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In kinetic exchange models of opinion formation, one considers pairwise interactions to update the states of
the agents. We have studied a kinetic exchange model with three opinion states 0, =1, by considering a walk
in a one-dimensional virtual space which evolves according to the dynamical states of the agents. The model
involves two noise parameters p and g; p represents the fraction of negative interactions and g corresponds to
the probability of a stronger interaction with the other agent, which may result in extreme switches (change of

state from +1 to —1 or vice versa). The nature of the walks can indicate where the phase transitions occur in
the p-q plane; these results are corroborated with those obtained using finite-size scaling method. The criticality
is found to be Ising-like, even when extreme switches are allowed. A new critical exponent associated with the
probability distribution of the displacements in the virtual space is also obtained independent of the values of the

critical parameters. The nature of the walks is compared to similar virtual walks studied earlier.
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I. INTRODUCTION

In the past few decades, extensive research has been made
to study the problem of opinion formation in a society, using
the tools of statistical physics [1-3]. Several models of opin-
ion dynamics have been proposed in the past. One class of
models, namely, the kinetic exchange (KE) models, involves
an interaction between two agents at any instant [4]. A par-
ticular KE model, introduced in [5] and later popularly called
by the last initials of the authors, such as the BChS (Biswas-
Chatterjee-Sen) model, incorporates negative interactions as
well.

In models mimicking social phenomena in general, an
order-disorder phase transition driven by some appropriate
noise can usually be observed. In particular, in opinion dy-
namics models, the phase transition occurs from a state where
consensus or a majority opinion has been reached to a dis-
ordered state [6]. Apart from the fact that the BChS model
manifests an order-disorder phase transition, it has also been
possible to obtain some results from this model that corre-
spond to realistic scenarios [7-9].

It is often convenient to study a model in statistical physics
by mapping it into another model and studying the latter. In
recent times, various models of statistical physics involving
dynamics of spins, opinions, and financial status have been
mapped to walks in a virtual space [10-21]. In these map-
pings, a walker is associated with each spin or agent. The
position of the walker is updated according to the state of
the spin or agent it is associated with, following either a
Markovian or a non-Markovian dynamics. The general
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scheme is to update the ith walker’s positions X;(¢) as
Xit+1)=X@)+ &0+ 1), (1

where the displacements take place in a virtual one-
dimensional space and &;(t 4+ 1) is determined by the state
of the spin or agent. For Ising spin models with spin val-
ues s = %1, if one takes &;(r + 1) equal to the spin value at
t 4 1, then X;(¢) is simply related to the local time averaged
magnetization m;(t); m;(t) = X;(¢t)/t [14]. In fact, such walks
can be defined for any dynamical process in general, with
& assuming values related to the state of the variable (not
necessarily equal).

The studies of these walks made so far have been shown
to impart a lot of information e.g., regarding the behavior of
persistence probability [14—19]. The nature of the walks usu-
ally undergoes a change at the phase transition points, if any.
This is indicated by the existence of a Gaussian distribution
of the displacements of the walkers above the critical point
while it has a double-peaked non-Gaussian behavior below it.
Since for finite sizes obtaining the critical point is challenging,
this method is useful and simpler in locating it. An interesting
crossover behavior involving diverging timescales, not ob-
tained directly from the model, has been observed previously
also [19,20].

In this paper we have studied a KE model of opinion
formation, an extended version of the so-called BChS model.
In the present study, the agents of the opinion dynamics model
are embedded on a two-dimensional (2D) lattice while the
walks are defined in a virtual one-dimensional (1D) space.

The BChS model is taken with three opinion states denoted
by £1 and 0. The interactions here can be negative with
probability p. In the original version [5], switches between the
extreme states (i.e., +1 and —1) were not possible according
to the dynamical rules. However, because of the complexity
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and inherent unpredictability of human behavior, the possibil-
ity of sudden changes in loyalty cannot be entirely dismissed.
In fact, real-world examples of political figures switching
allegiances to parties with opposing ideologies [22,23] indeed
exist. These shifts are likely to be driven by personal gain,
self-interest, or a lack of core convictions. Another way of
justifying the extreme switch is, an agent in reality transits to
the intermediate state for timescales much smaller than the
observation time before making the switch to the opposite
extreme, so that it appears as an extreme switch. The feature
of extreme switches is incorporated by taking the possibility
of a stronger influence made by the interacting agent with
probability ¢g. In some recent works, the present authors in-
troduced the BChS model with extreme switches [24,25]. The
mean-field case was studied to show that a phase diagram
can be obtained in the p — ¢ plane showing the presence of
ordered and disordered regions [25].

Our primary aim is to find the role of the extreme switches
on the order-disorder transition. The critical behavior of the
BChS model on two-dimensional square lattices without ex-
treme switch (i.e., ¢ = 0) has been studied earlier using
numerical simulations [26,27]. It was found that the model
belongs to the two-dimensional Ising criticality class. In this
paper we have simulated the model in 2D with extreme
switches, i.e., ¢ # 0, and obtained the corresponding walk
from which the phase diagram can be estimated. In addi-
tion, for comparison, a few phase transition points have been
found directly by analyzing the relevant physical quantities
and using finite-size scaling. From the results obtained in the
mean-field case [25], we expect that g will effectively impart
an additional noise. It is also interesting to see whether the
critical behavior is affected by g. In the mean-field case, it
is not.

The walks are also analyzed quantitatively by fitting ap-
propriate curves to the distributions and studying the fitting
parameters. This leads to some further understanding of the
system both quantitatively and qualitatively.

In Sec. I we describe the model and the methods used.
The results are presented in Sec. III, and in the last section,
discussions and conclusive statements are made.

II. MODEL AND METHOD

A. Simulating the BChS model on a two-dimensional lattice
with the parameters p and ¢

We have simulated an agent-based BChS model where
agents are located on the sites of a 2D square lattice, with
N sites (N = L x L) having periodic boundary conditions. o;
is considered as the opinion of the ith agent. Each opinion
(0; = %1, 0) is updated upon interaction with one of the near-
est neighbors denoted by k, with opinion o, following the
expression

0i(t + 1) = 0;(t) + pok(t). 2)

Here p is a random variable representing the interaction and
can have four possible values: © = 31 with probability 1 — ¢
and equal to £2 with probability g, and u < 0 with prob-
ability p and positive otherwise. If after an interaction the
opinion exceeds 1 or becomes less than —1, it is adjusted to
+1 respectively [|o;(r + 1)| < 1 at any time step (¢ 4 1)]. In

the simulations a homogeneous disordered state is considered
as the initial configuration, i.e., equal proportion of the popu-
lation has opinion +£1 and zero.

B. Mapping the BChS model into a virtual walk

Mapping of the opinion dynamics model to a virtual walk is
done by associating a virtual walker with each agent on the 2D
lattice. The virtual walk takes place in one dimension. Hence
we have a scenario of N walkers performing walks on a one-
dimensional lattice, which is, strictly speaking, unbounded.
The walks are not independent, as they are generated from the
interaction of the agents.

In the mapping scheme, the initial position of a walker is
taken to be 0. The walks are implemented according to the
opinions of the agents, which are updated asynchronously.
The total distance traveled from the starting point (at t = 0)
by the ith walker at the (¢ + 1)th Monte Carlo (MC) step is
Xi(t + 1), given by

Xt + 1) =X@)+ o0t + 1), 3)

i.e., here &; in Eq. (1) is simply equal to the opinion state o;.
Only Markovian walks have been considered in the present
work. The study of X (¢), which is the average value of X;(¢)
over all agents, and its related features are relevant in what we
term as the walk picture, where the walk actually occurs in a
virtual space.

As mentioned in the Introduction, X;(¢)/t lying between
—1 and +1, corresponds to the average local order, which is
the average opinion of an individual over time, while in the
walk picture, X;(¢) is the important variable with |X;(¢)| < 7.
If X;(t) = t, it implies that the agent has not changed opinion
at all, i.e., it indicates persistent behavior. Lower values of
X;(t) signify increasing tendency to change.

We have simulated the system on L x L lattices with var-
ious values of L. For the virtual walk, the results for L = 64
(maximum size simulated) only are presented. The walk is in-
cremented by the value of the opinion after the completion of
one Monte Carlo step (MCS). One agent is selected randomly
and allowed to interact with any of her four nearest neighbors,
after which her opinion is updated; one MCS step comprises
N such updates.

C. Finite-size scaling analysis

For a system manifesting a continuous phase transition
driven by a certain parameter, the critical point and the expo-
nents can be obtained using a finite-size scaling method [28]
in a numerical simulation. Consider a physical quantity &,
which either goes to zero or diverges in the manner ® o €?,
where € is the small deviation from the critical point. In a finite
system of size L, ® can be expressed as

& =LV feL),

where v is the correlation length exponent. f(z) is expected
to vary as z? as z — oo such that one recovers the behavior
® x €? for L — 0.

A data collapse can be obtained (i.e., all data for different
system sizes fall on the same curve) when properly rescaled
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FIG. 1. The probability distribution of X at time step t = 60 000,
when the model has reached a steady state, has been plotted for two
different values of ¢ [0.2 in (a) and 0.6 in (b)] for various p values.
These plots are presented for a system size of N = 64 x 64. The
peaks spread further as p is decreased.

quantities are plotted with accurate choices of the values of
the critical point and the exponents.

III. RESULTS

We have determined the probability S(X, t) associated with
the distance X covered by a walker at a specific time ¢ by
averaging over many configurations. In the Ising and the gen-
eralized voter model in 2D and also in the mean-field KE
model [15,19,20], the nature of S(X, #) has been observed to
change at the phase transition points. Here we have observed
a similar change beyond threshold values of the parameters
P, q. We investigated the characteristics of the distribution
both below and above the threshold points. Additionally, by
performing data collapse analysis of the scaled data from the
simulations conducted on 2D lattices, we identified the critical
points and estimated the critical exponents. The latter study
has been made at larger times such that the system definitely
reaches equilibrium.

A. Features studied from the virtual walk

In the (p, g¢) parameter space, the threshold points, denoted
as (pr, qr), have been determined using the virtual walk anal-
ysis. In general, we have kept ¢ = gr fixed and varied p to
study the behavior of the walk. It is observed that when p is
less than p7, the distribution S(X, ¢) exhibits a non-Gaussian,
double-peaked behavior. Above the threshold point, the distri-
bution assumes a centrally peaked Gaussian shape. The data
are shown in Fig. 1 for two different g7 values.

The determination of the threshold points pr has been
carried out for several values of g within the range of [0, 1),
and as displayed in Fig. 2, these points can be fitted to the
form

pr ~ Coexp " — Cy, 4

where A =~ 3.14, C; ~ 0.0063, and Cy &~ 0.1220. Specifically,
one gets pr — 0 for gr = 1, exactly as in the case of the
mean-field version of the present model [25].

To determine the nature of the walk, S(X, ¢) is fitted to the
scaling form

SX,t) =~ t7YF(X/t%). 5)

When p < pr, an approximate data collapse has been ob-
tained with @ = 1.0 (shown in Fig. 3). o =1 implies a
ballistic walk. For an absorbing phase, a perfectly ballistic

0.12¢
disordered state

0.08f

0.04¢

ordered state

0.00 : : :
0.2 0.4 0.6 0.8

q

FIG. 2. The red colored dots in the p, g parameter space repre-
sent threshold values separating the ordered and disordered phases.
The phase boundary can be fitted to the form pr = Cyexp 29" —Cy,
with A = 3.14957 £ 0.02697, C; = 0.00626 =+ 0.00033,and Cy, =
0.12203 £ 0.000 36. Three critical points directly obtained from the
simulation for g = 0, 0.2, 0.5 using finite-size scaling are also shown
by the yellow-colored points in the figure.

behavior is expected at late times; however, such is not the
case here. This indicates that for p < pr, where the ordered
phase exists as is concluded from the nature of S(X, 1), we
have an active state. Indeed, the snapshots shown in Fig. 4
taken at different times show that the system is still active. It is
understandable why an active phase is present; in the presence
of noise, some agents will change opinion even at large times.
In previous work, only for the noiseless case, it was shown
that an absorbing phase is reached, although for a considerable
number of configurations, it becomes a very slow process [9].
We will address this issue again later in this section.

On the other hand, the data collapse observed for p > pr
yields & = 0.5 (as shown in Fig. 5), which is consistent with
the behavior expected in an unbiased random walk. The Gaus-

2
sian function is written as F(z) o e~ 27, where z = X/t > The
distribution width o, is observed to diverge as (p — pT)"S,
plotted in Fig. 6(a) for different ¢ values. § shows no system-
atic dependence on the exact location on the phase boundary
where it is calculated and lies within a small range; § ~ 0.84.
Similar behavior can be observed when the variation of o is
plotted as a function of (¢ — g7 ) [shown in Fig. 6(b)]. Snap-
shots in the disordered phase taken at different times show that
the states of the spins are changing considerably over time,
which will show typical oscillations of the order parameter

(b)
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t=40000 =
t=60000
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t=40000 =
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FIG. 3. The data collapse of S(X, #)t using the scaling variable
X/t is illustrated for two different points: (a) g = 0.2, p = 0.055 and
(b) g = 0.6, p = 0.010, both of which lie below the phase boundary
[Eq. (H)].
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FIG. 4. Snapshots of the 2D lattice space at different time steps
below the phase boundary. Red, yellow, and gray dots denote £1 and
0 states, respectively.

about zero for a single configuration (Fig. 7). It is interesting
that both below and above the phase boundary, opinions equal
to zero are much less in number in comparison to the others.

B. Exploring phase transitions by the finite-size scaling method

Up to this point, we have discussed the results of the virtual
walk generated from the BChS model with extreme switches.
In this section we report the results for the critical points in
the p — g space obtained directly from the simulation of the
BChS model. The most prevalent approach for investigating
order-disorder phase transitions involves the finite-size scaling
of quantities such as the Binder cumulant [29], the order
parameter, etc. In this particular model, the critical points can
be expressed as (p., g.). The order parameter for the system
is the average of all opinions,

1
0=— E o, (6)
N &~
1
0.013 t=45000 00161145000
° t=50000 1=50000
S |t=55000 - 1=55000 -
= [t=60000 - 1=60000 =
G (@ FXx0%) — (b)
N
0.000=——755 0 o0 0000755 0 700
Xt X/t

FIG. 5. The data collapse of S(X, #)t%° using the scaling variable
X /t%3 is illustrated for two cases (a) ¢ = 0.2, p = 0.064 and (b) g =
0.6, p = 0.015, both of which lie above the phase boundary (i.e.,
p < pr in each case). Both sets of data can be fit using a Gaussian

function denoted by F'(z) in the figures, where z = tl%
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FIG. 6. Variation of the width o of the Gaussian distributions as
a function of p above py is shown in (a) for several g values. In (b),
the variation of o is shown as a function of g above gy for different
values of p. Both (a) and (b) show that the nature of the curves is
compatible with a variation & ~ (x — x7)~® with § &~ 0.84 [where x
symbolizes the parameters p and ¢ in (a) and (b), respectively].

t=40000

FIG. 7. Snapshots of the 2D lattice space at different time step
above the phase boundary. Red, yellow, gray dots denote 1 and 0
states, respectively.
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FIG. 8. Finite-size scaling behavior of the Binder cumulant U as
a function of p is illustrated for two cases: (a) ¢ = 0.0 and (b) g =
0.5. Notably, data collapses are observed with critical values of p. =
0.1110 and p. = 0.0170 in (a) and (b), respectively. In both cases the
critical exponent v is estimated to be approximately 1.0 & 0.05. The
inset displays the unscaled raw data for U vs p.

and the fourth-order Binder cumulant is

U=1 (0" 7
300 ™
where the angular brackets indicate the ensemble average.

We conducted Monte Carlo simulations for various system
sizes L varying between 12 and 64. The simulations were run
with a sufficient number of time steps to allow measurable
quantities to reach a steady value. Subsequently, we calcu-
lated the ensemble averages of these values. The number of
configurations ranged from 2000 to 1000 with an increase
in system size. The scaling behavior of the Binder cumulant
and the order parameter are given by U = fi[(x —xc)L%]
and (|O|) = L% Hllx — xc)Lﬁ], where the phase transition is
driven by the parameter x and occurs at x = x.. v and § are
critical exponents associated with the correlation length and
order parameter, respectively.

Our aim is to check whether (pr, gr) and (p., q.) are
close enough so that it can be concluded that the virtual
walks bear the signature of the phase transition. Here we
have compared the values for three particular g values. Fixing
the value of ¢ as ¢g., we determined p. by identifying the
crossing points of the Binder cumulant for different system
sizes. Additionally, by employing the data collapse technique,
we estimated the critical exponent v to be very close to 1
(see Fig. 8). Using this value of v, we estimated the critical
exponent 8 ~ 0.125 from the data collapse of the scaled or-
der parameter shown in Fig. 9. Both these exponent values

"-,. 24 “‘s\ 24
.

1000 (a) "a‘. 32 o | 120 (b) “, 32 o -
2 . 48 o " 48 o
= 0.60 ‘s, 64 © 0.60 -, 64 o
0070 = * 0.80( " 3 N,
=" os0 “ 0.30 ~ .
= R o : .

0110 0.130 e 0012 0.024 “
0.40 P G=0.0 “ew,| 040 g=05 ° .
-0.500 0000, 0.500 -0.300 0000, 0300
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FIG. 9. Data collapse of the scaled order parameter (|O|) for
different system sizes is shown for two cases, (a) ¢ = 0.0 and (b) g =
0.5, using the critical values of p. and v obtained from the analysis of
the Binder cumulant (Fig. 8). In both instances the critical exponent
B is estimated to be 0.125 4= 0.001. The inset displays the unscaled
raw data (O) vs p.

1 100 10000 1 100 10000
t t

FIG. 10. Variation of the fraction of the number of active agents
A among the total number of agents N is plotted against time for
different values of ¢, above (a) and below (b) the phase boundary.

are very close to the exact values known for the 2D Ising
model.

For ¢ = 0.0 and 0.5, we obtain p, ~ 0.1110 and ~0.0170,
respectively. From the walk picture, the corresponding thresh-
old values are pr =~ 0.1150 and ~0.0185, respectively, which
are fairly close to the results obtained using finite-size scaling.

Study of active agents- In order to investigate whether the
ordered and disordered phases are active or absorbing, we
have estimated the number of active agents A(¢) as a function
of time ¢. A(z) is defined as the number of agents whose
opinion changed at time 7, and the fraction of the active agents
A(t)/N is plotted in Fig. 10. This preliminary study of the
fraction of active agents shows that indeed it decreases as ¢
is made larger in both the disordered and ordered states. That
the active agents fraction remains nonzero at long times also
supports the fact that both the phases are active.

IV. DISCUSSIONS AND CONCLUSIONS

In the present work we have obtained a phase diagram in
a two-parameter kinetic exchange model of opinion dynamics
with three opinion states. The two parameters represent the
fraction of negative interactions and the probability of extreme
switches of opinions. By simulating the agent-based model on
a 2D lattice, we generated the walks corresponding to each
agent’s opinion state in a 1D virtual space. Analysis of the
distribution S(X, ) of the displacements shows a change in the
nature of the walk above threshold values of the parameters.
Below these values the distribution is double peaked and the
data for different times can be approximately collapsed using
a scaling variable X /7, which reveals the nearly ballistic nature
of the walk. This nature and the double-peaked structure with
peaks occurring at nonzero values of X indicate that most of
the opinions continue in a state of either +1 or —1. This is then
a partially ordered state. It may be mentioned here that for the
opinion equal to zero, no displacement is occurring in the walk
and it does not significantly affect the walk’s nature. Above
the threshold values, we get Gaussian distributions centered
at zero with the scaling variable X/¢'/? indicating a diffusive
walk. This means that the opinions are changing continuously
and randomly in time and the system is disordered. Hence
the two regions below and above the threshold values are
identified as ordered and disordered regions, as had been
observed earlier for such virtual walks corresponding to other
dynamical systems [15,19,20].

Clearly, extreme switches act as a noise and make the soci-
ety more disordered. However, the exponents are in general
universal, i.e., not dependent on the exact location on the
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phase boundary. From Fig. 6 we note that as one increases g or
p in the disordered phase, o decreases, implying the average
root-mean-square displacement of the agents decreases. This
indicates rapid oscillations between %1, and one can conclude
that the opinions of the society become more volatile as the
disorders are increased.

To establish that indeed the walk changes its nature at the
critical points, we have also located the critical points for three
q values using finite-size scaling. The results agree fairly well:
the small discrepancy may be due to finite-size effects. The
critical exponents v and f are estimated and found to be close
to the Ising exponents in two dimensions, observed already
for the one-parameter model without extreme switches [26].
One can also compare the results with the mean-field case
[25], where the phase boundary was obtained as a straight
line. Except for ¢ = 1, the mean-field phase boundary lies
above that of the 2D one, which is a logical result. In both
the mean-field and two-dimensional versions, the role of g is
to provide additional noise without changing the universality
class. Interestingly, in both cases we find that the system
becomes totally disordered when the probability of extreme
switches is unity, i.e., when g = 1. In the mean-field case it
was shown that for g = 1, the model becomes identical to a
voter model with binary opinion values [24,25]; we conjec-
ture that the same happens for the finite-dimensional case,
as essentially the presence of g decreases the probability of
having an opinion equal to zero. This is aptly reflected in the
snapshots for a nonzero value of g.

From the walk picture, a critical exponent § related to the
diverging width of the Gaussian distribution is obtained. Like
the static critical exponents, §, characterizing the distribution
of the walk in the disordered phase, is also universal as man-
ifested in Fig. 6. Hence the signature of the phase transition
is contained in the distribution in this manner as well. As §
apparently cannot be related to any static critical exponent,
we claim it is a new exponent.

We also obtained the result that the ordered phase is not
an absorbing one in general from the results obtained so far.
It is known that for p = 0, ¢ = 0, an absorbing state can be

reached but may take a very long time [9]. In this case, the
presence of opinion equal to zero states at the boundary of +1
and —1 domains was responsible for the slow dynamics. With
a nonzero value of g, the population of agents with opinion
equal to zero decreases and such states could be less signifi-
cant for the dynamics. A detailed study of this and dynamics
in general could be interesting; however, at the moment we
restrict to presenting the walk features and the resulting phase
diagram only.

One more point needs to be mentioned. In some earlier
studies of the virtual walks, a crossover behavior in time had
been observed in the ordered phase [19,20]. Here, however,
no such tendency is noted. Interestingly, walks corresponding
to the two-dimensional Ising model also do not show such a
feature [30].

In conclusion, we find that a phase diagram for the
two-dimensional BChS model with extreme switches can
be obtained using the walk picture, showing that the tran-
sition to the disordered state is enhanced by the extreme
switches. A usual finite-size analysis has also been done
to confirm the results and to show that the criticality is of
Ising class. One more exponent entirely related to the vir-
tual walks has been obtained from the divergence of the
width of the distribution above the critical points. For the
two-dimensional voter model, a similar divergence was found
[19]; however, for the mean-field BChS model, the width
was found to be independent of p above p. [20]. This fea-
ture therefore needs to investigated more by studying other
models.

We end with the remark that it would be interesting to
compare the present results with other similar models as far
as the walk features are concerned. In particular, the behavior
on complex topologies is expected to be different, which can
also be investigated in the future.
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