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The Domany-Kinzel (DK) model encompasses several types of nonequilibrium phase transitions, depending
on the selected parameters. We apply supervised, semisupervised, and unsupervised learning methods to studying
the phase transitions and critical behaviors of the (1 + 1)-dimensional DK model. The supervised and the
semisupervised learning methods permit the estimations of the critical points, the spatial and temporal correlation
exponents, concerning labeled and unlabeled DK configurations, respectively. Furthermore, we also predict the
critical points by employing principal component analysis and autoencoder. The PCA and autoencoder can
produce results in good agreement with simulated stationary particle number density.
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I. INTRODUCTION

Machine learning (ML) methods have attracted much at-
tention in recent years and have been widely applied to many
fields, such as natural language processing [1], face and image
recognition [2,3], ecology [4], economics and finance [5],
data mining and analysis [6], and electronic games [7], etc.
Recently, reinforced learning methods even have solved the
previously unfathomable Go games (AlphaGo) [8]. Machine
learning methods also show their great advances in boost-
ing multidisciplinary problem solving, especially when the
related tasks are data-driven optimization problems.

In the physics realm, some major progresses have also been
made with machine learning methods. For example, quantum
computing has been combined with machine learning to de-
velop the field of quantum machine learning: In Ref. [9] the
quantum annealer has been used to sample the Boltzmann
distribution, and Ref. [10] and Ref. [11] have studied the
quantum Boltzmann machine and constructed quantum neu-
ral network, respectively. In high-energy physics, a machine
learning classifier has been constructed to search for new par-
ticles of unknown masses [12], using parameterized networks
to simplify the training process and enhance the learning
performance. The quantum chromodynamics (QCD) phase
transition has also been studied by using deep convolutional
neural networks [13]. More recently, graph neural networks
(GNNs) combined with a HaarPooling operation have been
applied to extracting the features of quark-gluon tagging [14],
which can enhance the accuracy of quark-gluon tagging, as
compared to the weakly supervised learning method proposed
earlier [15]. In astrophysics, the machine learning package
ASTROML has been developed [16], and machine learning
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methods have also been utilized to boost cosmological and
astrophysics process simulations [17].

Important breakthroughs have also been made in learning
different phases of matter. The seminal work by Carrasquilla
and Melko in 2016 have demonstrated that the ferromagnetic
and paramagnetic phases of the classical Ising model can be
classified based on supervised machine learning methods [18],
permitting the identification of the critical points and the spa-
tial correlation exponents. This work has since triggered great
interest in the application of machine learning methods to the
studies of various types of phase transitions. Regardless of the
complexity of the target problem, the versatility of machine
learning methods allows for learning more complex phases of
three-dimensional Ising model [19], or phases with nonlocal
and topological (Kosterlitz-Thouless) properties in percola-
tion, XY and generalized XY models [20–22], or even phases
of nonequilibrium matter [23], such as many-body localized
and topological phases, and the nonequilibrium phase transi-
tions in the directed percolation (DP) [24]. As in Ref. [18], it
has been repeatedly demonstrated that one can estimate the
critical points and the spatial correlation exponents, which
further enhances the possibility for obtaining the entire phase
diagram that is consistent with theory [23].

In this work, we study the phase transitions of the (1 +
1)-dimensional Domany-Kinzel (DK) model by machine
learning techniques. As will be shown in the next sec-
tion, the DK model is controlled by two parameters. Along
the transition line, the model characterizes several types of
phase transitions. Hence the DK model provides an excellent
test bed for comparing the capabilities of different learning
methods. To that end, supervised, semisupervised, and un-
supervised learning methods will be applied to each type of
phase transition. For supervised learning, the respective crit-
ical exponents are estimated after the phases are learned. We
also propose a semisupervised learning method, in which only
half probability data of training set with respect to test set are
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FIG. 1. The (1 + 1)-dimensional Domany-Kinzel model [26].
Occupied sites are marked by black circles. The state si,t+1 of a given
site i at time t + 1 depends on the states of its left and right neighbors
(si−1,t , si+1,t ) at time step t .

labeled. The trained neural network can then predict the order
parameter of the unlabeled DK model and the corresponding
critical points. In addition, two unsupervised learning meth-
ods, principal component analysis (PCA) and autoencoder, are
employed to estimate the critical points.

The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce the DK model. Section III
presents the supervised learning of (1 + 1)-dimensional DK
model, in which the critical points and the correlation length
and correlation time exponents are estimated. Section IV gives
the semisupervised learning results of (1 + 1)-dimensional
DK model. Section V is about the unsupervised learning re-
sults of (1 + 1)-dimensional DK model, via autoencoder and
PCA. Section VI summarizes the main findings of this work.

II. DOMANY-KINZEL MODEL

The Domany-Kinzel (DK) [25,26] model is a stochastic
cellular automaton that exhibits nonequilibrium active-to-
absorbing type phase transition, controlled by two parameters.
In (1 + 1) dimensions, the model is defined on a one-
dimensional array, on which site si can be either occupied
(si = 1) or empty (si = 0). As illustrated in Fig. 1, the state of
each site is then updated with time with respect to its nearest
neighbors according to the following rule:

si(t + 1) =

⎧⎪⎨
⎪⎩

1 if si−1(t ) �= si+1(t ) and ri(t ) < p1

1 if si−1(t ) = si+1(t ) = 1 and ri(t ) < p2

0 otherwise,

(1)

where 0 � ri(t ) � 1 is a random number generated from a
uniform distribution, and 0 � p1 � 1 and 0 � p2 � 1 are
two probabilities used to control the phases of the model. In
practice, simulations were performed on a triangular lattice
displayed as a square lattice, with the periodic condition being
imposed. The time of the lattice counts from t = 1 and at each
even time step, the one-dimensional configuration is rotated
to the right by one position to mimic the two-dimensional
triangular space-time lattice structure. Suppose the size of
the system is L. Due to this rotation, the periodic boundary
condition is implemented by adding an extra site sL+1. At each
step, the DK rules are implemented by first determining the
state si(t + 1) according to si(t ) and si+1(t ). Then when t + 1
is odd, we identify the last site with the first site by setting
sL+1(t + 1) = s1(t + 1), and when t + 1 is even, the entire
row is rotated to the right by one position and the ensuing
new first site is identified with the new last site by setting
s1(t + 1) = sL+1(t + 1).

FIG. 2. Phase diagram of the (1 + 1)-dimensional Domany-
Kinzel model, plotting data from Ref. [27]. Bond directed per-
colation corresponds to the line p2 = p1(2 − p1). Site directed
percolation is obtained for p1 = p2. For p1 = 1 and p2 = 0, it is
equivalent to Wolfram rule 90. For simplicity, we refer to this rule
throughout the paper even when p1 < 1, as long as p2 = 0. For
p2 = 1, it is a different universal scaling behavior called compact
directed percolation.

From the above rule, one can easily imagine that unless all
the sites are initially occupied, given the probability p2, if p1

is too small, the proportion of the occupied sites will decrease
until only empty sites remain, whereas, for large enough p1

value, the array will become increasingly occupied until a
saturated density is reached. Once the system evolves into
a fully empty state, there is no way for it to get out of that
state. Hence the model displays an active-to-absorbing phase
transition.

As depicted in Fig. 2 for the phase diagram, there is a
transition line (p1c, p2c) separating the active phase and the
absorbing one. Depending on the location of the parameters,
the DK model includes bond and site DP as special cases.
Bond DP corresponds to the line p2= p1(2 − p1), while site
DP is obtained for p1 = p2. For p1 = 1 and p2 = 0, it is
equivalent to Wolfram rule 90 [28–30] and for p2 = 1, since
an empty site is guaranteed to be filled as long as both its
neighbors are occupied, the generated clusters become com-
pact, giving rise to a different universal scaling behavior called
the compact directed percolation (CDP). The CDP has two
absorbing states, namely the empty and the fully occupied
lattice. The CDP is different from the bond DP, the site DP,
and the Wolfram rule 90, as the latter ones all belong to the DP
universality [31,32]. This is exemplified by the critical clusters
of the DK model generated from a single active seed shown
in Fig. 3, in which the compact pattern of the CDP cluster is
quite distinctive from those of the rest ones.

The particle number density of active sites of the DK is
defined as

ρ(t ) =
〈

1

L

∑
i

si(t )

〉
, (2)

which depends on the initial condition and is averaged over all
realizations of the dynamics. The order parameter of the DK
model is then the long time stationary value ρstat of the density
ρ(t ) as t → ∞, which is characterized by a power law in the
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FIG. 3. Critical clusters of DK model generated from a single
active seed.

vicinity of the critical point:

ρstat ∼ (p − pc)β. (3)

III. SUPERVISED LEARNING OF THE DOMANY-KINZEL
MODEL

The inputs for the learning machines are just raw config-
urations generated from Monte Carlo (MC) simulations of
the (1 + 1)-dimensional DK model. According to the phase
diagram depicted in Fig. 2, each type of phase transition of
the DK model can be controlled by varying the probability
p1. We henceforth denote it as p for simplicity. The generated
configurations are split into the training set and the test one. In
the training set, each configuration is labeled according to the
probability p that generated that configuration. The labeling
is a prerequisite for the supervised learning. If a configuration
xi was obtained by a simulation with p < pc, it is in the
absorbing phase and the output vector yi assigned to it during
training is (see below) yi = (0, 1), whereas configurations xi

generated at p > pc are assigned yi = (1, 0). Since knowledge
of pc is required for training, supervised learning cannot be
used to determine pc. It can be used to predict the phase of
a large number of simulated configurations on the basis of a
much smaller amount of training data. In the subsequent sec-
tions, we should explore alternative ML methods to partially
circumvent this issue.

For supervised learning, we apply the convolutional neural
network (CNN) as illustrated in Fig. 4, on which, sigmoid
activation function is used for the convolution and the pooling
layers, and SOFTMAX activation function is taken in the output
layer, producing a binary classification output. For a certain
test configuration xi(p) fed into the neural network, the two
output units take real values between 0 and 1. The value taken
by one output unit represents the probability P1(xi(p)) that the
configuration belongs to the active phase, and the value taken
by the other output unit represents the probability P0(xi(p))
that the configuration belongs to the absorbing phase.

FIG. 4. Schematic structure of CNN.

FIG. 5. (a) Cluster of Wolfram rule 90 generated from fully oc-
cupied active seeds. (b) Critical cluster of Wolfram rule 90 generated
from randomly occupied active seeds. (c) Cluster of CDP generated
from fully occupied active seeds. (d) Critical cluster of CDP gen-
erated from randomly occupied active seeds. Gray color represents
occupied sites, and blue ones represent empty sites.

Since learning machines try to learn features of configura-
tion images of relatively small system sizes and of different
phases, it is customary to make use of configurations ob-
tained from fully occupied or randomly occupied (e.g., with
a probability of 0.5) initial states instead of starting from a
single active seed as shown in Fig. 3, as the latter leaves
a large proportion of the sites empty at initial stages. Here,
randomly occupied initial states are more preferable because
for the Wolfram rule 90 (p = p1, p2 = 0) and the CDP
(p = p1, p2 = 1), fully occupied initial states only result in
trivial absorbing states, as illustrated in Figs. 5(a) and 5(c),
respectively, regardless of how the other parameter (p1 for the
Wolfram rule 90 and the CDP) is chosen.

Simulation times t are typically selected with respect to
the characteristic time t f . On a finite lattice of nonequilibrium
phase transition, there is always a nonvanishing probability
of reaching the absorbing configuration, finite-size effects set
in after a typical time t f that grows with the system size as
t f ∼ Lz. For the DP universality class, z = 1.58 [33], while
for the CDP, z = 2 [25].

The configuration images are of L × (t + 1) dimension.
From initial states with randomly occupied sites, for each
probability p, 1700 labeled configurations are generated for
the training set and another 500 configurations for the test set.
The CNN output layers are eventually averaged over the test
set, giving P0|1(p) = 1

500

∑500
i=1 P0|1(xi(p)).

To examine the proper system size, we started with L = 12
and L = 8 for the Wolfram rule 90 and the CDP, which give
rise to the relatively low accuracy values of 90.03% and
90.72%. Here, accuracy refers to the percentage of correct
predictions of the phases (as compared to the true labels in
the test set) of the test set with the trained CNN model.
Figures 6(a) and 6(b) show the CNN output layers averaged
learning results over a test set as a function of p for the Wol-
fram rule 90 and the CDP. Therefore, larger sizes will be taken
in what follows. Figures 6(c) and 6(d) show the averaged
results for the output layers from the above-trained CNN with
respect to bond and site DP, respectively. The critical points
can be estimated from the crossing point of the two output
layers, which is typically around P0(pc) = P1(pc) ≈ 0.5. With
L = 32, we hence estimate pc = 0.644 ± 0.02 for the bond
DP. With L = 40, we estimate pc = 0.701 ± 0.02 for the
site DP. These estimations yield accuracy of 99.66% for the
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(c) (d)

(e) (f)

(a) (b)

FIG. 6. The CNN output layers averaged learning results [P0(p)
and P1(p)] over a test set for (a) the Wolfram rule 90 (L = 12, t =
60); (b) the CDP(L = 8, t = 64); (c) the bond DP (L = 8, 12, 16,
20, 24, 28, 32; t = 50, 60, 80, 115, 152, 194, 240); (d) the site DP
(L = 12, 16, 20, 24, 28, 32, 36, 40; t = 60, 80, 115, 152, 194, 240,
288, 340); (e) the Wolfram rule 90 (L = 16, 20, 24, 28, 32, 36, 40;
t = 80, 115, 152, 194, 240, 288, 340); and (f) the CDP (L = 12, 16,
20, 24, 28, 32; t = 145, 256, 400, 576, 784, 1024). The values of pc

used in the learning phase of each case are indicated by the vertical
lines; they were taken from Ref. [33] for the bond and the site DP,
from Ref. [27] for the Wolfram rule 90, and from Ref. [25] for the
CDP.

bond DP critical point, and accuracy of 99.38% for the site
DP; see the accuracy data in Table I. Therefore, even though
the employed system sizes are relatively small, supervised
learning by CNN still allows us to classify the two phases and
estimate the associated critical points quite well.

For Figs. 6(e) and 6(f), with L = 40, we estimate pc =
0.798 ± 0.02 for the Wolfram rule 90. With L = 32, we esti-
mate pc = 0.498 ± 0.02 for the CDP. These estimations yield

FIG. 7. With L = 32, t = 240, comparing the particle number
density of the bond DP, site DP and Wolfram rule 90.

accuracy of 97.46% for the Wolfram rule 90 critical point, and
accuracy of 98.41% for the CDP.

As one can notice from Table I, the accuracy values for
the bond DP, the site DP, and the Wolfram rule 90 display a
decreasing trend among them for each studied system size.
As shown in Fig. 7, the particle number densities of the three
models at the same p are actually different and display the
same trend. Since these three variants all belong to the DP
universality class, here we observe that the nonuniversal
lacunarity property (porous structure) of clusters, associated
with the particle number density, still affects the learning
accuracy, although one may just want to probe the same
universality properties.

The features of nonequilibrium phase transitions such as
absorbing phase transitions are encoded in the correlations
within the spatial configurations and their dynamical evolu-
tion. Approaching the critical point, the spatial correlation
length ξ⊥ and the temporal correlation length ξ‖ diverge as

ξ⊥ ∼ |p − pc|−ν⊥ and ξ‖ ∼ |p − pc|−ν‖ , (4)

where ν⊥ and ν‖ are spatial and temporal correlation
exponents, respectively, and ξ‖ ∼ ξ z

⊥, with z = ν‖/ν⊥ being
the dynamical exponent. For finite systems simulated within
finite times, by noting that finite-size effects set in when ξ⊥ ∼
|p − pc|−ν⊥ ∼ L, and ξ‖ ∼ |p − pc|−ν‖ ∼ t , one sees that
x = (p − pc)L1/ν⊥ and y = (p − pc)t1/ν‖ are dimensionless
quantities, so the functions P̂0|1(x) and P̂0|1(y) are scaling
functions of x and y, respectively, and we expect data collapse
for different system sizes when the scaled variables x and
y are used. Hence, it is possible to estimate ν⊥ and ν‖ by
performing data collapse techniques.

TABLE I. The accuracy values of the trained CNNs with respect to different system sizes L for (i) the bond DP, (ii) the site DP, (iii) the
Wolfram rule 90, and (iv) the CDP.

size L 8 12 16 20 24 28 32 36 40

bond DP 93.77% 95.61% 97.92% 98.46% 98.53% 99.45% 99.66% − −
site DP 90.85% 95.03% 96.4% 97.75% 98.43% 98.57% 99.1% 99.18% 99.38%
Wolfram rule 90 87.51% 90.03% 94.63% 95.09% 96.2% 96.31% 96.93% 96.99% 97.46%
CDP 90.72% 94.76% 96.43% 97.06% 97.82% 98.23% 98.41% − −
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(c) (d)

(a) (b)

FIG. 8. CNN outputs results as a function of x = (p − pc )L1/ν⊥

for (a) the bond DP (L = 8, 12, 16, 20, 24, 28, 32; t = 50, 60, 80,
115, 152, 194, 240), (b) the site DP (L = 12, 16, 20, 24, 28, 32, 36,
40; t = 60, 80, 115, 152, 194, 240, 288,340), (c) the Wolfram rule
90 (L = 16, 20, 24, 28, 32, 36, 40; t = 80, 115, 152, 194, 240, 288,
340), (d) the CDP (L = 12, 16, 20, 24, 28, 32; t = 145, 256, 400,
576, 784, 1024).

Before we proceed, let us note that the bond DP, the site DP,
and the Wolfram rule 90 of the (1 + 1)-dimensional DK all
belong to the (1 + 1)-dimenional DP universality class, which
is characterized by the correlation exponent ν⊥ ≈ 1.0968(4)
and the temporal correlation exponent ν‖ ≈ 1.7338(6) [33].
The CDP represents a different universality class (the CDP
universality class) of absorbing phase transitions, where
the percolation clusters are compact objects, which is
characterized by ν⊥ = 1 and ν‖ = 2 in 1 + 1 dimensions
[25,34].

Now, rescaling the probability p − pc by choosing proper
ν⊥ and ν‖ in Fig. 6 should render the output layer curves
for different sizes collapse to the scaling functions P̂0|1(x)
and P̂0|1(y). As seen in Fig. 8, the curves coincide for dif-
ferent sizes with a suitable choice of ν⊥. The estimated DK
critical exponents are ν⊥ = 1.092 ± 0.02 for the bond DP,
ν⊥ = 1.087 ± 0.03 for the site DP, and ν⊥ = 1.073 ± 0.03
for the Wolfram rule 90, which are consistent with the the-
oretical value ν⊥ = 1.0968. For the CDP, We estimate ν⊥ =
0.991 ± 0.02, which is again consistent with the theoretical
value ν⊥ = 1. Similarly, Fig. 9 shows the data-collapse results
for temporal correlations with respect to different simulation
times. The estimated DK critical exponents are ν‖ = 1.727 ±
0.02 for the bond DP, ν‖ = 1.725 ± 0.03 for the site DP,
and ν‖ = 1.719 ± 0.03 for the Wolfram rule 90, which are
consistent with the theoretical value ν‖ = 1.7338(6). We also
estimate ν‖ = 1.967 ± 0.03 for the CDP, agreeing with the

(c) (d)

(a) (b)

FIG. 9. CNN outputs results as a function of y = (p − pc )t1/ν‖

for (a) the bond DP (L = 8, 12, 16, 20, 24, 28, 32; t = 50, 60, 80,
115, 152, 194, 240), (b) the site DP (L = 12, 16, 20, 24, 28, 32, 36,
40; t = 60, 80, 115, 152, 194, 240, 288, 340), (c) the Wolfram rule
90 (L = 16, 20, 24, 28, 32, 36, 40; t = 80, 115, 152, 194, 240, 288,
340), (d) the CDP (L = 12, 16, 20, 24, 28, 32; t = 145, 256, 400,
576, 784, 1024).

theoretical value ν‖ = 2. According to z = ν‖/ν⊥, the esti-
mated DK dynamical exponents are z = 1.5815 ± 0.02 for the
bond DP, z = 1.587 ± 0.03 for the site DP, z = 1.602 ± 0.03
for the Wolfram rule 90, z = 1.985 ± 0.03 for the CDP.

Machine learning has been well applied to studying equi-
librium phase transition models, but applying it to studying
nonequilibrium phase transitions is a new research field, hav-
ing attracted much attention in recent years. Previously, it
has been demonstrated that spatial correlation exponents of
nonequilibrium phase transitions can be extracted in a similar
manner as in the nonequilibrium case [24]. Here, we explore
further and find that the CNN output layer also contains tem-
poral correlation information, which permits the extraction of
temporal correlation exponents.

IV. SEMISUPERVISED LEARNING
OF THE DOMANY-KINZEL MODEL

Semisupervised learning is a kind of learning paradigm,
which combines supervised learning with unsupervised learn-
ing or utilizes the capability of the trained model through
supervised learning to predict values (labels) that do not occur
in the training set. Hence, there are two slightly different
semisupervised learning settings, namely, inductive and trans-
ductive semisupervised learning. Inductive learning assumes
that the unlabeled samples in the training data are not the
data to be predicted, in the hope that the trained model can
be applied to data not observed during the training phase.
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Transductive learning, on the other hand, assumes that the
unlabeled samples considered in learning are exactly the data
to be predicted—the unlabeled samples constitute the test
set [35,36]. In what follows, we will take the more straight-
forward latter approach. In this way, one may substantially
reduce the cost for data labeling, or, for more practical appli-
cations, one only needs to label data with the most certainty
and leaves those less certain ones unlabeled and treat them as
the test set.

In semisupervised learning, basically the same convolu-
tional neural network as illustrated in Fig. 4 is being used,
only that the output layer contains only one neuron, intend-
ing to predict the stationary particle number density ρstat

through its output value. Therefore, instead of labeling the
raw configuration data according to the phase they are in,
raw configurations are labeled by their stationary particle
number densities ρstat,i(p) (for the ith sample with respect
to probability p), inferred from MC configurations directly.
To test the ability of semisupervised learning, the training
set, labeled by ρstat,i(p), only uses a sparser probability se-
lection [e.g. p = (0.1, 0.3, 0.5, 0.7, 0.9)], while the test set
includes unlabeled data for more extensive p values [e.g. p =
(0, 0.1, 0.2, 0.3, . . . , 0.9, 1)]. For the DK model, simulations
are run on arrays of size L = 16, up to t = 120 steps. For
each chosen probability p, 2000 labeled configurations are
generated for the training set and another 1000 configurations
for the test set. Once the CNN is fully trained with respect to
the training set, the CNN output should predict the stationary
particle number density ρstat,i(p) for the ith sample in the test
set for probability p.

Figures 10(c)–10(f) show the results for the semisuper-
vised learning on the test sets, indicating that semisupervised
learning indeed can predict the stationary particle number
density of the DK model, complying with the counterpart
from the Monte Carlo simulations well. From the peak of
the variance, the estimated values of critical points are pc =
0.637 ± 0.02 for bond DP, pc = 0.695 ± 0.02 for site DP,
pc = 0.496 ± 0.02 for compact DP, and pc = 0.793 ± 0.02
for Wolfram rule 90.

We remark that even for the DK model, the selection of the
labeled portion in the training set could be quite arbitrary. This
opens a possible avenue for the study of more intricate phase
transitions such as topological phase transitions. Previously, it
had been demonstrated that the unsupervised learning meth-
ods (PCA) are not suitable for extracting the critical points
of the XY model [37]. It would be interesting to study if one
can infer the full phase information for topological phase tran-
sitions via semisupervised learning by utilizing only partial
information of these transitions.

V. UNSUPERVISED LEARNING
OF THE DOMANY-KINZEL MODEL

Unsupervised learning is a type of machine learning that
learns from unlabeled data. In certain scenario, labeled data
is scarce or expensive to obtain and unsupervised learning
allows machines to automatically discover hidden patterns
or sample classification through data analysis without ex-
plicit guidance. In this section, two well-known unsupervised
learning methods, i.e., autoencoder and principal compo-

(c) (d)

(e) (f)

(a) (b)

FIG. 10. Stationary particle number density ρstat(p) for the la-
beled training sets of (a) the bond DP and (b) the CDP, as well as
semisupervised learning results averaged over a test set as a function
of p for of the particle number density with partially labeled training
sets for (c) the bond DP, (d) the CDP, (e) the site DP, and (f) the
Wolfram rule 90. Red dots represent the stationary particle number
density of the DK model and blue lines represent the CNN outputs.
The predicted results were obtained after averaging over all the
output results for the test set.

nent analysis (PCA), will be applied to detect the phases
of the DK model. For both methods, the outputs will be
restricted to two- and one-dimensional spaces, which are
the most physically relevant, as will be demonstrated in this
section.

A. Autoencoder results of the DK model

Autoencoders are simple generative models, which can
produce random outputs that are similar to the inputs [38–40].
As illustrated in Fig. 11, the fully connected autoencoder
architecture that we used includes an input layer, an encoder, a
latent layer of hidden neurons, a decoder, and an output layer.
The inputs for the autoencoders are just raw DK configura-
tions xi. The model is trained until the L2 loss function

L(φ, θ ) = 1

N

N∑
i=1

||xi − Dθ (Eφ (xi ))||22 (5)

is minimized with respect to the encoder parameters φ and the
decoder parameters θ , with Eφ and Dθ being the encoder and
the decoder functions, respectively. In this way, an effective
representation, which preserves the most important informa-
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Input Hidden 
NeuronsEncoder Decoder Output

FIG. 11. Schematic structure of autoencoder. The fully con-
nected autoencoder architecture includes an input layer, an encoder
(four layers of neurons), a latent layer of hidden neurons (one or two
neurons), a decoder (four layers of neurons), and an output layer,
with number of neurons (640, 256, 128, 64, 16, 2|1, 16, 64, 128, 256,
640) and reLU activation functions for the layers.

tion of the input data, is achieved in the latent layer through
data compression, which further permits data reconstruction
via data decompression with the decoder.

First, we examine the autoencoder with two hidden neu-
rons in the latent layer. For the DK model, simulations are run
on arrays of size L = 16 and t = 120, with the configurations
from the last 40 time steps (�t = 40) being taken. For each
probability p, 2000 configurations are generated for the train-
ing set, and another 1000 configurations for the test set. Since
the autoencoder output is limited to two hidden neurons, the
DK configurations are compressed into two dimensions. Once
the autoencoder is trained, each input xi from the test set then
gives rise to one point (hi1, hi2) on a two-dimensional plane
corresponding to the degree of freedom of the latent layer.

As shown in Fig. 12, the used autoencoder roughly clas-
sifies the DK configurations into two clusters, although the
absorbing phase and the active phase are not completely
separated. Especially, configurations drawn from the same
probability p are closely clustered together, so the fuzzy

FIG. 12. The autoencoder output is linked with two hidden neu-
rons, projecting the configurations of the bond DP, the site DP, the
Wolfram rule 90, and the CDP onto two dimensions. The colormap
represent the probability p.

(a) (b)

FIG. 13. Encoding the raw bond (a) DP and (b) CDP configura-
tions to a single latent variable, through a single hidden neuron, as
a function of the probability p. Here, adaptive moment estimation
(ADM) is selected as the autoencoder optimizer. The blue and the
red curves represent the autoencoder results and the MC results,
respectively.

boundary of the two phases means that the transition is of
continuous type.

Previously, it was found that in the autoencoder learning of
the two-dimensional Ising model, the latent variable and the
magnetization are highly correlated [37,41]. It was recently
found that the latent variable and the particle density for the
(1 + 1) dimensions bond DP are also highly correlated [24].
Hence, analogously, we surmise that if the latent layer is
restricted to just one hidden neuron, compressing all the con-
figurations onto representations in one dimension, the learned
feature should be the stationary particle density. As a first
attempt, we selected adaptive moment estimation (ADM) as
the autoencoder optimizer. It can be found from Fig. 13 that
the normalized output hAE of the hidden neuron and the sta-
tionary particle number density do not strictly coincide with
one another, which is beyond our expectation.

Alternatively, we now choose stochastic gradient descent
(SGD) as the autoencoder optimizer. The curve of normalized
output hAE versus the probability p is now comparable to
the counterpart of stationary particle number density for the
DK model, as illustrated in Fig. 14. This indicates that the
optimizer is very crucial for autoencoder.

Based on the data presented in Fig. 14, from the peak of
the variance, the estimated values of critical points are pc =
0.638 ± 0.02 for the bond DP, pc = 0.696 ± 0.02 for the site
DP, pc = 0.495 ± 0.02 for the compact DP, and pc = 0.793 ±
0.02 for the Wolfram rule 90. The Euclidean distance, defined

as
√∑n

i=1 (hAE
i − ρMC

i )2, can be utilized to quantify the dif-

ference between the (normalized) latent variable hAE(p) and
the stationary particle number density ρstat(p) from the Monte
Carlo simulations. The Euclidean distances for the DK model
are found to be 0.01445 for the bond DP, 0.01525 for the
site DP, 0.01805 for the Wolfram rule 90, and 0.008198 for
the compact DP. These values are quite small, suggesting that
the single latent variable hAE of the autoencoder learning can
be treated as the stationary particle number density, as we
conjectured earlier.

Hence, while two neurons in the latent layer are capable of
clustering the DK configurations into two phases, the single
latent variable of autoencoder results in good agreement with
the DK stationary particle number density. Both these two
constructions suggest that autoencoders can capture essential
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(c) (d)

(a) (b)

FIG. 14. Learning of the DK model when SGD is chosen as the
autoencoder optimizer. The raw DK configurations are encoded on to
a latent variable of a single hidden neuron as function of the probabil-
ity p for (a) the bond DP, (b) the CDP, (c) the site DP, (d) the Wolfram
rule 90. The single-variable outputs (blue) of DK autoencoder results
are normalized, which are compared to the stationary particle number
densities (red) from the Monte Carlo simulations.

information of the input data so as to detect the phases or
the critical points, without any prior knowledge of the DK
model.

B. PCA results of the DK model

Principal component analysis (PCA) is also an unsu-
pervised learning algorithm, which can be used for data
dimensionality reduction [42–44]. PCA performs orthogonal
transformation on the data to find the direction of high vari-
ance, and converts the variables with possible correlations
into linearly uncorrelated ones. The transformed variables
are called principal components and here only the first two
leading components will be used for the analysis of the DK
model. One can intuitively imagine the process as projecting
the data points of the original high-dimensional representation
onto a lower-dimensional space by selecting proper directions
of projection with largest variances, so that the maximum
amount of information is still preserved after reduction of
the dimensions. Similar to the previous section, we will also
be interested in reductions into two- and one-dimensional
spaces.

To be more specific, the PCA method is implemented as
follows. Simulations are run on arrays of size L = 16 and t =
120, with the configurations from the last 40 time steps (�t =
40) being taken, giving rise to M = (L × �t )-dimensional
vectors xi’s. For each probability p, 1000 configurations
are generated. Let Np be the number of p values being
studied, the full data set contains a total of N = 1000 ×
Np samples so that an (N × M )-dimensional matrix X =
(x1, x2, . . . , xi, . . . , xN )T is used to obtain the PCA results.
PCA determines the principal components through a lin-
ear transformation of the original data Y = XW, where the

(a) (b)

FIG. 15. PCA explained variance ratios of the first 10 principal
components for (a) the site DP and (b) the CDP.

(M × K )-dimensional transformation W = (w1, w2, . . . , wK )
consists of K weighted components (column vectors) wn of
dimension M. If K 	 M, a dimensionality reduction can be
achieved.

Now by focusing on the real symmetric (M × M )-
dimensional covariance matrix XT X and considering K = M,
the PCA component directions corresponding to descending
variance spans can be determined by choosing wn’s as eigen-
vectors of XT X:

XT Xwn = λnwn, (6)

with eigenvalues sorted in a descending order λ1 � λ2 �
. . . λM � 0, representing variances of the input matrix X along
the directions of the corresponding wn vectors. Dimensional-
ity reduction is then achieved by selecting the first few wn’s
corresponding to the largest eigenvalues. In the terminology of
PCA, we denote the normalized eigenvalues λ̃n= λn/

∑M
i=1 λi

as the explained variance ratio, which amounts to the weight
accounting for the total variance along the direction of the nth
component. As illustrated in Figs. 15(a) and 15(b), weights of
the first few components already account for almost the entire
variance.

The two leading components of DK configurations by
PCA are illustrated in Fig. 16. Similar to the autoencoder
results, this reveals that PCA can also roughly classify the DK

FIG. 16. PCA results for the bond DP, the site DP, the Wolfram
rule 90, and the CDP, with projection of the raw configurations onto
the plane of the two leading principal components. The colormap
represent the probability p.
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(c) (d)

(a) (b)

FIG. 17. PCA results for (a) the bond DP, (b) the site DP, (c) the
Wolfram rule 90, (d) the CDP. The normalized first leading com-
ponent (blue) varies as a function of the probability p, which is
compared to the stationary particle number density (red) from the
Monte Carlo simulations; both averaged over 1000 samples for each
p value.

configurations into two phases. Since the boundary of these
phases is not distinct, the transition is of continuous nature, as
expected. It is interesting to note that almost all data points for
high p values are projected to very few red dots for the CDP.
This can be understood as a consequence of projecting very
similar compact objects to the PCA plane given that the last
40 rows of the CDP configurations (t = 81-120) were taken
and the clusters are mostly active for high p values.

It is also of interest to examine the normalized first leading
component of the DK configurations and compare it to the
particle number density from the Monte Carlo simulations. As
presented in Fig. 17, the two are close to each other for any
given probability p and the Euclidean distances from the MC
results are 0.00012 for the bond DP, 0.000094 for the site DP,
0.00022 for the Wolfram rule 90, and 0.00011 for the compact
DP. These distance values are quite small, suggesting that the
first leading component can be interpreted as the stationary
particle number density. This interpretation of the first leading
component is then quite in resemblance to the magnetization
analogy of the first leading component of the PCA in the
two-dimensional Ising model [37,45]. It is found that the first
leading component and the particle density for the (1 + 1)-
dimensions bond DP are also highly correlated [46]. From the
peak of the variance, the estimated values of critical points
are pc = 0.639 ± 0.02 for the bond DP, pc = 0.698 ± 0.02
for the site DP, pc = 0.496 ± 0.02 for the compact DP, and
pc = 0.795 ± 0.02 for the Wolfram rule 90. The estimated
values are in good agreement with both those obtained from
autoencoder in the previous section and the MC results [33].

Although PCA is just based on linear transformations of
the input data, we show that it is still effective in extracting
features of the DK phase transitions. Since the PCA could
achieve similar results as compared to autoencoder without

needing to train a model firstly, it costs less and is more
convenient to apply.

VI. SUMMARY

In this paper, we applied supervised, semisupervised, and
unsupervised learning methods to study the phase transitions
and critical behavior of the Domany-Kinzel model. With
supervised learning, the critical points were estimated from
the neural network outputs. By further collapsing the out-
puts for different sizes, the correlation exponents ν⊥ and ν‖
were estimated, which are consistent with reference values
in the literature. Previously, it has been demonstrated that,
similar to the equilibrium case, the spatial correlation expo-
nent ν⊥ of nonequilibrium phase transitions can be extracted.
Here, we explore further and find that the CNN output layer
also contains temporal correlation information, which permits
the extraction of the temporal correlation exponent ν‖. The
achieved high accuracy values even for rather small system
sizes suggest that the applied learning machine could learn
the features of the phases quite well, so that the computation
overheads in the MC simulation end can be substantially
reduced.

The unsupervised learning methods, PCA and autoencoder,
are able to roughly separate the phases into two clusters if
the output is two dimensional. Once the output is restricted to
one dimension, both methods yield an output that is in good
agreement with the stationary particle number density and the
estimated critical points are also in good agreement with the
literature values within error margins. Since learning through
PCA is simpler, PCA generally is more efficient as compared
to autoencoder.

In semisupervised learning, even though only half of the
training set was labeled, by setting the output to just one neu-
ron, we found that the network predicts the stationary particle
density of the test set quite well, permitting us to estimate the
critical points of the DK model as well. Given these features
of semisupervised and unsupervised learning methods, it is
advisable to use these methods to study more intricate phase
transitions if data labeling becomes costly.

Finally, we remark that even though only universal prop-
erty of the DK model should matter along the DP critical
transition line, the nonuniversal lacunarity property (porous
structure) of clusters affects the learning accuracy. It is
observed that learning machines generally learn the phase
features of the DK models with denser clusters (e.g., the
bond DP) better than models with sparser clusters (e.g., the
Wolfram rule 90).
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