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We consider the long-term evolution of a spatially inhomogeneous long-range interacting N-body system.
Placing ourselves in the dynamically hot limit, i.e., assuming that the system only weakly amplifies perturbations,
we derive a large deviation principle for the system’s empirical angle-averaged distribution function. This result
extends the classical ensemble-averaged kinetic theory given by the so-called inhomogeneous Landau equation,
as it specifies the probability of typical and large dynamical fluctuations. We detail the main properties of the
associated large deviation Hamiltonian, particularly focusing on how it complies with the system’s conservation
laws and possesses a gradient structure.
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I. INTRODUCTION

As a result of violent relaxation [1], long-range interacting
N-body systems generically find themselves on nonequilib-
rium quasistationary states. Finite-N fluctuations can then
continue driving these systems closer to their thermodynam-
ical equilibrium. Such a long-range dynamics covers quite
a wide class of systems like plasmas [2], self-gravitating
clusters [3], or even more generic systems [4], such as point
vortices in two-dimensional hydrodynamics, see, e.g., [5] or
classical Heisenberg spins on the unit sphere, see, e.g., [6].
In the present work, we focus our interest on (integrable)
spatially inhomogeneous systems, as exemplified by globular
clusters [7].

To describe the long-term evolution of these systems, a
classical starting point is to consider the ensemble-averaged
evolution of the system’s distribution function (DF), where,
here, the average is over a set of initial conditions. In the
context of long-range interacting inhomogeneous systems,
this is described by the inhomogeneous Balescu-Lenard (BL)
equation [8,9]. In the limit of a dynamically hot system,
i.e., a system which only weakly amplifies perturbations, this
kinetic equation reduces to the (simpler) inhomogeneous Lan-
dau equation (see, e.g., [10] and references therein). Both
kinetic equations satisfy an H theorem hence highlighting the
irreversibility of the ensemble-averaged dynamics.

Yet such frameworks, because they solely focus on
ensemble-averaged dynamics, cannot predict the detailed
probabilities of typical and large dynamical fluctuations away
from this mean evolution. Such an extension is the realm of
large deviation theory (see, e.g., [11] and the detailed review
therein) which describes the entire statistics of the system’s
empirical DF. This is the focus of the present paper. In partic-
ular, we build upon [12] and derive the large deviation Hamil-
tonian in the case of a dynamically hot long-range interacting
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inhomogeneous system. This calculation, therefore, gen-
eralizes the inhomogeneous Landau equation, which is
immediately recovered from the large deviation theory
through an ensemble average. As the upcoming sections will
highlight, up to a few additional complications stemming from
our accounting of the intricate orbital structure, these calcula-
tions share a lot of similarities with the ones presented in [12].

The paper is organized as follows. In Sec. II, we detail
our system, the quasilinear expansion, and the inhomogeneous
Landau equation. In Sec. III, we derive the system’s large de-
viation Hamiltonian while neglecting collective amplification.
In Sec. IV, we discuss the main properties of this Hamiltonian.
We conclude in Sec. V. Technical details in the main text are
kept to a minimum and deferred to the Appendices.

II. DYNAMICS OF LONG-RANGE
INTERACTING SYSTEMS

A. System

We are interested in the long-term evolution of a long-
range interacting Hamiltonian system in 2d dimensions. We
denote phase space with w := (q, p). The system is composed
of N �1 particles of individual mass, m := Mtot/N , with Mtot

the system’s fixed total active mass. At any given time, the
state of the system can be described by its empirical DF

Fd(w, t ) :=
N∑

i=1

m δD[w−wi(t )], (1)

with wi(t ) the location in phase space at time t of particle i.
Here, Fd stands for the empirical (“discrete”) DF, while δD is
the usual Dirac delta function. We assume that particles are
embedded within some given external potential, Uext (w) (e.g.,
the kinetic energy) and coupled to one another via a long-
range pairwise interaction, U (w, w′). We denote the typical
amplitude of U (w, w′) with G. The limit G→0 corresponds
to the dynamically hot limit. In that regime, the system only
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weakly amplifies perturbations, i.e., the collective effects are
negligible. This will be the limit of interest in this work.

The instantaneous specific empirical Hamiltonian is

Hd := Uext (w) + �d(w, t ), (2)

with the empirical (“discrete”) potential

�d(w, t ) :=
∫

dw′ U (w, w′) Fd(w′, t ). (3)

The dynamics of Fd is given by the Klimontovich equa-
tion [13]. It reads

∂Fd

∂t
+ [Fd, Hd] = 0, (4)

with the Poisson bracket

[ f (w), h(w)] := ∂ f

∂q
· ∂h

∂p
− ∂ f

∂p
· ∂h

∂q
. (5)

In the present setup, stochasticity is said to be purely ex-
trinsic since Eq. (4) is itself fully deterministic, and only the
particles’ initial conditions vary from one realization to the
other. In the following, we will therefore consider ensem-
ble averages over the initial conditions of the N particles.
Denoting the ensemble average as 〈·〉, we assume then that
F (w, t ) := 〈Fd(w, t )〉 is a smooth function, and we introduce
H := 〈Hd〉 the associated smooth Hamiltonian. The mean sys-
tem is assumed to be in an integrable stable quasistationnary
equilibrium. There exist then canonical angle-action coordi-
nates, (θ, J) [3], so that

F (w, t ) = F (J, t ); H (w, t ) = H (J, t ), (6)

hence defining the orbital frequencies, �(J) :=∂H/∂J. Such
a system is said to be in a quasistationary equilibrium since
[F (J, t ), H (J, t )]=0.

B. Quasilinear expansion

For a given realization, we define

FN (J, t ) :=
∫

dθ

(2π )d
Fd(w, t ), (7)

by averaging over the angles. Following Eq. (3), we assume
that HN := HN [FN ], only depends on the actions. Since we
have 〈FN 〉= F , it is natural to build the decomposition

Fd(w, t ) = FN (J, t ) + 1√
N

δF (w, t ), (8a)

Hd(w, t ) = HN (J, t ) + 1√
N

δ�(w, t ), (8b)

where the prefactor 1/
√

N ensures that the fluctuations, δF
and δ�, are of order unity w.r.t. N .

It is crucial to note that Eq. (8) differs from the usual quasi-
linear decomposition, see, e.g., [9], Fd =F +δF/

√
N , where

one replaces FN in Eq. (8a) with the (nonstochastic) mean DF,
F (J, t ). Indeed, in the present approach FN since it depends on
the particles’ initial conditions, remains a stochastic quantity
that varies from one realization to another. In this work, our
goal is to characterize the statistics of the dynamics of FN (J, t )
and its deviation away from the mean evolution, i.e., the
evolution of F (J, t ).

We can now inject Eqs. (8) into Eq. (4) to obtain evolution
equations for δF and FN . We get

∂δF

∂τ
+ N{[δF, HN ] + [FN , δ�]} = 0, (9a)

∂FN (J, τ )

∂τ
+

∫
dθ

(2π )d
[δF, δ�] = 0, (9b)

where we truncated Eq. (9a) at first order in 1/
√

N , performed
an angle average in Eq. (9b), and introduced the (slow) time
τ :=t/N . On the one hand, for N �1, Eq. (9a) for δF is a fast
process, with a timescale for τ of order 1/N : it describes the
fast dynamics of fluctuations. On the other hand, Eq. (9b) is
associated with a slow process, with a timescale for τ of order
1: it describes the slow relaxation of orbits.

C. Kinetic equations

To describe the ensemble average of Eq. (9b) for the
asymptotic process of δF for fixed FN , one typically pro-
ceeds as follows: (i) Because the angles θ are 2π -periodic,
fluctuations can be decomposed in Fourier space, hence in-
troducing the associated resonance vectors, k, k′ ∈Zd ; (ii)
Assuming a separation between the fast and slow timescales,
one solves Eq. (9a) for δF (w, t ), assuming a fixed FN (J, τ ),
see Appendix A; (iii) One finally injects these asymptotic
expressions in the right-hand side (r.h.s.) of Eq. (9b) to obtain
the kinetic collision operator, see [9] for details.

Placing oneself in the dynamically hot limit, i.e., G→0,
one finds that the ensemble-averaged long-term evolution of
the system is described by the inhomogeneous Landau equa-
tion [10] reading

∂F (J, τ )

∂τ
= ∂

∂J
·
[ ∑

k,k′
k

∫
dJ′ Bkk′ (J, J′)

×
{

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J′ F (J)

}]
+ o(G2),

(10)

where we wrote F (J) = F (J, τ ) to shorten the notations. We
also introduced

Bkk′ (J, J′):= π (2π )d Mtot |ψkk′ (J, J′)|2
× δD[k · �(J) − k′ · �(J′)], (11)

with δD the Dirac delta. Here, ψkk′ (J, J′) stands for
the bare coupling coefficients [see Eq. (A3)], which ac-
count for the system’s inhomogeneity. When accounting
for collective effects, i.e., going beyond the limit G → 0,
Eq. (10) becomes the BL equation [8,9]. It is obtained from
Eq. (11) by replacing |ψkk′ (J, J′)|2 with their dressed analogs,
|ψd

kk′ (J, J′, k · �(J))|2, as defined in Eq. (A10).

III. LARGE DEVIATION PRINCIPLE

We now want to go beyond the classical computation pre-
sented in Eq. (10) by estimating not only the ensemble average
of Eq. (9b), but the entire scaled cumulant generating func-
tion. This allows one to retrieve not only the average evolution
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path for the angle-averaged DF, FN , but the entire probability
distribution function for any evolution path.

Following the same approach as in [12], we can generi-
cally estimate the probability that FN (τ ) follows a given time
evolution {F (τ )}0�τ�T through1

P ({FN (τ )}0�τ�T = {F (τ )}0�τ�T )

	
N→+∞

exp

[
−N (2π )d

Mtot
sup

P

∫ T

0
dτ

{(∫
dJḞP

)
− H[F, P]

}]
,

(12)

with Ḟ := ∂τ F , and the prescription that FN (τ = 0) converges
to F (τ = 0) for N → +∞. Equation (12) also involves the
conjugate field {P(J, τ )}0�τ�T , over which the maximization
must be performed. Finally, in Eq. (12), we introduce the large
deviation Hamiltonian (i.e., the scaled cumulant generating
function)

H[F, P] := lim
�→+∞

Mtot

�(2π )d
ln

[〈
exp

(
(2π )d

Mtot

×
∫ �

0
dt

∫
dJ P(J) ∂τ FN [δF ]

)〉
F

]
, (13)

where both F (J) and P(J) are evaluated at time τ , and
∂τ FN [δF ] follows from Eq. (9b). Here, 〈 · 〉F denotes an
expectation over the fast process δF with FN = F fixed. Equa-
tions (12) and (13) are generic results describing the large
deviations for the slow evolution of a process driven by a
random fast process. We refer to Appendix B for a brief
heuristic derivation of Eqs. (12) and (13).

Naturally, here the difficulty lies in the computation of the
average in Eq. (13). Following the same approach as in [12],
we start this calculation by expanding Eq. (13) w.r.t. G. We
can write

H[F, P] = H(1)[F, P] + H(2)[F, P] + o(G2), (14)

where H(1) (or H(2)) is the first (or second cumulant). Com-
puting these cumulants is a cumbersome calculation. As a
first step, this requires the computation of the asymptotic
time evolution of the DF and potential fluctuations. This is
presented in Appendix A. Then, in Appendix C, we compute
explicitly the various first terms of Eq. (14).

The first cumulant reads (Appendix C 1)

H(1)[F, P] := −
∑
k,k′

∫
dJdJ′ Bkk′ (J, J′) k · ∂P

∂J

×
[

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J′ F (J)

]
+ o(G2), (15)

1In Eq. (12), we introduce the logarithmic equivalence defined via
aN 	

N→∞
eNa ⇐⇒ lim

N→+∞
ln(aN )/N = a.

while the second cumulant reads (Appendix C 2)

H(2)[F, P] :=
∑
k,k′

∫
dJdJ′ Bkk′ (J, J′) k · ∂P

∂J

×
[

k · ∂P

∂J
− k′ · ∂P

∂J′

]
F (J) F (J′) + o(G2).

(16)

Finally, in Appendix C 3, we justify why all cumulants
beyond the two first ones can be neglected in the dynamically
hot limit, i.e., they are all of order o(G2).

Equation (12) in conjunction with Eq. (14) is the main
result of this section. These two equations characterize the dy-
namical large deviations of the angle-averaged DF, FN (J, τ ).
Phrased differently, they describe simultaneously the system’s
mean evolution and the dispersion around it. We discuss their
main properties in Sec. IV.

Unfortunately, the expansion from Eq. (14) stops being
effective when accounting for collective effects, i.e., in the
dynamically cold limit. In that case, one must resort to an
explicit computation of the exponential average from Eq. (13),
as all cumulants in Eq. (13) contribute to the large deviation
Hamiltonian. The authors of [14] succeeded in perform-
ing this calculation in the case of a homogeneous system.
Unfortunately, the theorems and methods used therein do
not lend themselves straightforwardly to the inhomogeneous
case. One reason of these additional difficulties lies in the
fact that in homogeneous systems, the resonance condition,
δD(k · [v − v′]), is diagonal w.r.t. the resonance number k.
This is not the case anymore in inhomogeneous systems where
the resonance condition becomes δD[k · �(J) − k′ · �(J′)], as
in Eq. (11). Such a development will be the topic of a future
work.

IV. PROPERTIES

In this section, we briefly present the main properties of
the large deviation Hamiltonian from Eq. (14). We refer to
Appendix D for technical details and to Sec. 2.1.1 of [12] for
thorough discussions.

A. Most probable path

The evolution path that minimizes the large deviation ac-
tion is the most probable evolution path for the empirical
DF (see Sec. 7.2.2 in [11]). The associated Hamilton equa-
tion reads

∂F (J, τ )

∂τ
= δH

δP(J)
[F, P = 0], (17)

and yields exactly the inhomogeneous Landau equation (10).
As could have been expected a priori, the most likely evo-
lution path is the one given by the usual ensemble-averaged
kinetic theory.

B. Conservation laws

If C[F ] is a conserved quantity for the N-body dynamics,
the large deviation Hamiltonian must satisfy∫

dJ
δC[F ]

δF (J)

δH
δP(J)

= 0. (18)
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This symmetry implies that the large deviation action [i.e., the
exponential argument in the r.h.s. of Eq. (12)] is infinite for
evolution paths that do not satisfy

∫
dJḞ δC[F ]/δF (J) = 0.

Phrased differently, any evolution path for the DF violating
the conservation laws has zero probability (see Sec. 7.2.6 in
[11]). In Appendix D 2, we explicitly show that Eq. (14) is
consistent with the mass and energy conservation, defined via

M[F ] :=
∫

dJ F (J) (mass conservation), (19a)

E [F ] :=
∫

dJ H (J) F (J) (energy conservation). (19b)

This is an important self-consistency property. It ensures that
individual (stochastic) realizations only explore states leaving
the system’s global invariants unchanged.

C. Hamilton-Jacobi equation

We define the system’s entropy as

S[F ] := −
∫

dJ F (J) ln[F (J)]. (20)

As detailed in Appendix D 3, one can show that it solves the
stationary Hamilton-Jacobi equation

H[F,−δS/δF ] = 0, (21)

where δS/δF stands for the function J → δS[F ]/δF (J). This
is a reassuring sanity check. Yet Eq. (21) is not sufficient
to prove that the negative of the entropy is the quasipoten-
tial associated with the present large deviation principle (see
Sec. 7.2.3 in [11]). Indeed, one also has to prove that S[F ]
has an unique maximum: this is typically not true for self-
gravitating systems (see, e.g., [15,16]).

D. Time-reversal symmetry

The large deviation Hamiltonian complies with the gener-
alized time-reversal symmetry (see Appendix D 4)

H[F,−P] = H[F, P − δS/δF ]. (22)

Such a relation corresponds to a detailed balance condition
at the level of large deviations, associated with the symme-
try τ → T − τ in Eq. (12) (see Sec. 7.3.1 in [11]). This is
the imprint, within the framework of large deviations, that
the individual Hamiltonian equations of motions are time-
reversible.

E. Gradient structure

The large deviation Hamiltonian generically induces a gra-
dient flow [17]. Indeed, as detailed in Appendix D 5, the
second cumulant from Eq. (16) can be written as

H(2)[F, P] =
∫

dJdJ′ P(J) P(J′) Q[F ](J, J′), (23)

where Q[F ] reads

Q[F ](J, J′) :=
∑
k,k′

k · ∂

∂J

{
∂

∂J′ ·
[

− k′F (J)F (J′)Bkk′ (J, J′)

+ k δD(J − J′)F (J)
∫

dJ′′F (J′′)Bkk′ (J, J′′)
]}

.

(24)

The inhomogeneous Landau Eq. (10) can then be
rewritten as

∂F (J, τ )

∂τ
=

∫
dJ′ Q[F ](J, J′)

δS[F ]

δF (J′)
, (25)

with the entropy, S[F ], defined in Eq. (20). Given that H[F, P]
is convex w.r.t. P, Q[F ] is a positive operator on the space of
DFs. Therefore, Eq. (25) illustrates the increase of entropy
along solutions of the Landau equation (see Sec. 5 in [11]).
This is the celebrated H theorem recovered here through the
characterization of dynamical large deviations.

F. Stochastic Landau equation

We note that the large deviation Hamiltonian from Eq. (14)
is quadratic in P(J, t ). This implies that large deviations are
Gaussian (see, e.g., Sec. 4.2 in [12]). As a result, as detailed
in Appendix D 6, one can setup a stochastic partial differen-
tial equation which obeys the large deviation principle from
Eq. (12). It reads

∂FN (J, τ )

∂τ
=

[
∂FN (J, τ )

∂τ

]
Landau

+ ζ [FN ](J, τ ), (26)

where [∂FN (J)/∂τ ]Landau is the inhomogeneous Landau colli-
sion operator, i.e., the r.h.s. of Eq. (10). We also introduced
the Gaussian random field, ζ [F ](J, τ ). Following Sec. 4.2 in
[12], it obeys

〈ζ [F ](J, τ )〉 = 0, (27a)

〈ζ [F ](J, τ ) ζ [F ](J′, τ ′)〉 = 2m

(2π )d
Q[F ](J, J′) δD(τ − τ ′),

(27b)

where averages are taken at fixed F .
Although intricate, Eq. (26) is an important result as it

allows one to “mimic” directly the stochastic evolution of FN

and its large deviations, without ever integrating the N-body
equations of motion. Indeed, in the same way that the usual
Fokker-Planck equation can be recovered from the average
of independent Langevin random walks [18], the statistics
of the large deviations from Eq. (12) can be recovered from
the average of independent realizations of the stochastic
Eq. (26).

Following Sec. IV B, Eq. (26) exactly conserves the to-
tal mass and total energy. Finally, in Appendix D 6 [see
Eq. (D21)], we present an alternative writing of ζ [F ](J, τ )
which (i) eases the effective sampling of the stochastic noise
and (ii) highlights explicitly the compliance with the conser-
vation laws. Such a rewriting should prove particularly useful
to make numerical realizations of self-gravitating systems.

024108-4



DYNAMICAL LARGE DEVIATIONS FOR LONG-RANGE … PHYSICAL REVIEW E 110, 024108 (2024)

G. Homogeneous limit

It is straightforward to recover the results from [12] in the
limit of a (multiperiodic) homogeneous system. In that case,
(i) the angle-action coordinates become (θ, J) → (x, v), the
volume elements (2π )d → L3, with L the size of the box,
and N/Mtot plays the role of the plasma parameter 
; (ii) the
bare coupling coefficients are constrained by symmetry and
independent of the orbits, namely, ψkk′ (J, J′) → δkk′/|k|2, up
to a prefactor. Equation (14) then falls back on the result
from [12].

V. CONCLUSION

In this paper, we investigated dynamical large deviations
in systems with long-range interactions. In the view of gen-
eralizing [12], we focused here on the case of (integrable)
spatially inhomogeneous systems. Starting from the generic
large deviation Hamiltonian of a slow-fast system and placing
ourselves in the dynamically hot limit, i.e., neglecting col-
lective effects, we computed the two first cumulants of the
associated large deviation Hamiltonian. Equation (14) is the
main result of this work, and encodes the likelihood of any
given evolution path for the system’s angle-averaged DF. In
Sec. IV, we highlighted that Eq. (14) complies with all the
expected properties, such as (i) recovering the inhomogeneous
Landau equation [10] in the ensemble-averaged limit; (ii)
ensuring the conservation laws; (iii) and possessing a natural
gradient structure. Finally, we emphasized that the quadratic
dependence of the large deviation Hamiltonian w.r.t. the con-
jugate field allows one to construct an effective stochastic
partial differential equation with the expected dynamical large
deviations.

The present work is only one step toward an ever more
detailed description of the statistical properties of dynamical
large deviations in long-range interacting inhomogeneous sys-
tems. We conclude by mentioning a few possible venues for
future explorations.

Naturally, it would be useful to generalize Eq. (14) and
lift the assumption G → 0, so as to generalize [14] to the
inhomogeneous case in the presence of collective effects. As
emphasised in [14], this is a delicate calculation that requires
computing, explicitly, all the cumulants of a quadratic form
of a Gaussian random field. In inhomogeneous systems, this
becomes even more challenging since both the resonance
condition and the coupling coefficients get more intricate.
Nonetheless, this would be of astrophysical relevance since
typical self-gravitating systems are generically only weakly
stable, e.g., as visible through spiral arms in galactic discs
(see, e.g., [19]) or radial orbit instability in globular clusters
(see, e.g., [20]).

Here, we started our calculation from the description of
the dynamics using the Klimontovich equation (4). Yet, it is
known that the inhomogeneous BL and Landau equations can
also be derived from the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy (see, e.g., [2]) through a different
route [8]. Tailoring the framework of large deviations to the
BBGKY’s viewpoint could prove insightful.

The generic probability distribution function from Eq. (12)
is challenging to evaluate in practice. Though, it would be

enlightening to compute it numerically, starting with some
simple long-range interacting systems. One could begin with
the Hamiltonian mean-field model [21] in an inhomogeneous
configuration, for example, tracking the statistics of the large
deviations of the system’s magnetization. Similarly, one could
extend the present work to long-range interacting systems
submitted to a stochastic forcing (see, e.g., [22–26]). These
systems exhibit phase transitions whose most likely transition
path could be recovered via a large deviation principle, that
is, through the resolution of a system of coupled partial dif-
ferential equations for F (J, τ ) and P(J, τ ). Such preliminary
explorations are mandatory first steps before applying the
present statistical approach to more realistic systems.

In Sec. IV F, we emphasized that the large deviations of
a (dynamically hot) self-gravitating system can be directly
mimicked from a stochastic partial differential equation, as
given by Eq. (26). We believe that this should prove a pow-
erful rewriting within the astrophysical context. Indeed, it is
significantly simpler to realize Eq. (26) numerically than it is
to effectively compute the supremum in the large deviation
function from Eq. (12). As a result, the various evolution
paths that would be obtained from Eq. (26) should offer new
insights on the galactic diversity routinely observed in large
hydrodynamical simulations (see, e.g., [27]).

Along the same line, we point out that the “diagonal”
rewriting [see Eq. (D21)] of the stochastic partial differen-
tial equation shares a structure strikingly similar with the
ones encountered when describing the long-term relaxation
of globular clusters via the Monte Carlo method [28] or when
deriving the BL equation from Rostoker principle [29]. This
stems from the fact that all these approaches exactly conserve
global invariants like the total energy. Ultimately, one can
hope to benefit from this insight to generalize the Monte Carlo
method from [28] so that it would explicitly account for the
inhomogeneity of self-gravitating systems as well as their
deviations around the mean evolution. This will be the topic
of future investigation.

Here, the system was always assumed to be (strongly)
linearly stable. This allowed us to neglect any possible con-
tributions from the system’s damped modes in the linear
dynamics of fluctuations (see Appendix A 3). In the case of
weakly stable systems, it would be interesting to extend the
present calculation to account for the effects of slowly de-
caying modes and wave-particle interactions (see, e.g., [30]),
as well as possible dynamical phase transitions toward linear
instability, for example, occurring in spiral galaxies (see, e.g.,
[31]). Additionally, one could investigate the connections be-
tween the present dynamical large deviations and the thermal
(van Kampen) fluctuations considered in [32,33].

Finally, we limited ourselves to diffusion sourced by
two-body correlations, i.e., 1/N effects. Yet, in the case of
one-dimensional systems, such a relaxation can identically
vanish. This is a kinetic blocking (see, e.g., [6,34–37]) and
these systems can only relax via the weaker 1/N2 effects, i.e.,
three-body correlations (see, e.g., [38]). It would be informa-
tive to investigate the properties of dynamical large deviations
in such contrived systems. On the astrophysical front, such
developments would be useful to describe the the long-term
evolution of orbital orientations around supermassive black
holes (see, e.g., [39]).
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APPENDIX A: LINEAR DYNAMICS OF FLUCTUATIONS

In this Appendix, we solve for the linear dynamics of the
fluctuations δF , as driven by Eq. (9a). The calculations below
follow closely [9,40]. In this Appendix, the angle-averaged
DF, FN , has simply been denoted with F to shorten the
notations.

1. Laplace-Fourier transforms

We define the Fourier transform w.r.t. the angle θ via

f (w, t ) =
∑
k∈Zd

fk(J, t ) eik·θ, (A1a)

fk(J, t ) :=
∫

dθ

(2π )d
f (w, t ) e−ik·θ. (A1b)

The self-consistency relation from Eq. (3) when used for the
fluctuations then reads

δ�k(J, t ) = (2π )d
∑

k′

∫
dJ′ ψkk′ (J, J′) δFk′ (J′, t ). (A2)

In that expression, ψkk′ (J, J′) are the bare coupling coef-
ficients. They follow from the expansion of the pairwise
interaction potential as

U (w, w′) =
∑
k,k′

ψkk′ (J, J′) ei(k·θ−k′ ·θ′ ). (A3)

These coefficients satisfy the two symmetries

ψk′k(J′, J) = ψ∗
kk′ (J, J′), (A4a)

ψ−k−k′ (J, J′) = ψ∗
kk′ (J, J′). (A4b)

We define the Laplace transform with the convention

f̃ (ω) :=
∫ +∞

0
dt f (t ) eiωt ; f (t ) =

∫
B

dω

2π
f̃ (ω) e−iωt ,

(A5)

where the Bromwich contour B has to pass above all the poles
of the integrand, i.e., Im[ω] has to be large enough. When
expressed in Fourier-Laplace space, Eq. (9a) becomes

δF̃k(J, ω) = −k · ∂F/∂J
ω − k · �

δ�̃k(J, ω) − δFk(J, 0)

i(ω − k · �)
, (A6)

with � = �(J) and δFk(J, 0) describing the fluctuations in
the DF at the initial time. Once again, we recall that for the
sake of shorter notations, we wrote the angle-averaged DF,
FN , as F .

2. Self-consistency

We now act on both sides of Eq. (A6) with the same
operator as in the r.h.s. of Eq. (A2). We get

δ�̃k(J, ω) = −(2π )d
∑

k′

∫
dJ′ ψkk′ (J, J′)

ω − k′ · �′

× k′ · ∂F

∂J′ δ�̃k′ (J′, ω)

− (2π )d
∑

k′

∫
dJ′ ψkk′ (J, J′)

i(ω − k′ · �′)
δFk′ (J′, 0),

(A7)

with �′ = �(J′).
In the absence of collective effects (i.e., G → 0), the first

term in the r.h.s. of Eq. (A7) can be neglected to get

δ�̃bare
k (J, ω) :=−(2π )d

∑
k′

∫
dJ′ δFk′ (J′, 0) ψkk′ (J, J′)

i(ω − k′ · �′)
.

(A8)

When collective effects are accounted for, we may assume that
the dressed potential perturbations follow the ansatz

δ�̃dress
k (J, ω) := − (2π )d

∑
k′

∫
dJ′ δFk′ (J′, 0) ψd

kk′ (J, J′, ω)

i(ω − k′ · �′)
,

(A9)

where the frequency-dependent dressed coupling coefficients
ψd

kk′ (J, J′, ω) remain to be determined. When injected into
Eq. (A7), we find that the dressed coupling coefficients satisfy
the self-consistent relation

ψd
kk′ (J, J′, ω) = ψkk′ (J, J′) − (2π )d

∑
k′′

∫
dJ′′

× ψkk′′ (J, J′′) k′′ · ∂F/∂J′′

ω − k′′ · �′′ ψd
k′′k′ (J′′, J′, ω),

(A10)

with �′′ = �(J′′). Since Eq. (A6) was derived assuming
Im[ω] > 0 large enough, for ω = ωR ∈ R, the resonant de-
nominator in Eq. (A10) has to be interpreted as

1

ωR − k′′ · �′′ → 1

ωR − k′′ · �′′ + iγ
, (A11)

with γ → 0+. We refer to [41] (and references therein) for a
discussion of the associated Landau’s prescription. We note
that an explicit expression for ψd

kk′ can be obtained using the
basis method (see, e.g., [40] and references therein), but this
will not be needed here.

Ultimately, we find that the coupling coefficients asymptot-
ically scale w.r.t. G, the amplitude of the pairwise interaction,
like

ψkk′ ∝ G, (A12a)

ψd
kk′ ∝ ψkk′

1 − ψkk′
∝ G

1 − G
. (A12b)
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3. Time evolution

Taking the inverse Laplace transform of Eq. (A9), the
dressed fluctuations generically evolve according to

δ�k(J, t ) = −(2π )d
∑

k′

∫
dJ′ δFk′ (J′, 0)

×
∫
B

dω

2π

ψd
kk′ (J, J′, ω)

i(ω − k′ · �′)
e−iωt , (A13)

where the Bromwich contour B has to pass above all the
poles of the integrand in the complex ω plane. Because
we assumed that the system is linearly stable, the function
ω → ψd

kk′ (J, J′, ω) only has poles in the lower half of the
complex plane. These are associated with Landau damped
modes and correspond to frequencies ωM with Im[ωM] < 0.

As usual, we proceed by distorting the contour B to the
lower half of the complex plane so that |e−iωt | → 0, snag-
ging onto the poles of the integrand. In Eq. (A13), there
is a single pole along the real axis, namely, in ω = k′ · �′.
Paying attention to the direction of integration, each pole
contributes a −2iπRes[· · · ]. Placing ourselves in the limit
t � |1/Im[ωM]|, we neglect the contributions from the
damped modes (see, e.g., [30]). Once these have faded away,
Eq. (A13) becomes

δ�k(J, t ) = (2π )d
∑

k′

∫
dJ′ e−ik′ ·�′t δFk′ (J′, 0)

× ψd
kk′ (J, J′, k′ · �′). (A14)

Having determined the time evolution of the potential fluc-
tuations, we now set out to determine the time evolution of the
DF fluctuations themselves. An efficient approach to perform
this calculation is to rely on the self-consistency relation from
Eq. (A2). We start with Eq. (A14) in which we replace ψd

kk′
with the r.h.s. from Eq. (A10). We get

δ�k(J, t ) = (2π )d
∑

k′

∫
dJ′e−ik′ ·�′tδFk′ (J′, 0) ψkk′ (J, J′)

− (2π )2d
∑
k′,k′′

∫
dJ′dJ′′e−ik′ ·�′tδFk′ (J′, 0)

× ψkk′′ (J, J′′)

× ψd
k′′k′ (J′′, J′, k′ · �′)

k′ · �′ − k′′ · �′′ + iγ
k′′ · ∂F

∂J′′ . (A15)

We now perform the switch (k′, J′) ↔ (k′′, J′′) in the second
term. Factorizing the integrand with ψkk′ (J, J′), we finally
rely on Eq. (A2) to identify the remainder of the integrand
with δFk′ (J′, t ). Ultimately, we get

δFk(J, t ) = e−ik·�t δFk(J, 0)

+ (2π )d k · ∂F

∂J

∑
k′

∫
dJ′ e−ik′ ·�′t δFk′ (J′, 0)

× ψd
kk′ (J, J′, k′ · �′)

k · � − k′ · �′ − iγ
, (A16)

with γ → 0+.

Glancing back at Eq. (A12), we find from Eqs. (A14) and
(A16) that the potential and DF fluctuations scale asymptoti-
cally w.r.t. G like

δ�(t ) ∝ δF (0)
G

1 − G
, (A17a)

δF (t ) ∝ δF (0) + δF (0)
G

1 − G
. (A17b)

These scalings play an important role in easing the computa-
tion of the cumulants, as detailed in Appendix C.

APPENDIX B: LARGE DEVIATION PRINCIPLE

In this Appendix, we present a brief (very) heuristic deriva-
tion of the generic large deviation principle from Eqs. (12) and
(13). We refer to Sec. 2.2 in [12] and references therein for a
much more thorough presentation.

1. Gärtner-Ellis theorem

This section is inspired from Sec. 3.3 of [42]. As a first
step, let us mimic the empirical DF from Eq. (1) and consider
a real random variable FN , parameterized by N . From it, we
define the scaled cumulant generating function

H[P] := 1

N
ln[〈eNFN P〉], (B1)

also called the large deviation Hamiltonian, which is assumed
to be finite.

In the limit N � 1, we assume that FN follows a large
deviation principle of the form

P (FN = F ) 	
N→+∞

e−NI[F ], (B2)

where N is the large deviation rate and I[F ] the large deviation
function. For a given P, we can compute

〈eNFN P〉 =
∫

dF eNFP P (FN = F )

	
N→+∞

∫
dF eN (FP−I[F ]). (B3)

Since N � 1, we estimate this integral using the saddle-point
method. The dominating contribution comes from the maxi-
mum of the argument of the exponential to give

〈eNFN P〉 	
N→+∞

exp[N sup
F

{FP − I[F ]}]. (B4)

Comparing Eqs. (B4) and (B1), we asymptotically obtain
the relation H[P] = supF {FP − I[F ]}. For a differentiable
H[P], this Legendre transform is involutive, and we finally
obtain the large deviation function as

I[F ] := sup
P

{FP − H[P]}. (B5)

This is the Gärtner-Ellis theorem (see, e.g., [42] and ref-
erences therein), and constitutes the foundation on which
Eqs. (12) and (13) lie.
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2. Slow-fast systems

Let us now mimic the evolution equations at play, namely,
Eqs. (9), by considering two coupled stochastic variables
(FN , δF ), of order unity, and evolving according to

∂δF

∂τ
= N

∂δF

∂τ
[FN , δF ], (B6a)

∂FN

∂τ
= ∂FN

∂τ
[FN , δF ], (B6b)

with the slow time τ := t/N . Owing to the presence of the
factor N in Eq. (B6a), this constitutes a slow-fast system:
δF evolves on a (fast) timescale of order τ � 1/N , while FN

evolves on a (slow) timescale of order τ � 1.
It is essential to note that Eqs. (B6) are deterministic,

but their initial conditions are random. In the following, we
assume that the dynamics of the fast process is mixing, i.e.,
it forgets about the initial conditions rapidly enough [43].
Though we cannot rigorously prove this mixing hypothesis
for the present system, this seems like a natural assumption.

Benefiting from this separation of timescales, let us intro-
duce a discrete timestep �τ , satisfying

1/N � �τ � 1. (B7)

We subsequently introduce the random variable GN , associ-
ated with a finite-difference rate of change during a time �τ .
It reads

GN (τ ) := FN (τ + �τ ) − FN (τ )

�τ
. (B8)

The probability of a given time evolution, {FN (τ )}0�τ�T ,
can then be estimated through the product of conditional
probabilities

P [{FN (τ )}0�τ�T = {F (τ )}0�τ�T ] 	
N→+∞∏

n

P [GN (n�τ ) = Ḟ (n�τ ) | FN (n�τ ) = F (n�τ )], (B9)

with Ḟ = ∂τ F . Importantly, to obtain this expression, we used
a Markovian decomposition of the path of evolution, assuming
that increments of FN over timescales of order �τ � 1/N , are
independent from one another.

Now, let us compute the probability of a given increment
P (GN = Ḟ | FN = F ). We use Eq. (B2) with N�τ � 1 as the
large deviation rate. We obtain

P (GN = Ḟ | FN = F ) 	
N→+∞

e−N�τ I[F,Ḟ ], (B10)

where the dependence w.r.t. F emphasises that F can be taken
as constant on a time interval of duration �τ . In Eq. (B10),
the large deviation function follows from Eq. (B5) and reads

I[F, Ḟ ] := sup
P

{ḞP − H[F, P]}. (B11)

Here, H[F, P], is the large deviation Hamiltonian. It follows
from Eq. (B1), with the large deviation rate �t := N�τ and
reads

H[F, P] := 1

�t
ln[〈e�tGN P〉F ], (B12)

where the average is performed over the fast process from
Eq. (B6a) with FN = F . Starting from the definition of

Eq. (B8), we can write

GN = 1

�τ

∫ �τ

0
dτ ∂τ FN = 1

�t

∫ �t

0
dt ∂τ FN , (B13)

where, for simplicity, we started the time integral in τ = 0
and ∂τ FN follows from Eq. (B6b). Since �t � 1 [Eq. (B7)],
we can approximate Eq. (B12) with

H[F, P] = lim
�→+∞

1

�
ln

[〈
exp

(
P

∫ �

0
dt ∂τ FN

)〉
F

]
. (B14)

The final step of the computation is to use the assumption
�τ � 1 [Eq. (B7)] so that the product of probabilities in
Eq. (B9) can be replaced by the exponential of an integral.
More precisely, using Eq. (B10), we obtain

P [{FN (τ )}0�τ�T = {F (τ )}0�τ�T ] 	
N→+∞

× exp

[
− N sup

P

∫ T

0
dτ {ḞP − H[F, P]}

]
,

(B15)

where P = P(τ ) is now a field w.r.t. the slow time τ . Natu-
rally, Eqs. (B15) and (B14) bear a lot of similarities with the
generic results from Eqs. (12) and (13). To fully recover these
expressions, it only remains to (i) add the additional depen-
dence of FN w.r.t. J, which also transmits to P = P(J, τ ); (ii)
account correctly for the various normalization prefactors. Let
us conclude by pointing out that the present heuristic proof
does not check the differentiability of the large derivation
Hamiltonian, H[F, P], and hence the possible non-convexity
of the large deviation function, I[F ].

APPENDIX C: COMPUTING THE CUMULANTS

In this Appendix, we compute the first cumulants of
Eq. (13). For a random variable X , we recall that

ln[〈eX 〉] � 〈X 〉 + 1
2 (〈X 2〉 − 〈X 〉2) + · · · . (C1)

Following the convention from Eq. (A1), we note that Eq. (9b)
can be written as

∂FN (J)

∂τ
= −i

∑
k

k · ∂

∂J
[δFk(J) δ�−k(J)]. (C2)

Hence, we will apply Eq. (C1) using X ∝ δF δ�.

1. First cumulant

Owing to Eq. (C2), the first cumulant of Eq. (13) can be
written as

H(1)[F, P] =
∑

k

∫
dJ k · ∂P

∂J
C(1)

k (J), (C3)

with the correlation function

C(1)
k (J) := lim

�→+∞
i

�

∫ �

0
dt 〈δFk(J, t ) δ�−k(J, t )〉F . (C4)

The next step of the calculation is to inject the time-
dependent expression of the DF and potential fluctuations,
from Eqs. (A14) and (A16). These fluctuations are expressed
as a function of the initial conditions δFk(J, 0). We assume
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that the initial fluctuations stem from some uncorrelated
Poisson shot noise, hence making them Gaussian. Following
Eq. (41) of [9], and paying attention to the prefactor 1/

√
N in

Eq. (8), we have

〈δFk(J, 0)δFk′ (J′, 0)〉F = Mtot
δk,−k′

(2π )d
δD(J − J′)F (J). (C5)

Using this statistics, Eq. (C4) becomes

C(1)
k (J) = iMtotF (J)ψd∗

kk (J, J, k · �)

+ i(2π )dMtotk · ∂F

∂J

∑
k′

∫
dJ′F (J′)

×
∣∣ψd

kk′ (J, J′, k′ · �′)
∣∣2

k · � − k′ · �′ − iγ
, (C6)

where we used the symmetry

ψd
−k−k′ (J, J′,−ωR ) = ψd∗

kk′ (J, J′, ωR), (C7)

for ωR ∈ R.
At this stage, following the truncation from Eq. (10), we

must compute Eq. (C6) at order o(G2). We can generically
expand the dressed coupling coefficient as

ψd
kk′ (J, J′, ω) � ψkk′ (J, J′) + ψ

(2)
kk′ (J, J′, ω) + o(G2),

(C8)
with the scaling ψ

(2)
kk′ ∝ G2, for G → 0. Relying on the self-

consistent relation from Eq. (A10), we get

ψ
(2)
kk (J, J, k · �) = −(2π )d

∑
k′

∫
dJ′

× |ψkk′ (J, J′)|2 k′ · ∂F/∂J′

k · � − k′ · �′ + iγ
, (C9)

where we used the symmetry from Eq. (A4a) and the prescrip-
tion from Eq. (A11).

At order o(G2), Eq. (C6) then becomes

C(1)
k (J) = iMtotF (J)ψ∗

kk(J, J)

+ i(2π )dMtot

∑
k

∫
dJ′ |ψkk′ (J, J′)|2

k · � − k′ · �′ − iγ

×
{

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J′ F (J)

}
. (C10)

Performing the symmetrization k → −k in Eq. (C3), and
using the symmetry from Eq. (A4), we find that the term in
ψ∗

kk(J, J) in Eq. (C10) does not contribute to H(1). The final
step of the calculation is to expand the resonant denominator

using Plemelj formula

1

ωR − iγ
= P

(
1

ωR

)
+ iπδD(ωR), (C11)

with P the Cauchy principal value. Performing the sym-
metrization (k, k′) → (−k,−k′) in Eqs. (C3) and (C10), and
using once again the symmetries from Eq. (A4), we find that
the principal value does not contribute to H(1). Ultimately, at
order o(G2), we are left with

H(1)[F, P] = −
∑
k,k′

∫
dJdJ′ k · ∂P

∂J
Bkk′ (J, J′)

×
{

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J′ F (J)

}
, (C12)

hence recovering Eq. (15).

2. Second cumulant

Let us now compute the second cumulant of Eq. (13). In
that case, following Eq. (C1), we must compute averages of
order X 2, with X ∝ δF δ�. Since we are computing expres-
sions at order o(G2), we follow the scalings from Eq. (A17) to
simplify the expressions of δ�(t ) and δF (t ) to be used in this
computation. More precisely, at order o(G2), we may replace
Eq. (A14) with

δ�k(J, t ) = (2π )d
∑

k′

∫
dJ′ e−ik′ ·�′tδFk′ (J′, 0)ψkk′ (J, J′),

(C13)

and Eq. (A16) with

δFk(J, t ) = e−ik·�t δFk(J, 0). (C14)

This is a key step to simplify the upcoming calculations.
The second cumulant of Eq. (13) then reads

H(2)[F, P] =
∑
k,k′

∫
dJdJ′ k · ∂P

∂J
k′ · ∂P

∂J′ C(2)
kk′ (J, J′), (C15)

where we introduced the correlation function

C(2)
kk′ (J, J′) := − lim

�→+∞
1

2

(2π )d

�Mtot

∫ �

0
dt

∫ �

0
dt ′

× 〈〈[δFk(J, t ) δ�−k(J, t )][δFk′ (J′, t ′)

× δ�−k′ (J′, t ′)]〉〉F , (C16)

with the notation 〈〈XY 〉〉F := 〈XY 〉F − 〈X 〉F 〈Y 〉F .
Injecting the dependence from Eqs. (C13) and (C14), we

can rewrite Eq. (C16) as

C(2)
kk′ (J, J′) = − lim

�→+∞
1

2

(2π )3d

�Mtot

∫ �

0
dt

∫ �

0
dt ′ ∑

k1,k′
1

∫
dJ1dJ′

1e−ik·�t e−ik1·�1tψ−kk1 (J, J1)

× e−ik′ ·�′t ′
e−ik′

1·�′
1t ′

ψ−k′k′
1
(J′, J′

1)〈〈[δFk(J, 0) δFk1 (J1, 0)][δFk′ (J′, 0) δFk′
1
(J′

1, 0)]〉〉F . (C17)
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Computing the average from Eq. (C16) requires the computation of the four-point correlation of δFk(J, 0). We assume that
the initial fluctuations are Gaussian so that writing, δF (1) = δFk1 (J1, 0), we have

〈〈[δF (1) δF (2)][δF (3) δF (4)]〉〉F = 〈δF (1) δF (3)〉F 〈δF (2)δF (4)〉F + 〈δF (1) δF (4)〉F 〈δF (2)δF (3)〉F . (C18)

Following Eq. (C5), we can then rewrite Eq. (C17) as

C(2)
kk′ (J, J′) = − lim

�→+∞
(2π )dMtot

2�

∫ �

0
dt

∫ �

0
dt ′

{
e−i(k·�−k′ ·�′ )(t−t ′ ) |ψkk′ (J, J′)|2 F (J) F (J′) + δk,−k′δD(J − J′) F (J)

×
∑
k′′

∫
dJ′′ e−i(k·�−k′′ ·�′′ )(t−t ′ ) |ψkk′′ (J, J′′)|2F (J′′)

}
, (C19)

where we used the symmetries from Eq. (A4).
We now use the identity

lim
�→+∞

1

�

∫ �

0
dt

∫ �

0
dt ′ e−iωR (t−t ′ ) =

∫ +∞

−∞
dt e−iωRt

= 2πδD(ωR), (C20)

and Eq. (C19) becomes

C(2)
kk′ (J, J′) = −Bkk′ (J, J′)F (J)F (J′) − δk,−k′δD(J − J′)

×
∑
k′′

∫
dJ′′Bkk′′ (J, J′′)F (J)F (J′′), (C21)

where we used the definition of Bkk′ (J, J′) from Eq. (11).
The last step of the calculation is to inject Eq. (C21) into

Eq. (C15). We obtain

H(2)[F, P] =
∑
k,k′

∫
dJdJ′ Bkk′ (J, J′) k · ∂P

∂J

×
[

k · ∂P

∂J
− k′ · ∂P

∂J′

]
F (J) F (J′), (C22)

hence recovering Eq. (16).

3. High-order cumulants

Following Eq. (C1), cumulants of order higher than two
involve averages of order X k , with k � 3 and X ∝ δFδ�.
Following Eq. (A17), we have δ� = O(G) for G → 0.
Therefore, one has X k = O(Gk ) = o(G2), for k � 3. As a
conclusion, in the dynamically hot limit, cumulants of or-
der higher than two do not contribute to the large deviation
Hamiltonian from Eq. (14).

APPENDIX D: PROPERTIES

In this Appendix, we briefly justify the various properties
of the large deviation Hamiltonian from Eq. (14).

1. Most probable path

As required by Eq. (17), we need to compute the functional
gradient δH/δP(J). To do so, we rely on the fundamental
identity

δP(J′)
δP(J)

= δD(J − J′). (D1)

Since H(2) is quadratic in P(J) [Eq. (16)], one has
∂H(2)/δP(J) = 0 in P = 0. As a consequence, only H(1)

contributes to the most probable path. Integrating by parts
w.r.t. dJ the term k · ∂P/∂J in Eq. (15) readily recovers the
inhomogeneous Landau equation (10).

2. Conservation laws

Mass conservation. Following Eq. (19a), we have
δM/δF (J) = 1. We note from Eqs. (15) and (16) that the
large deviation Hamiltonian only depends on derivatives of
the conjugate field, P(J). To check for mass conservation, we
compute terms of the form∫

dJ
δM

δF (J)

δH
δP(J)

=
∫

dJdJ′ δ

δP(J)

[
∂P

∂J′

]
· · ·

=
∫

dJdJ′ ∂

∂J′

[
δD(J − J′)

]
· · ·

= −
∫

dJ
∂

∂J

[
· · ·

]
= 0. (D2)

This ensures consistence w.r.t. mass conservation.
Energy conservation. Following Eq. (19b), we have

δE/δF (J) = H (J). Following some integration by parts and
manipulations, we get from Eq. (15)∫

dJ
δE

δF (J)

δH(1)

δP(J)
= −

∑
k,k′

∫
dJdJ′ Bkk′ (J, J′) k · �

×
[

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J′ F (J)

]
.

(D3)

Similarly, we get from Eq. (16)∫
dJ

δE

δF (J)

δH(2)

δP(J)
=

∑
k,k′

∫
dJdJ′ Bkk′ (J, J′) k · �

× 2F (J)F (J′)
[

k · ∂P

∂J
− k′ · ∂P

∂J′

]
.

(D4)

We now perform the symmetrization (k, J) ↔ (k′, J′) in
Eqs. (D3) and (D4) and rely on the symmetry from Eq. (A4).
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Both equations then involve

Bkk′ (J, J′)[k · � − k′ · �′] = 0, (D5)

which vanishes owing to the resonance condition from
Eq. (11). As a conclusion, we therefore have∫

dJ
δE

δF (J)

∂H
∂P(J)

= 0. (D6)

This ensures consistence w.r.t. energy conservation.

3. Hamilton-Jacobi equation

Following Eq. (20), we have

δS

δF (J)
= − ln[F (J)] + cst. (D7)

Since H[F, P] only depends on gradients of P (see
Appendix D 2), the constant term in Eq. (D7) does not
contribute to H[F,−δS/δF ]. Following Eq. (15), the first
cumulant contributes

H(1)[F,−δS/δF ] = −
∑
k,k′

∫
dJdJ′Bkk′ (J, J′)k · ∂ ln[F (J)]

∂J

×
[

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J
F (J)

]
.

(D8)

Noting that Bk′k(J′, J) = Bkk′ (J, J′) [Eq. (11)], we sym-
metrise Eq. (D8) with (k, J) ↔ (k′, J′) to get

H(1)[F,−δS/δF ] = −
∑
k,k′

∫
dJdJ′ Bkk′ (J, J′)

F (J)F (J′)

×
[

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J′ F (J)

]2

.

(D9)

Following Eq. (16), the second cumulant contributes

H(2)[F,−δS/δF ] =
∑
k,k′

∫
dJdJ′ Bkk′ (J, J′) k · ∂ ln[F (J)]

∂J

×
[

k · ∂ ln[F (J)]

∂J
− k′ · ∂ ln[F (J′)]

∂J′

]
× F (J)F (J′). (D10)

Performing the same symmetrization as in Eq. (D9), we are
left with

H(2)[F,−δS/δF ] =
∑
k,k′

∫
dJdJ′ Bkk′ (J, J′)

F (J)F (J′)

×
[

k · ∂F

∂J
F (J′) − k′ · ∂F

∂J′ F (J)

]2

.

(D11)

Combining Eqs. (D9) and (D11), we ultimately obtain the
expected relation

H[F,−δS/δF ] = H(1)[F,−δS/δF ] + H(2)[F,−δS/δF ]

= 0. (D12)

4. Time-reversal symmetry

Given that H(1)[F, P] (or H(2)[F, P]) is linear (or
quadratic) w.r.t. P, we immediately have

H[F,−P] = −H(1)[F, P] + H(2)[F, P]. (D13)

Similarly, by linearity we have

H(1)[F, P − δS/δF ] = H(1)[F, P] + H(1)[F,−δS/δF ].
(D14)

As for the second cumulant, it reads

H(2)[F, P − δS/δF ] = H(2)[F, P] + H(2)[F,−δS/δF ]

+ H̃(2)[F, P,−δS/δF ]

+ H̃(2)[F,−δS/δF, P], (D15)

where, following Eq. (16), we introduced

H̃(2)[F, P, Q] :=
∑
k,k′

∫
dJdJ′ Bkk′ (J, J′) k · ∂P

∂J

×
[

k · ∂Q

∂J
− k′ · ∂Q

∂J′

]
F (J) F (J′). (D16)

With the same symmetrisation as in Eq. (D9), one gets

H̃(2)[F, P,−δS/δF ] = −H(1)[F, P], (D17a)

H̃(2)[F,−δS/δF, P] = −H(1)[F, P]. (D17b)

Recalling the result from Eq. (D12), all the previous relations
lead to the needed result, namely,

H[F,−P] = H[F, P − δS/δF ]. (D18)

5. Gradient structure

The expression of Q[F ] in Eq. (24) follows from inte-
gration by parts of Eq. (16). We now compute the r.h.s. of
Eq. (25). Following Eq. (D7), we face the term∫

dJ′ Q[F ](J, J′)
∂S[F ]

∂F (J′)
=

∫
dJ′ k · ∂

∂J

{
∂

∂J′ · A(J, J′)
}

× {− ln[F (J′)] + cst}, (D19)

where A(J, J′) follows from Eq. (24). Discarding boundary
terms, we find that the constant terms do not contribute. Inte-
grating by parts w.r.t. dJ′, we get

(D19) = k · ∂

∂J

{∫
dJ′ 1

F (J′)
A(J, J′) · ∂F

∂J′

}
. (D20)

Injecting A(J, J′) from Eq. (24), one recovers Eq. (25).

6. Stochastic Landau equation

As defined in Eq. (27), the correlation function of the
stochastic noise, ζ [F ](J, τ ), involves Dirac deltas. This makes
the sampling of effective realisations challenging. In addition,
although guaranteed by Eq. (18), it is not strikingly obvious
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that Eq. (26), indeed, complies with the system’s conservation
laws. In this Appendix, we tackle these two issues and devise
a “diagonal” rewriting of ζ [F ](J, τ ): it is sourced by a nor-
mal random Gaussian field and makes the conservation laws
obvious.

For any given resonance vector k, we assume that we can
perform the change of variables J → (ω = k · �, z) (see, e.g.,

[41] for an explicit example) with a nondegenerate Jacobian
J := |∂ (ω, z)/∂J|. Physically, ω is the resonance frequency,
and z covers the sets of all orbits that resonate with it. The ex-
istence of the present mapping is mandatory for the resonance
condition δD(k · � − k′ · �′) to be generically well posed in
the Landau Eq. (10).

Let us consider the following ansatz for the noise

ζ [F ](J, τ ) :=
√

πMtot√
N

∂

∂J
·
[ ∑

k,k′
k

∫
dJ′[JJ ′]1/2|ψkk′ (J, J′)|[F (J)F (J′)]1/2δD(ω − ω′){ηkk′ (z, z′, ω, τ ) − ηk′k(z′, z, ω′, τ )}

]
,

(D21)

where we used shortened notations for the change of variables, J ↔k (ω, z) and its Jacobian J , and similarly for J′. In Eq. (D21),
we also introduced the normal Gaussian random field ηkk′ (z, z′, ω, τ ) obeying

〈ηkk′ (z, z′, ω, τ )〉 = 0, (D22a)

〈ηkk1 (z, z1, ω, τ ) ηk′k′
1
(z′, z′

1, ω
′, τ ′)〉 = δkk′δk1k′

1
δD(z − z′) δD(z1 − z′

1) δD(ω − ω′) δD(τ − τ ′). (D22b)

Equation (D21) easily complies with the conservation laws from Eqs. (19). Indeed, Eq. (D21) is the divergence of a flux
in action space, hence the total mass is conserved. As for the total energy, starting from Eq. (19b), up to prefactors, one must
compute

dE

dt
∝

∑
k,k′

∫
dJdJ′ ω δD(ω − ω′)[JJ ′]1/2|ψkk′ (J, J′)|[F (J)F (J′)]1/2{ηkk′ (z, z′, ω, τ ) − ηk′k(z′, z, ω′, τ )}. (D23)

Performing the symmetrization (k, J) ↔ (k′, J′) leaves us with (ω − ω′) δD(ω − ω′) = 0, so that dE/dt = 0.
Let us now check Eqs. (27). Since ζ [F ] is linear w.r.t. η, Eq. (D22a) naturally imposes 〈ζ [F ]〉 = 0, as required by Eq. (27a).

As for the correlation function, we write

〈ζ [F ](J, τ ) ζ [F ](J′, τ ′)〉 = πmMtot

∑
k,k1
k′,k′

1

∫
dJ1dJ′

1k · ∂

∂J

{
k′ · ∂

∂J′ [[JJ1J ′J ′
1]1/2|ψkk1 (J, J1)||ψk′k′

1
(J′, J′

1)|

× δD(ω − ω1)δD(ω′ − ω′
1)[F (J)F (J1)F (J′)F (J′

1)]1/2〈{ηkk1 (z, z1, ω, τ ) − ηk1k(z1, z, ω1, τ )}

× {ηk′k′
1
(z′, z′

1, ω
′, τ ′) − ηk′

1k′ (z′
1, z′, ω′

1, τ
′)}〉]

}
, (D24)

with J ↔k (ω, z) and similarly for J′, J1, J′
1.

In Eq. (D24), to compute a given crossed term, say 〈ηkk1ηk′k′
1
〉, we use Eq. (D22b) and face a product of three resonant Dirac

deltas in frequencies. We write it as

δD(ω − ω1)δD(ω′ − ω′
1) δD(ω − ω′) = δD(ω − ω′) δD(ω1 − ω′

1) δD(ω − ω1). (D25)

For the other crossed terms, we pick the appropriate set of differences of frequencies. Finally, we also use

[JJ ′]1/2δkk′δD(ω − ω′)δD(z − z′) = δkk′δD(J − J′), (D26)

and similar variations. Following simple manipulations, one ultimately recovers Eq. (27b).
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