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Quantifying nonuniversal corner free-energy contributions in weakly anisotropic
two-dimensional critical systems
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We derive an exact formula for the corner free-energy contribution of weakly anisotropic two-dimensional
critical systems in the Ising universality class on rectangular domains, expressed in terms of quantities that
specify the anisotropic fluctuations. The resulting expression agrees with numerical exact calculations that we
perform for the anisotropic triangular Ising model and quantifies the nonuniversality of the corner term for
anisotropic critical two-dimensional systems. Our generic formula is expected to apply also to other weakly-
anisotropic critical two-dimensional systems that allow for a conformal field theory description in the isotropic
limit. We consider the three-states and four-states Potts models as further specific examples.
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I. INTRODUCTION

Critical phenomena are of fundamental importance to
modern condensed matter physics. Of particular interest are
physical quantities with a universal quality at criticality, i.e.,
those that take on specific values characteristic of the under-
lying universality class (UC), such as critical exponents. For
two-dimensional (2D) systems in particular, a large amount
of analytic results are available in this respect from both exact
solutions of specific model systems as well as based on the
general framework of conformal field theory (CFT) [1,2]. A
prominent example, which is central to the present study, is
the prediction by Cardy and Peschel [3] of a logarithmic con-
tribution to the free energy from corners along the boundary
of a confined conformal invariant bulk system, and which is
proportional to the central charge in the CFT limit.

More specifically, for a 2D critical system, such as the Ising
model at its critical temperature Tc, the free energy density f c

(in units of the thermal energy kBTc) scales for large systems
with free (open) boundaries, area size A, and edge length E
as [4–6]

f c = f c
bulk + f c

surface
1

E
+ f c

corner
ln A

A
+ f c

2
1

A
+ · · · , (1)

where in addition to the bulk ( f c
bulk) and surface ( f c

surface)
contributions the corner term f c

corner appears in case that the
boundary of the spatial domain contains corners separated by
otherwise straight edges. The case of a rectangle is of partic-
ular importance, and we mainly focus on such domains. In
Eq. (1), the expansion to higher order contributions has been
terminated. Indeed, similarly to the bulk and surface contri-
bution, the higher order terms depend on microscopic details,
whereas the value of f c

corner, while geometry-dependent, has
been derived within CFT to take on a universal value, quan-
tified by the central charge c (e.g., c = 1/2 for the case of
the 2D Ising UC) [3]. In particular, a corner with inner an-
gle α along an otherwise straight boundary segment of the
spatial domain of a CFT contributes c

24 (α/π − π/α) to the
total corner term, resulting from a trace anomaly in the stress

tensor. For a parallelogram-shaped domain the total corner
term reads, in terms of the complementary inner angles α and
π − α,

f CFT
corner (α) = − c

12

(
1 + α

π − α
+ π − α

α

)
, (2)

which for a rectangle, α = π/2, yields the maximum value
of f CFT,rec

corner = −c/4. Both expressions are independent of
the aspect ratio ρ = L2/L1 of the edge lengths L1 and L2

of the considered domain. Later, Kleban and Vassileva [7]
derived a universal contribution also to f c

2 , for confor-
mal invariant critical systems on a rectangle, f CFT,rec

2 (ρ) =
− c

4 ln[η( exp(−2πρ))η( exp(−2π/ρ))] + C, that depends on
ρ [4]. Here, η is the Dedekind eta function, and C a number
that cannot be computed by CFT methods, but which was later
determined for the Ising model using numerical exact solu-
tions [4]. Therefore, the CFT results for f c

corner and f c,rec
2 may

be considered universal for conformal invariant 2D systems,
apart from the geometric dependence on α and ρ, However,
it has been demonstrated that in weakly anisotropic critical
systems various quantities that take on universal values in
the isotropic case relevant for CFT, such as critical Binder
ratios, Casimir forces, or free energies contributions, can in
fact be strongly affected by the presence of anisotropies in
the critical fluctuations [8–25]. Since spatial anisotropy is
omnipresent in condensed matter physics of, e.g., magnetic
materials, superconductors, or liquid crystals, it is of funda-
mental important to account for its effects. For example, as
predicted in Ref. [8] and demonstrated explicitly below, the
value of the corner contribution f c

corner in the expansion (1) in
general depends on the anisotropy of the critical fluctuations,
and takes on the specific value f CFT

corner essentially only in the
isotropic limit. This situation prompts the questions of (i) how
the value of f c

corner actually depends on the anisotropy of the
critical fluctuations, and (ii) whether this dependence can be
quantified by a explicit formula in terms of parameters that
specify the anisotropy of the critical fluctuations.

Here, we address these questions based on recent ad-
vances in the understanding of weakly anisotropic critical
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systems. Namely, it was found that in the case of periodic
boundary conditions anisotropy-dependent free energy con-
tributions (more specifically, the critical excess free energy
f c
ex = f c − f c

bulk) can be expressed in terms of nonuniversal
parameters that specify the anisotropic fluctuations at criti-
cality, via CFT-based exact formulas that are available for
the isotropic limit of the 2D Ising UC [19]. The resulting
expressions exhibit complex self-similar structures, reflecting
the modular invariance of the torus partition function in the
CFT scaling limit. In the following, we extend these recent
investigations to finite systems with free boundary conditions.
More specifically, we show how the approach of Ref. [19] can
be employed in order to devise an exact formula for the corner
term f c,rec

corner for weakly anisotropic systems on rectangular
domains. Furthermore, we use a numerical exact solution of
the anisotropic triangular Ising model in order to assess the
obtained analytic expressions.

The remainder of this article is organized as follows: In
Sec. II, we explain how the exact analytic expression for f c,rec

corner
can be obtained using the approach of Ref. [19]. Then, we
provide a detailed comparison to numerical exact results for
the anisotropic triangular Ising model in Sec. III. Finally, we
apply our analytic expression to the case of the anisotropic
triangular Potts model in Sec. IV, before we provide a further
discussion and outlook in Sec. V.

II. ANALYTIC EXPRESSIONS FOR WEAKLY
ANISOTROPIC SYSTEMS

Since our analytical results build upon an approach pre-
sented in Ref. [19], we first summarize the relevant steps.
It was proposed in Ref. [19], and later confirmed by
Refs. [20,22–24], that for weakly anisotropic systems in the
2D Ising UC on a rectangular domain with periodic boundary
conditions, the amplitude Fc in the leading finite-size scaling
form f c

ex = Fc/A + O(1/A2) of the critical excess free energy
can be calculated from the CFT expression for the parti-
tion function of the isotropic Ising model on appropriately
constructed torus geometries. This construction depends on
two bulk quantities that specify the anisotropic fluctuations
in terms of the order-parameter correlation function in the
scaling regime: More specifically, for a weakly anisotropic
2D system, the angular dependence of the critical correlations
of the bulk system is given by (i) the angle �, specifying
the orientation of the two principal directions, and (ii) the
ratio q of the two principal correlation lengths upon approach-
ing criticality [18,19]. See Fig. 1 for an illustration. By use
of an effective shear transformation, the original rectangular
domain with aspect ratio ρ is then mapped onto a parallelo-
gram with angle α and aspect ratio ρp, such that under this
mapping the correlation function becomes isotropic, making
CFT applicable [19,22,23]. The corresponding parallelogram
parameters are given by

cot α(q,�) = (q−1 − q) cos � sin �, (3)

[ρp(ρ, q,�)]2 = ρ2 tan2 � + q2

1 + q2 tan2 �
. (4)

A parallelogram with periodic boundary conditions is topo-
logically equivalent to a torus whose shape dependence can

FIG. 1. Rectangular domain with edge lengths L1 and L2. The
red arrows indicate the two orthogonal principle directions of
the bulk critical order-parameter correlation function, specified by
the angle �.

be parameterized in terms of the complex torus modular pa-
rameter τ , with τ (α, ρp) = ρp exp(i α), and from CFT [2,26]
it is known that the critical amplitude of the free energy
on the torus is exactly given by FCFT

c (τ ) = − ln ZCFT(τ )
in terms of the partition function ZCFT(τ ) of the isotropic
2D Ising model. The latter can in fact be expressed as
ZCFT(τ ) = [|θ2(τ )| + |θ3(τ )| + |θ4(τ )|]/[2|η(τ )|] in terms of
Jacobi theta functions θi(0|τ ) ≡ θi(τ ) and the Dedekind
eta function. In summary, these steps lead to the explicit
formula Fc(ρ, q,�) = − ln ZCFT(τ (α(q,�), ρp(ρ, q,�))) of
Ref. [19] for the critical amplitude of the excess free energy
for anisotropic models in the 2D Ising UC.

Returning to the case of free boundary conditions, we can
employ the same shear transformation in order to relate the
original, weakly-anisotropic model on the rectangular domain
to an isotropic model on the parallelogram, which is again
specified by Eqs. (3) and (4). We then use Eq. (2) to obtain the
corner contribution for the anisotropic model on the rectangu-
lar domain in terms of the CFT result on the parallelogram,
such that

f c,rec
corner (q,�) = f CFT

corner(α(q,�)). (5)

This formula is the central result of this work and in the next
section we will compare it to numerical exact data for a spe-
cific anisotropic Ising model. Before doing so, we illustrate in
Fig. 2 the dependence of the geometric ratio f c,rec

corner/ f CFT,rec
corner on

the anisotropy parameters q and � that follows from Eq. (5).
Like the CFT result, this formula does not depend on the
aspect ratio ρ of the rectangle. The figure directly illus-
trates the nonuniversal character of the corner term for weakly
anisotropic critical 2D systems. From Eq. (5), the CFT result
f CFT,rec
corner = −c/4 is recovered in the isotropic limit q = 1, as

well as for � = 0 and ±π/2, i.e., when the principal axes
of the correlation ellipsoid align parallel to the edges of the
rectangular domain (irrespective of the value of q). In general
the nonuniversal quantities q and � exhibit a nontrivial depen-
dence on microscopic details, e.g., the couplings in the case of
an Ising model (an explicit example will be presented in the
following section). However, expressed in terms of α(q,�),
the above formula instead provides a universal relation for
the corner contribution via the central charge of the under-
lying CFT scaling limit. We note that in contrast to the case
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FIG. 2. Dependence of the corner free energy term f c,rec
corner in units

of the CFT result f CFT,rec
corner = −c/4 on the anisotropy parameters q

and � for a rectangular domain from Eq. (5).

of f c
ex for periodic boundary conditions [19], no self-similar

structures appear in Fig. 2, as expected form the absence of
modular invariance for free boundary conditions.

III. COMPARISON TO NUMERICAL EXACT RESULTS

For this purpose, we consider the anisotropic triangular
Ising model [18–20,27], defined by

H =−
∑

i

[E1σiσi+x̂ + E2σiσi+ŷ + E3σiσi+x̂+ŷ], (6)

where the spin variables σi = ±1 reside on a square lattice
with horizontal, vertical, and (up-right) diagonal couplings
E1, E2, E3, cf. Fig. 3 for an illustration. In particular, we
consider the ferromagnetic regime of H , where the system

FIG. 3. Illustration of the anisotropic triangular Ising model with
couplings E1, E2 and E3 on a L1 × L2 = 5 × 4 square lattice (lattice
constant a0 = 1).

exhibits a thermal phase transition to a low-temperature fer-
romagnetic phase in the thermodynamic limit. This regime
is constrained by three simultaneous conditions: E1 + E2 >

0, E1 + E3 > 0, and E2 + E3 > 0 on the three couplings
E1, E2, E3. The condition for the critical temperature Tc,
separating the low-T ferromagnetic phase from the param-
agnetic regime, reads Ŝ1Ŝ2 + Ŝ2Ŝ3 + Ŝ3Ŝ1 = 1, where Ŝα =
sinh(2Eα/kBTc) [28]. In order to extract the corner contribu-
tion to the free energy, we considered this model on finite
rectangular lattices with N = L1 × L2 lattice sites, fixing the
lattice constant to a0 = 1, such that A = L1L2, and E =
2(L1 + L2). The corresponding finite lattices with free (open)
boundary conditions are illustrated in Fig. 3. In the following,
we focus on ρ = 1.

We obtain numerical exact values of the critical free energy
density

f c = 1

A
ln Zc, Zc =

∑
σ1,...,σN

exp(−βcH ), (7)

where βc = 1/(kBTc), based on the Grassmann variable ap-
proach used by Plechko [29–31]. Alternatively, one can use
the bond-propagation algorithm [32] for this purpose. We then
extract the corner term and other finite-size as well as the bulk
contribution from fitting, for fixed couplings and aspect ratio,
the finite-size data for different system sizes to the expansion
in Eq. (1), which we reproduce here, now including also
higher order terms,

f c = f c
bulk + f c

surface
1

E
+ f c

corner
ln A

A
+

∞∑
k=2

f c
k

1

Ak/2
. (8)

In practice we truncate the series at a maximum order of
k � kmax = 8 and use the Levenberg-Marquardt method for
performing the corresponding nonlinear fitting.

In order to compare the numerical estimates for f c,rec
corner to

the CFT-based prediction from Eq. (5), explicit values of q
and � for the anisotropic Ising model described by H are
required. Closed formulas for both quantities have been ob-
tained recently [18] and read

tan(2�) = 2(1 − Ŝ1Ŝ2)

Ŝ2
2 − Ŝ2

2

for E1 �= E2, (9)

� = π/4 for E1 = E2, (10)

and, for E1 �= E2,

q = 2 + Ŝ2
1 + Ŝ2

2 ± [(
Ŝ2

1 + Ŝ2
2

)2 + 4
(
1 − 2Ŝ1Ŝ2

)]1/2

2(Ŝ1 + Ŝ2)
, (11)

where the sign in front of the square root depends on whether
E1 > E2 (+) or E1 < E2 (−), while

q = 1/Ŝ1 for E1 = E2, (12)

respectively. Inserting these expressions into Eq. (5), we ob-
tain a compact result

f c,rec
corner (E1, E2, E3) = f CFT

corner(arccot(Ŝ3)) (13)

for the anisotropic triangular Ising model. Upon tuning the
coupling ratios, one can realize any possible value of the
corner term for the 2D Ising UC in this model. A compari-
son of the numerical estimates for f c,rec

corner to this CFT-based
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FIG. 4. Comparison of the numerical estimates (circles) for
f c,rec
corner with the CFT-based formula (solid lines) in Eq. (5) for the

anisotropic triangular Ising model upon varying E3 along the two
lines E2 = E1 and E2 = E1/2, based on numerical exact solutions
for system sizes up to 70 × 70. The dashed line indicates the CFT
value of −1/8 for the 2D Ising UC.

formula for the two cases of E2 = E1 and E2 = E1/2 and
varying E3 is provided in Fig. 4 (in both cases the ferromag-
netic regime is restricted to E3 > −E2). We find excellent
agreement between the numerical results and our analytic
expression. This is observed at other parameter values and
aspect ratios as well, though the numerical values become less
accurate for negative values of E3, where frustration emerges
and the correlations become increasingly anisotropic upon
approaching the limit of weak anisotropy. In Fig. 4 the CFT
value, which equals −1/8 for c = 1/2, is recovered only in the
specific case of E3 = 0. At this point, isotropy is restored in
the scaling limit for E2 = E1, i.e., q = 1. For E2 = E1/2, the
critical fluctuations are instead anisotropic also for E3 = 0,
with q = 1.543.... However, at this point the principle axes
align parallel to the lattice directions, � = 0, thus leading to
the CFT value. Finally, Fig. 5 shows the microscopic param-
eter dependence of f c,rec

corner according to Eq. (13) within the
ferromagnetic region of the anisotropic triangular Ising model
at criticality. Here, we again observe a nontrivial dependence
on the microscopic parameters, as anticipated in the previous
section. In particular, upon approaching the boundary of the
ferromagnetic domain, where weak anisotropy breaks down,
we find increasingly large deviations from the CFT result; see
also Fig. 4. Indeed, it follows from Eq. (13) that f c,rec

corner → −∞
in this regime.

IV. ANISOTROPIC TRIANGULAR POTTS MODEL

As a further application of our formula for the corner term,
Eq. (5), we consider the case of the Q-states Potts model [33]
on the rectangular lattice of Fig. 3, with the Hamiltonian

HQ =−
∑

i

[
J1 δni,ni+x̂ + J2 δni,ni+ŷ + J3 δni,ni+x̂+ŷ

]
, (14)

where ni = 1, . . . , Q and δ denotes the Kronecker symbol,
and Ji � 0, i = 1, 2, 3. While the case Q = 2 corresponds to
the triangular Ising model discussed above, the Potts model

FIG. 5. Corner contribution f c,rec
corner based on Eq. (13) as a function

of the couplings inside the ferromagnetic regime (outside the white
area) of the anisotropic triangular Ising model.

exhibits a second-order thermal phase transition also for Q =
3 and 4. The latter are described by CFTs with a central charge
c of 4/5 and 1, respectively. While the condition

√
Q x1x2x3 +

x1x2 + x2x3 + x3x1 = 1, where xi = (e2βcJi − 1)/
√

Q, for the
critical inverse temperature βc is well known (though not
proven for Q = 3) [33], only recently were exact expressions
reported that allow us to determine the parameters ρp and α,
specifying the shear transformation for the general anisotropic
case. More specifically, in Sec. V of their Supplemental Ma-
terial, the authors of Ref. [34] consider the triangular Potts
model on L × L lattices and specify shear transformations in
terms of an effective aspect ratio ρe and a boundary twist
te, using the isoradial-graph method [35]. Both quantities
can be expressed in terms of ρp and α, ρe = ρp sin(α), te =
ρp cos(α), as we verified for the case Q = 2 based on the
results of Refs. [18,19]. Using this correspondence for general
Q, we obtain the following relation for α:

e2βcJ3 − 1 =
{√

Q sin[r (π−2α)]
sin(2 r α) , Q = 2, 3,

π−2α
α

, Q = 4,
(15)

where r = arccos(
√

Q/2)/π . Determining α from (numeri-
cally) solving this equation and inserted into Eq. (5) yields
the corner contribution for the anisotropic Potts model on a
rectangular domain, shown for Q = 2, 3, and 4 in Fig. 6,
varying J3 along the line J2 = J1 (the results for Q = 2 agree
with those in Fig. 4). In all cases we observe a similarly strong
suppression of f c,rec

corner for finite values of J3 from the CFT value
−c/4, which is recovered only for J3 = 0.

V. CONCLUSIONS

Using the effective shear transformation from
Refs. [19,22,23] to map a weakly anisotropic critical 2D
system onto an isotropic one, we obtained an extension of
the CFT prediction [3] for the corner contribution to the
critical free energy on rectangular domains. This formula,
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FIG. 6. Corner contribution f c,rec
corner for the anisotropic Q-states

Potts model as a function of J3 along the line J2 = J1 for Q = 2,
3, and 4. Dashed lines denote the corresponding CFT values −c/4,
where c = 1/2, 4/5, 1 for Q = 2, 3, 4, respectively.

Eq. (5), explicitly demonstrates the nonuniversal character
of the corner term for anisotropic systems, as its value
depends strongly on the parameters q and � that characterize
the anisotropic critical fluctuations, and which need to be
calculated for each specific microscopic model. We find
that the CFT value is recovered only for the isotropic case
(q = 1), or when the principle axes align with the edges of
the rectangular domain (� = 0, π/2). Moreover, the resulting
expression was found to be in accord with numerical exact
results obtained for the anisotropic triangular Ising model. We

expect this formula to apply also to other weakly-anisotropic
critical systems that allow for a CFT description in the
isotropic limit via appropriate shear transformations, and
considered the triangular Potts model as a further example.

These findings suggest several directions for further in-
vestigations: While we focused here on rectangular domains,
it is also feasible to generalize our approach to the case
of anisotropic systems on a parallelogram domain, using a
corresponding shear transformation to another, isotropic par-
allelogram [24]. In addition, it would also be important to
extend these investigations towards exploring corner con-
tributions beyond the critical point, similar to the analysis
performed for periodic boundary conditions in Ref. [24]. Fur-
thermore, it would be interesting to explore the anticipated
universal contribution to f c,rec

2 proposed in Ref. [7] from CFT
towards the anisotropic case. This could indeed be realized
based on the methodology that was used here, but then re-
quires a generalization from f CFT,rec

2 to the case of CFTs on
general parallelograms, i.e., beyond the rectangular domains
considered in Ref. [7]. We are not aware of such a generaliza-
tion and leave all the above directions for future research.
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