. We assume an observer who can, at
any time t , perform the joint measurement characterized by
the operator set {|st

i〉〈st
i | ⊗ 
E

j }. Hence, the measurement
is coarse on the energy of the environment. Finally, we
assume the initial system-environment state to be of
the form ρ0

SE = ρ0
S ⊗ ρ0

E = ∑
i s0

i |s0
i 〉〈s0

i | ⊗ ∑
j p0

j

E
j /V E

j
such that

S
{|s0

i 〉〈s0
i |⊗
E

j }
obs

(
ρ0

SE

) = S
(
ρ0

SE

)
. (D1)

The measurement {|st
i〉〈st

i | ⊗ 
E
j } at time t allows the de-

termination of the probabilities pi j = tr{|st
i〉〈st

i | ⊗ 
E
j ρSE (t )}

of finding the system in the eigenstate |st
i〉 while the envi-

ronment is in the energy shell defined by the projector 
E
j .

The maximum entropy state compatible with the knowledge

of these probabilities is given by

�
{pi j}
max-S = 1

Z
exp

⎧⎨
⎩−

∑
i j

ξi j

∣∣st
i

〉〈
st

i

∣∣ ⊗ 
E
j

⎫⎬
⎭

=
∑

i j

e−ξi j

Z

∣∣st
i

〉〈
st

i

∣∣ ⊗ 
E
j , (D2)

where

Z = tr

⎧⎨
⎩exp

⎧⎨
⎩−

∑
i j

ξi j

∣∣st
i

〉〈
st

i

∣∣ ⊗ 
E
j

⎫⎬
⎭

⎫⎬
⎭ =

∑
i j

V E
j e−ξi j ,

(D3)

and the Lagrange multipliers {ξi j} must be such that

pi j ≡ − ∂

∂ξi j
ln Z = V E

j

e−ξi j

Z
. (D4)

Thus, e−ξi j /Z = pi j/V E
j and

�
{pi j}
max-S =

∑
i j

pi j

∣∣st
i

〉〈
st

i

∣∣ ⊗ 
E
j /V E

j . (D5)

The entropy production associated with this observer’s
knowledge is thus

�{pi j} = S
(
ρSE ||�{pi j}

max-S

)
= S

{|st
i 〉〈st

i |⊗
E
j }

obs (ρSE ) − S
{|s0

i 〉〈s0
i |⊗
E

j }
obs

(
ρ0

SE

)
, (D6)

where we used the fact that S(ρSE ) = S(ρ0
SE ) =

S
{|s0

i 〉〈s0
i |⊗
E

j }
obs (ρ0

SE ), and

S
{|st

i 〉〈st
i |⊗
E

j }
obs (ρSE ) = −

∑
i j

pi j ln
(
pi j/V E

j

)
(D7)

is the observational entropy of ρSE .
Let us also consider the case of an observer performing

local measurements on the system and environment charac-
terized by the operator sets {|st

i〉〈st
i | ⊗ 1E } and {1S ⊗ 
E

j }.
In this case, the two measurements allow the observer to
determine the (uncorrelated) probabilities st

i = tr{|st
i〉〈st

i | ⊗
1EρSE } = trS{|st

i〉〈st
i |ρS} of finding the system in eigenstate

|st
i〉, and pE

j = tr{1S ⊗ 
E
j ρSE } = trE {
E

j ρE }—where ρE =
trS{ρSE } is the local environment state at time t—of finding
the environment in the energy shell associated with 
E

j . The
maximum entropy state constrained by {st

i ; pE
j } is given by

�
{st

i ;p
E
j }

max-S = 1

Z
exp

⎧⎨
⎩−

∑
i

ξ S
i

∣∣st
i

〉〈
st

i

∣∣ ⊗ 1E −
∑

j

ξE
j 1S ⊗ 
E

j

⎫⎬
⎭

=
∑

i

e−ξ S
i

Z ′
S

∣∣st
i

〉〈
st

i

∣∣ ⊗
∑

j

e−ξE
j

Z ′
E


E
j , (D8)

where Z ′
S = trS{e−∑

i ξ
S
i |st

i 〉〈st
i |} = ∑

i e−ξ S
i and Z ′

E =
trE {e− ∑

j ξ j

E
j } = ∑

j V E
j e−ξE

j . The Lagrange multipliers
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{ξ S
i } and {ξE

j } are such that

st
i = − ∂

∂ξ S
i

ln Z ′
S = e−ξ S

i

Z ′
S

, (D9)

pE
j = − ∂

∂ξE
j

ln Z ′
E = e−ξE

j

Z ′
E

V E
j . (D10)

This means e−ξ S
i /Z ′

S = st
i , e−ξE

j /Z ′
E = pE

j /V E
j , and

�
{st

i ;p
E
j }

max-S =
∑

i

st
i

∣∣st
i

〉〈
st

i

∣∣ ⊗
∑

j

pE
j 


E
j /V E

j

= ρS ⊗
∑

j

pE
j 


E
j /V E

j . (D11)

The entropy production in this case becomes

�{st
i ;p

E
j } = S

(
ρSE ||�{st

i ;p
E
j }

max-S

) = �SS
obs + �SE

obs, (D12)

where

�SS
obs = S{|st

i 〉〈st
i |}

obs (ρS ) − S{|s0
i 〉〈s0

i |}
obs

(
ρ0

S

)
= S(ρS ) − S

(
ρ0

S

)
, (D13)

�SE
obs = S

{
E
j }

obs (ρE ) − S
{
E

j }
obs

(
ρ0

E

)
(D14)

are the changes in observational entropy of the system and
environment, respectively, and we used the fact that

S(ρSE ) = S
(
ρ0

SE

) = S
{|s0

i 〉〈s0
i |⊗
E

j }
obs

(
ρ0

SE

)
= S{|s0

i 〉〈s0
i |}

obs

(
ρ0

S

) + S
{
E

j }
obs

(
ρ0

E

)
.

The difference between the two entropy productions (D12)
and (D6) is given by [36]

�{st
i ;p

E
j } − �{pi j} = Ic({pi j}) � 0, (D15)

where

Ic({pi j}) =
∑

i j

pi j ln
pi j

st
i pE

j

(D16)

is the classical mutual information. Equation (D15) shows
how knowledge of the correlations between the eigenstates
|st

i〉 of the system and the energy shells 
E
j of the environment

reduce the total amount of entropy production.

APPENDIX E: ENTROPY CHANGE IN ONE-TO-ONE MAPS

As discussed in the main text, for a channel � that es-
tablishes a one-to-one relation between its input state ρ and
output �(ρ), we have �max-S = ρ. According to our defini-
tion, � = S(ρ||�max-S), this leads to a zero entropy production
� = 0. Nonetheless, we can still use this definition to predict
the change in von Neumann entropy of the system in these
scenarios as follows.

We can think of these channels as resulting from the in-
teraction of the system S with an environment A. Let ρS ⊗
|0〉A〈0| be the initial joint state of S and A, and let U� be the
unitary generating the channel �, such that

�(ρS ) = trA{U�(ρS ⊗ |0〉A〈0|)U †
�}. (E1)

As seen in Eq. (C9), the tracing-out of A, assuming its initial
pure state is known, leads to an entropy production given by

� = S(U�(ρS ⊗ |0〉A〈0|)U †
�||�(ρS ) ⊗ |0〉A〈0|)

= S(�(ρS )) − S(ρS ), (E2)

which is the change in von Neumann entropy of the system
after passing through the channel �.
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