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Fractional heterogeneous telegraph processes are considered in the framework of telegrapher’s equations ac-
companied by memory effects. The integral decomposition method is developed for the rigorous treating of
the problem. Exact solutions for the probability density functions and the mean squared displacements are
obtained. A relation between the fractional heterogeneous telegrapher’s equation and the corresponding Langevin
equation has been established in the framework of the developed subordination approach. The telegraph process
in the presence of stochastic resetting has been studied, as well. An exact expression for both the nonequilibrium
stationary distributions/states and the mean squared displacements are obtained.
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I. INTRODUCTION

A telegrapher’s equation proposed by Kelvin and
Heaviside in electrodynamics [1–3] is essentially employed in
heat transfer theory and a persistent random walk [4–7]. It has
also a particular interest as a master equation of a dichotomous
Markov noise [8–11], to mention a few. Seminal results on
the telegraph process relate to the detailed treatment of turbu-
lent diffusion [12], and later to studies of a stochastic model
[13], see also Ref. [14]. The standard telegrapher’s equation
reads [15]

τ
∂2

∂t2
P0(x, t ) + ∂

∂t
P0(x, t ) = D

∂2

∂x2
P0(x, t ), (1)

where τ is a time parameter, and D is a diffusion coefficient,
which relates to a finite propagation velocity v = √

D/τ .
Equation (1) combines properties of a hyperbolic (due to the
second time derivative) and parabolic equation.1 In present
consideration of random walks of a particle to be at position
x at time t , P0(x, t ) is the probability density function (PDF)
with the zero boundary conditions at infinity, and the follow-
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ing initial conditions:

P0(x, t = 0) = δ(x − x0),
∂P0(x, t )

∂t

∣∣∣∣
t=0

= 0. (2)

The corresponding Langevin equation takes the form2

ẋ(t ) = v ζ (t ), (3)

where v relates to τ and D and is the same as in Eq. (1),
and ζ (t ) is a stationary dichotomic Markov process that jumps
between two states ±1 with the mean rate ν, i.e., the inverse
mean sojourn time for each state. The corresponding equa-
tion for the PDF P0(x, t ) of such a process is the telegrapher’s
equation (1), where τ = 1

2ν
and D = v2τ .

One way of generalization of the standard telegrapher’s
equation is within the persistent random walk theory yielding
the following time fractional telegrapher’s equation [3,6,7]

τμ−1 ∂2μ

∂t2μ
P0,1(x, t ) + τ−1 ∂μ

∂tμ
P0,1(x, t ) = Dτ−1 ∂2

∂x2
P0,1(x, t ),

(4)

1When τ → ∞ with the fixed velocity v = √
D/τ , Eq. (1) becomes

a wave equation. In the opposite case when τ → 0, while v → ∞,
Eq. (1) reduces to the diffusion equation with fixed diffusion coeffi-
cient D = v2τ .

2The telegrapher’s equation (1) can be obtained from the Langevin
equation (3) in the framework of the characteristic function approach
[10], considering ζ (t ) as a dichotomous Poisson process, and a
stochastic differentiation technique [16].
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with 0 < μ < 1, where ∂ν

∂tν is the Caputo fractional derivative
of order ν, defined by [17]

∂ν

∂tν
f (t ) = 1

�(n − ν)

∫ t

0
(t − t ′)n−ν−1 dn

dt ′n f (t ′) dt ′, (5)

where n − 1 < ν < n, n ∈ N , and which Laplace transform3

reads

L
[

∂ν

∂tν
f (t )

]
= sν f̂ (s) −

n−1∑
k=0

sν−k−1

[
lim
t→0

dk

dtk
f (t )

]
. (6)

It is worth noting that the fractional telegrapher’s equation (4)
has also been derived from the standard telegrapher’s equa-
tion (1) by subordination with the Lévy stable process [18,19],
and as a special case of a generalized Cattaneo equation with
the power-law memory kernels [20].

Another time fractional generalization can be obtained
by combining the fractional generalization of the continuity
equation and the standard constitutive equation. This yields
the following (fractional telegrapher’s) equation [20,21]:

∂1+μ

∂t1+μ
P0,2(x, t ) + τ−1 ∂μ

∂tμ
P0,2(x, t ) = Dτ−1 ∂2

∂x2
P0,2(x, t ),

(7)

with 0 < μ < 1. Note by passing that the fractional general-
ization of the continuity equation is connected to the fractional
stationarity and a fractional Liouville equation causing a de-
creasing phase space in statistical systems, as discussed by
Hilfer [22,23].

Moreover, the standard telegraph process can be general-
ized if one introduces a nonlinear Langevin equation with
multiplicative dichotomic noise

ẋ(t ) = v(x)ζ (t ), (8)

where v(x) > 0 is a position-dependent speed, and ζ (t ) is the
same dichotomic process as in Eq. (3), but here it is a mul-
tiplicative noise. The corresponding equation for the PDF is
a so-called heterogeneous telegrapher’s equation (HTE), and
for such a heterogeneous telegraph process, the HTP, reads4

∂2

∂t2
P(x, t ) + τ−1 ∂

∂t
P(x, t ) = ∂

∂x

{
v(x)

∂

∂x
[v(x)P(x, t )]

}
,

(9)

where v(x) = √
D(x)/τ [15], see also [24,25]. In

Refs. [25,26], the inhomogeneous diffusivity/advection
has been chosen in the power law form, when D(x) = Dα|x|α ,
α < 2.

Such heterogeneous telegrapher’s equations have been
used in cosmic-ray transport [27] and in the description of
turbulent diffusion [28–30], and turbulent relative dispersion
of particle pairs [31,32]. They are also employed for gen-
eralizations of the Richardson model [33] by taking into
consideration the long-time velocity correlations in turbulent
flows [34,35].

3The Laplace transform of a given function f (t ) reads f̂ (s) =∫ ∞
0 e−st f (t ) dt .
4A rigorous analysis has been performed in Ref. [15].

In Ref. [25], by using the integral decomposition method
[18,36–39], it has been shown that the formal solution of the
HTE (9) is given by

P(x, t ) =
∫ ∞

0
h(u, t )p(x, u)du, (10)

where the decomposition function h(u, t ) in Laplace space
reads

ĥ(u, s) = 1

K̂0(s)
e
− us

K̂0 (s) , K̂0(s) = 1

τ s + 1
. (11)

Here p(x, t ) is the solution of the corresponding Fokker-
Planck equation for the heterogeneous diffusion equa-
tion (with τ = 0) [17,26,40–42],

∂

∂t
p(x, t ) = ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)p(x, t )]

}
. (12)

By this approach the heterogeneous telegrapher’s equation can
be rewritten in the form

∂

∂t
P(x, t ) =

∫ t

0
K0(t − t ′)

× ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)p(x, t ′)]
}

dt ′, (13)

where K0(t ) = τ−1e−t/τ . This method was used by Sokolov
[36] to obtain the standard telegrapher’s equation from the
diffusion equation by using the exponential memory ker-
nel. Such exponential kernel was classified as “dangerous”
since the decomposition function ĥ(u, s) is not a completely
monotone function. Moreover, in Ref. [36], the memory ker-
nels for which ĥ(u, s) is completely monotone were named
“safe” kernels, and the decomposition method is known as
subordination, while the decomposition function h(u, t ) as a
subordination function.

The solution is obtained in Ref. [26] and it reads

p(x, t ) = |x|1/ρ−1

√
4πDαt

× exp

(
−ρ2

∣∣sgn(x) |x|1/ρ − sgn(x0) |x0|1/ρ
∣∣2

4Dαt

)
,

(14)

where ρ = 2
2−α

, and when x0 = 0, it reduces to the
solution [40]

p(x, t ) = |x|1/ρ−1

√
4πDαt

exp

(
−ρ2|x|2/ρ

4Dαt

)
. (15)

Therefore, the PDF in Laplace space becomes

P̂(x, s) =
∫ ∞

0
ĥ(u, s)p(x, u)du

=
∫ ∞

0
p(x, u)

1

K̂0(s)
e
− us

K̂0 (s) du

= 1

K̂0(s)
p̂

(
x,

s

K̂0(s)

)
, (16)
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where

p̂(x, s) = |x|1/ρ−1

√
4Dα

s−1/2

× exp

(
−ρ

∣∣sgn(x) |x|1/ρ − sgn(x0) |x0|1/ρ
∣∣

√
Dα

s1/2

)
.

(17)

From the general solution (16) for the PDF, we can find a
general form of the mean squared displacement (MSD), which
in Laplace space is

〈x̂2(s)〉0 = 1

K̂0(s)

〈
x̂2

(
s

K̂0(s)

)〉
, (18)

where 〈x2(t )〉 is the MSD of the heterogeneous diffusion pro-
cess, described by the Fokker-Planck equation (12), see [26],

〈x2(t )〉 = �(1 + 2ρ)

ρ2ρ

(Dαt )ρ

�(1 + ρ) 1F1

(
−ρ,

1

2
,−ρ2 |x0|2/ρ

4Dαt

)
,

(19)

where 1F1(a, b, z) is the confluent hypergeometric function
of the first kind [43] for x0 	= 0. For the long time limit, the
asymptotic expansion of (19), yields

〈x2(t )〉 ∼ C1(ρ)(Dαt )ρ + C2(ρ)|x0|2/ρ (Dαt )ρ−1, (20)

where C1(ρ) = �(1+2ρ)
ρ2ρ�(1+ρ) and C2(ρ) = ρ3

2 C1(ρ). Since ρ > 0,
the MSD reads

〈x2(t )〉 ∼ �(1 + 2ρ)

ρ2ρ

(Dαt )ρ

�(1 + ρ)

for large times. For the short time limit, the MSD corresponds
to diffusion

〈x2(t )〉 ∼ |x0|2 + 2(2ρ − 1)/ρ |x0|2(ρ−1)/ρ Dαt .

For α = 0 (ρ = 1) we recover the result for ordinary
Brownian motion 〈x2(t )〉 = x2

0 + 2D0t .
For the limiting case x0 = 0 [and thus 1F1(a, b, 0) = 1], the

MSD (19) is the known result [40]

〈x2(t )〉 = �(1 + 2ρ)

ρ2ρ

(Dαt )ρ

�(1 + ρ)
. (21)

In Laplace space, one has

〈x̂2(s)〉 = �(1 + 2ρ)

ρ2ρ
Dρ

α s−ρ−1, (22)

and thus

〈x2(t )〉0 = �(1 + 2ρ)

ρ2ρ

(
Dα

τ

)ρ

L−1

[
s−ρ−1

(s + τ−1)ρ

]

= �(1 + 2ρ)

ρ2ρ
(Dατ )ρ

(
t

τ

)2ρ

Eρ
1,2ρ+1

(
− t

τ

)
, (23)

where E δ
α,β (z) is the three parameter Mittag-Leffler function

defined by [44]

Eγ

α,β (z) =
∞∑

k=0

(γ )k

�(αk + β )

zk

k!
, (24)

with β, γ , z ∈ C, �(α) > 0, (γ )k = �(γ+k)
�(γ ) is the Pochham-

mer symbol. Its Laplace transform reads

L
[
tβ−1Eγ

α,β
(±λtα )

] = sαγ−β

(sα ∓ λ)γ
, (25)

where |λ/sα| < 1. Its asymptotic behavior for large z can be
found from the following formula for 0 < α < 2 [17,45]:

Eγ

α,β (−z) = z−γ

�(γ )

∞∑
n=0

�(γ + n)

�(β − α(γ + n))

(−z)−n

n!
, z > 1,

(26)

which gives

Eγ

α,β (−z) ∼ z−γ

�(β − αγ )
− γ

z−(γ+1)

�(β − α(γ + 1))
, z  1.

(27)

II. FRACTIONAL HTE

We consider two different generalized forms of the HTE.
The first one is a generalization of the fractional telegrapher’s
equation (4) and the second one is a generalization of the
fractional telegrapher’s equation (7), in which we introduce
a position dependent velocity.

A. Case 1

The first case corresponds to the generalized HTE5 for the
PDF P1(x, t ),

τμ−1 ∂2μ

∂t2μ
P1(x, t ) + τ−1 ∂μ

∂tμ
P1(x, t )

= ∂

∂x

{√
D(x)/τ

∂

∂x

[√
D(x)/τP1(x, t )

]}
. (28)

We consider zero boundary conditions at infinity, and the
initial conditions are defined in Eq. (2). By first using the
Laplace and then inverse Laplace transform, we can rewrite
this equation in the form

∂

∂t
P1(x, t ) =

∫ t

0
K1(t − t ′)

× ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)P1(x, t )]

}
dt ′, (29)

where

K̂1(s) = 1

τμ

s1−μ

sμ + τ−μ
, (30)

and thus

K1(t ) = t2μ−2

τμ
Eμ,2μ−1

(
−

[
t

τ

]μ)
. (31)

The next step of the analysis is convenient to perform in the
framework of the integral decomposition, according to inte-
gration (10), when the PDF P1(x, t ), is decomposed through

5We justify the introduction of such heterogeneous time frac-
tional telegrapher’s equation in Sec. III, by using the subordination
approach.
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TABLE I. Characteristic crossover regimes obtained by asymptotic analysis of the MSD (35).

MSD – short time behavior MSD – long time behavior

〈x2(t )〉 ∼ tβ1 , β1 = 4μ/(2 − α) 〈x2(t )〉 ∼ tβ2 , β2 = β1/2
2 − 2μ < α < 2 β1 > 2 – hyperdiffusion β2 > 1 – superdiffusion
α = 2 − 2μ β1 = 2 – ballistic motion β2 = 1 – normal diffusion
2 − 4μ < α < 2 − 2μ 1 < β1 < 2 – superdiffusion 1/2 < β2 < 1 – subdiffusion
α = 2 − 4μ β1 = 1 – normal diffusion β2 = 1/2 – subdiffusion
α < 2 − 4μ 0 < β1 < 1 – subdiffusion 0 < β2 < 1/2 – subdiffusion

the PDF p(x, t ). The latter is a solution to the conventional
Fokker-Planck equation (12). In this case, the function h(u, t ),
describes a relation between the time variable t , and the new
variable u. Thus, we have

P̂1(x, s) = 1

K̂1(s)
p̂

(
x,

s

K̂1(s)

)
, (32)

where p(x, t ) is the solution of the corresponding Fokker-
Planck equation (12) for the heterogeneous diffusion process.

From the general solution for the PDF, we can find a
general form of the MSD, i.e.,

〈x̂2(s)〉1 = 1

K̂1(s)

〈
x̂2

(
s

K̂1(s)

)〉
, (33)

where 〈x2(t )〉 is the MSD of the heterogeneous diffusion
process.

From Eqs. (33) and (22), the MSD reads

〈x̂2(s)〉1 = �(1 + 2ρ)

ρ2ρ

(
Dα

τμ

)ρ s−ρμ−1

(sμ + τ−μ)ρ
, (34)

from where we obtain

〈x2(t )〉1 = �(1 + 2ρ)(Dατμ)ρ

ρ2ρ

×
(

t

τ

)2ρμ

Eρ
μ,2ρμ+1

(
−

[
t

τ

]μ)
. (35)

Note that for μ = 1 we recover the MSD obtained in [25],
while for ρ = 1 (α = 0) the result has been obtained in [20].
The MSD for the standard telegrapher’s equation is obtained
for μ = 1 and α = 0, i.e., ρ = 1, [46]

〈x2(t )〉1 = 2D0τ

(
t

τ

)2

E1,3

(
− t

τ

)

= 2D0τ

(
t

τ
+ e−t/τ − 1

)
, (36)

where Eα,β (z) = E1
α,β (z) is the two parameter Mittag-Leffler

function.
By asymptotic analysis of the MSD, we obtain that there is

a characteristic crossover dynamics from behavior 〈x2(t )〉1 ∼
t4μ/(2−α) in the short time limit to 〈x2(t )〉1 ∼ t2μ/(2−α) in
the long time limit. Therefore, one observes a very rich be-
havior of the system and the resulting behavior depends on
parameters μ and α, i.e., there is an interplay between the
heterogeneity and memory. We note that, as a special case, for
2μ = 2 − α, there is a characteristic crossover from ballistic
motion to normal diffusion, as in the case of the standard tele-
grapher’s equation. For 4μ = 2 − α, there is normal diffusion

in the short time limit, while subdiffusion with the anomalous
diffusion exponent 1/2 takes place in the long time limit.
For α = 0, we recover the known result for the fractional
telegrapher’s equation, where the MSD in the short time limit
behaves as ∼t2μ and it turns to ∼tμ in the long time limit [20].
That is, there is a crossover from superdiffusion to subdiffu-
sion for 1/2 < μ < 1 and from subiffusion to subdiffusion for
0 < μ < 1/2. For μ = 1 the crossover from ballistic motion
to normal diffusion is obtained, as expected for the standard
telegrapher’s equation. The characteristic crossover regimes
are summarized in Table I. Noticeable change of the transport
exponents is observed in the MSD plots in Fig. 1.

Note that, for τ = 0, Eq. (28) reduces to the generalized
(fractional) heterogeneous diffusion equation of the form

∂μ

∂tμ
P1(x, t ) = ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)P1(x, t )]

}
, (37)

with solution

P̂1(x, s) = sμ−1 p̂(x, sμ), (38)

and MSD

〈x2(t )〉1 = �(1 + 2ρ)

ρ2ρ
Dρ

α

tρμ

�(1 + ρμ)
. (39)

For μ = 1, we recover the results for the heterogeneous diffu-
sion process.

FIG. 1. MSD (35) for τ = 1, Dα = 1, α = 1/2 and μ = 1/2
(blue solid line), μ = 3/4 (red dashed line), μ = 1 (black dotted
line). Red dashed line corresponds to the crossover from ballistic
motion to normal diffusion.
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B. Case 2

The second case is described by the following generalized
HTE for the PDF P2(x, t ),

∂1+μ

∂t1+μ
P2(x, t ) + τ−1 ∂μ

∂tμ
P2(x, t )

= ∂

∂x

{√
D(x)/τ

∂

∂x

[√
D(x)/τP2(x, t )

]}
. (40)

We again consider zero boundary conditions at infinity, and
initial conditions of the form (2). We note that for τ →
0 it transforms to the generalized heterogeneous diffusion
equation (37). By means of the Laplace and inverse Laplace
transform, we can rewrite this equation as follows

∂

∂t
P2(x, t ) =

∫ t

0
K2(t − t ′)

× ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)P2(x, t )]

}
dt ′, (41)

where

K̂2(s) = 1

τ

s1−μ

s + τ−1
→ K2(t ) = tμ−1

τ
E1,μ

(
− t

τ

)
. (42)

Following the same procedure of the integral decomposition,
one finds

P̂2(x, s) = 1

K̂2(s)
p̂

(
x,

s

K̂2(s)

)
, (43)

where p(x, t ) is the solution of the Fokker-Planck equa-
tion (12). Therefore, for the MSD we find

〈x̂2(s)〉2 = 1

K̂2(s)

〈
x̂2

(
s

K̂2(s)

)〉
, (44)

where 〈x2(t )〉 is the MSD (19) or (21) of the heterogeneous
diffusion process with x0 	= 0 or x0 = 0, respectively. From
Eqs. (44) and (22), for the MSD in Laplace space we have

〈x̂2(s)〉2 = �(1 + 2ρ)

ρ2ρ

(
Dα

τ

)ρ s−ρμ−1

(s + τ−1)ρ
, (45)

from where, by the inverse Laplace transform, we obtain

〈x2(t )〉2 = �(1 + 2ρ)(Dατμ)ρ

ρ2ρ

×
(

t

τ

)(μ+1)ρ

Eρ
1,(μ+1)ρ+1

(
− t

τ

)
. (46)

Note that for μ = 1 we recover the MSD obtained in [25],
while for ρ = 1 (α = 0) the result obtained in [20]. The
MSD for the standard telegrapher’s equation is obtained for
μ = 1 and α = 0 (ρ = 1). According to the asymptotic anal-
ysis of the MSD (46), there is a characteristic crossover
dynamics from the MSD 〈x2(t )〉2 ∼ tβ1 with the transport
exponent β1 = 2(μ + 1)/(2 − α) in the short time limit to
the MSD 〈x2(t )〉2 ∼ tβ2 with the transport exponent β2 =
2μ/(2 − α) = β1 − 2/(2 − α) for the long time limit. Note
that this crossover dynamics is more sophisticated than the
one observed for the MSD in Eq. (35). Therefore, very reach
diffusive behavior emerges here as well. However, there is no

FIG. 2. MSD (46) for τ = 1, Dα = 1, α = 1/2 and μ = 1/2
(blue solid line), μ = 3/4 (red dashed line), μ = 1 (black dotted
line). Red dashed line describes the crossover from hyperdiffusion
with the slope = 7/3 to normal diffusion with the slope = 1.

crossover from ballistic motion to normal diffusion. For exam-
ple, if 2(μ + 1)/(2 − α) = 2 in the short time limit we have
ballistic motion, but for large times it changes to subdiffusive
behavior 〈x2(t )〉2 ∼ t2μ/(1+μ), while for 2μ/(2 − α) = 1, it
changes from superdiffusive behavior 〈x2(t )〉2 ∼ t1+1/μ for
small times to normal diffusion for large times. This situation
is reflected in Fig. 2.

III. GENERALIZED HTP AS A SUBORDINATED HTP

In this section, we show that the first form of the gener-
alized HTP can be obtained as a subordinated HTP. Let us
consider the following coupled Langevin equations:

dx(u)

du
= v(u)ζ (u),

dt (u)

du
= ξ (u), (47)

where ζ (u) represents the same multiplicative dichotomic
noise as in Eq. (8), and ξ (u) is a Lévy stable noise with Lévy
index in Laplace space given by �̂(s) = τμ−1sμ, 0 < μ < 1.
Therefore, the process t (u) = ∫ u

0 ξ (u′) du′ is a stable Lévy
motion with characteristic function L̂(u, s) = e−uτμ−1sμ

. The
time t is known as physical time, while u as operational time.
The corresponding PDF Ps(x, t ) of this subordinated HTP can
be found from the subordination integral [18,19,47–50]

Ps(x, t ) =
∫ ∞

0
P(x, u)h(u, t ) du, (48)

where P(x, u) is the solution of Eq. (9), and h(u, t ) is the
subodination function [37,49]6

h(u, t ) = − ∂

∂u
〈�(t − t (u))〉, (49)

6As we mentioned before, when the function h(u, t ) is a PDF of the
variable u (in such a case u is called operational time) at physical time
t then the integral decomposition is known as subordination [18,36].
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which in Laplace space reads

ĥ(u, s) = −1

s

∂

∂u

〈∫ ∞

0
δ(t − t (u))e−st dt

〉

= −1

s

∂

∂u
〈e−st (u)〉 = −1

s

∂

∂u
L̂(u, s)

= τμ−1sμ−1e−uτμ−1sμ

. (50)

Therefore, from Eqs. (48) and (50), for the PDF we have

P̂s(x, s) = τμ−1sμ−1P̂(x, τμ−1sμ). (51)

By the Laplace transform of Eq. (9), one obtains

s2P̂(x, s) − sδ(x − x0) + 1

τ
[sP̂(x, s) − δ(x − x0)]

= ∂

∂x

{√
D(x)/τ

∂

∂x

[√
D(x)/τ P̂(x, s)

]}
, (52)

where the initial conditions are of the form (2). Introducing the
change of the variables s → τμ−1sμ and D(x)τ 1−μ → D(x),
Eq. (52) becomes

(τμsμ + 1)[τμ−1sμP̂(x, τμ−1sμ) − δ(x − x0)]

= ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)P̂(x, τμ−1sμ)]

}
. (53)

By substituting Eqs. (51) in (53), we obtain

sμ−1(τμsμ + 1)[sP̂s(x, s) − δ(x − x0)]

= ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)P̂s(x, s)]

}
. (54)

Then by the inverse Laplace transform we arrive at Eq. (28)
for the PDF P1(x, t ), i.e., Ps(x, t ) = P1(x, t ).

From Eq. (51), it follows that the MSD reads

〈x̂2(s)〉s = τμ−1sμ−1〈x̂2(τμ−1sμ)〉0, (55)

where 〈x2(t )〉0 is the MSD (23) for the HTP. Therefore, we
obtain the same MSD as in Eq. (35), as expected.

IV. EFFECTS OF STOCHASTIC RESETTING

The recent experimental realizations of diffusion and first-
passage under exponential resetting, using holographic optical
tweezers [51] and laser traps [52], have initiated further in-
vestigations of various stochastic processes under resetting,
including heterogeneous diffusion [26,53] and heterogeneous
telegrapher’s processes [25]. Therefore, the heterogeneous
telegrapher’s models under resetting can be useful in de-
scription of a random search in a turbulent environment. In
this context, run-and-tumble particle motion under resetting
[54–57] and different models of Lévy walks under resetting
[58] are of interest nowadays.

Next, we study the generalized heterogeneous telegraph
processes under stochastic resetting. This means that the
particle after a random time interval is reset to its initial
position. As a simplest case we consider a Poissonian reset-
ting with the resetting time PDF p(τ ) = r e−rτ , where r is
the resetting rate [59–62]. Thus, the PDF Pr,i(x, t |x0) of the
generalized HTP can be expressed in terms of the PDF Pi(x, t )
of corresponding process without resetting via the renewal

FIG. 3. NESS (62) for x0 = 5, τ = 1, Dα = 1, r = 0.01, α =
1/2 and μ = 1/2 (blue solid line), μ = 3/4 (red dashed line), μ = 1
(black dotted line).

equation [57,60,63–65]

Pr,i(x, t |x0) = e−rt Pi(x, t ) +
∫ t

0
re−rt ′

Pi(x, t ′) dt ′. (56)

Here i = 1, 2 are for Case 1 and 2, respectively. This means
that each reset to the initial position x0 renews the process
at the rate r, while between any two consecutive renewal
events, the particle undergoes a generalized heterogeneous
telegraph process. The first term on the right-hand side of the
equation corresponds to the case when there is no any reset
event up to time t , while the second term describes multiple
reset events.

The PDFs in case of resetting can be easily calculated in
Laplace space. By the Laplace transform of Eq. (56), one finds

P̂r,i(x, s|x0) = s + r

s
P̂i(x, s + r)

= s + r

s

1

K̂i(s + r)
p̂

(
x,

s + r

K̂i(s + r)

)
. (57)

FIG. 4. MSD (64) for τ = 1, Dα = 1, r = 0.001, α = 1/2 and
μ = 1/2 (blue solid line), μ = 3/4 (red dashed line), μ = 1 (black
dotted line).
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In the long time limit, the system approaches a nonequilibrium
stationary state (NESS) given by

Pst
r,i(x) = lim

t→∞ Pr,i(x, t |x0) = lim
s→0

sP̂r,i(x, s|x0) = rP̂i(x, r)

= r

K̂i(r)
p̂

(
x,

r

K̂i(r)

)
. (58)

Respectively, the MSD in case of resetting can be obtained
from the corresponding MSD in case of no resetting, i.e.,

〈x̂2(s)〉r,i = s + r

s
〈x̂2(s + r)〉i

= s + r

s

1

K̂i(s + r)

〈
x̂2

(
s + r

K̂i(s + r)

)〉
, (59)

where 〈x̂2(s)〉 is given by Eq. (22). In the long time limit it is
saturated to

lim
t→∞〈x2(t )〉r,i = r

K̂i(r)

〈
x̂2

(
r

K̂i(r)

)〉
. (60)

A. Case 1

For the telegraph process governed by Eq. (28) under re-
setting, the PDF reads

P̂r,i(x, s|x0) = τμs−1(s + r)μ[(s + r)μ + τ−μ]

× p̂(x, τμ(s + r)μ[(s + r)μ + τ−μ]). (61)

From here the NESS becomes

Pst
r,i(x) = |x|1/ρ−1

2
√

Dα/rμ

√
rμτμ + 1 exp

(
−ρ|sgn(x) |x|1/ρ − sgn(x0) |x0|1/ρ |√rμτμ + 1√

Dα/rμ

)
. (62)

Graphical representation of the NESS (62) is given in Fig. 3.
For the MSD in Laplace space, we have

〈x̂2(s)〉r,1 = �(1 + 2ρ)

ρ2ρ

(
Dα

τμ

)ρ

s−1 (s + r)−ρμ

[(s + r)μ + τ−μ]ρ
. (63)

The inverse Laplace transform of the expression yields

〈x2(t )〉r,1 = �(1 + 2ρ)

ρ2ρ
(Dατμ)ρ

× 1

τ

∫ t

0
e−rt ′

(
t ′

τ

)2ρμ−1

Eρ
μ,2ρμ

(
−

[
t ′

τ

]μ)
dt ′.

(64)

In the short time limit it behaves as 〈x2(t )〉r,1 ∼ t4μ/(2−α) as
in the case without resetting, while in the long time limit it
saturates,

〈x2(t )〉r,1 = �(1 + 2ρ)

ρ2ρ

(Dα/rμ)ρ

(rμτμ + 1)ρ
. (65)

Therefore, there is an interplay between heterogeneity, mem-
ory, and stochastic resetting, represented by the parameters α,
μ, and r, respectively. In the short time limit the particle does
not feel the resetting mechanism and the MSD behaves as in
the case without resetting. Thus, in the short time limit the
MSD depends only on α and μ. Graphical representation of
the MSD (64) for fixed α and r and different μ is given in
Fig. 4.

For τ = 0, i.e., for the generalized heterogeneous diffusion
process, we have

p̂r,i(x, s|x0) = s−1(s + r)μ p̂(x, (s + r)μ), (66)

and the NESS becomes

pst
r,i(x) = |x|1/ρ−1

2
√

Dα/rμ

× exp

(
−ρ

∣∣sgn(x) |x|1/ρ − sgn(x0) |x0|1/ρ
∣∣

√
Dα/rμ

)
.

(67)

For the MSD then we have

〈x2(t )〉r,1 = �(1 + 2ρ)

ρ2ρ

Dρ
α

rρμ

γ (ρμ, rt )

�(ρμ)
, (68)

where γ (a, z) is the lower incomplete gamma function.

B. Case 2

For the telegraph process described by Eq. (9), with reset-
ting, we obtain that the PDF is

P̂r,2(x, s|x0) = τ s−1(s + r)μ[(s + r) + τ−1]

× p̂(x, τ (s + r)μ[(s + r) + τ−1]). (69)

Then the corresponding NESS observed in the long time limit
becomes

Pst
r,2(x) = |x|1/ρ−1

2
√

Dα/rμ

√
rτ + 1 exp

(
−ρ

∣∣sgn(x) |x|1/ρ − sgn(x0) |x0|1/ρ
∣∣√rτ + 1√

Dα/rμ

)
. (70)

Graphical representation of the NESS (70) is given in Fig. 5.
The MSD in Laplace space has the form

〈x̂2(s)〉r,2 = �(1 + 2ρ)

ρ2ρ

(
Dα

τ

)ρ

s−1 (s + r)−ρμ

[(s + r) + τ−1]ρ
.

(71)

Thus, we obtain

〈x2(t )〉r,2 = �(1 + 2ρ)

ρ2ρ
(Dατμ)ρ

× 1

τ

∫ t

0
e−rt ′

(
t ′

τ

)(1+μ)ρ−1

Eρ
1,(1+μ)ρ

(
−

[
t ′

τ

])
dt ′.

(72)
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FIG. 5. NESS (70) for x0 = 5, τ = 1, Dα = 1, r = 0.01, α =
−1/2 and μ = 1/2 (blue solid line), μ = 3/4 (red dashed line),
μ = 1 (black dotted line).

In the short time limit, the MSD (72) behaves as 〈x2(t )〉r,2 ∼
t2(1+μ)/(2−α), as in the case without resetting, while in the long
time limit it saturates due to the resetting. Therefore, there
is a complex interplay between heterogeneity (α), memory
(μ), and resetting (r). Graphical representation of the MSD
(72) is given in Fig. 6. We also note that for τ = 0 we ob-
tain pr,2(x, t |x0) = pr,1(x, t |x0) and 〈x2(t )〉r,2 = 〈x2(t )〉r,1, as
expected.

V. SUMMARY

We suggested two different generalizations of the het-
erogeneous telegraph process by introducing a memory in
the corresponding telegrapher’s equations for the PDF, and
the corresponding solutions are obtained as well. We also
analyzed the MSD, and exact results are obtained in terms
of the Mittag-Leffler functions. The asymptotic behavior in
both the short and long time limits are analyzed and various
characteristics of the crossover dynamics are observed. We
have shown that there is a competition between the hetero-
geneity described by the power law in the range-dependent
diffusivity, and the memory, described by the fractional
derivative with the power law memory kernel. We also have
shown that for Case 1, the generalized HTP represents a
subordinated HTP, by introducing an operational time. The
two generalized telegraph process in the presence resetting
are studied, as well. We showed that in the presence of re-
setting, the particle approaches NESSs in the long time limit.

FIG. 6. MSD (72) for τ = 1, Dα = 1, r = 0.001, α = 1/2 and
μ = 1/2 (blue solid line), μ = 3/4 (red dashed line), μ = 1 (black
dotted line).

Exact expressions for the stationary PDFs are obtained for
both Case 1 and Case 2. Exact results for the MSDs in the
presence of resetting are obtained as well. It is shown that
from anomalous diffusive behavior in the short time limit, the
MSDs saturate for large times, as the result of resetting.

The investigation of random search with memory and
space-dependent velocity in the absence and presence of
stochastic resetting could be of interest for future research,
as a generalization of the previously obtained results for the
first-passage time distribution and the mean first-passage time
of heterogeneous diffusion processes [66–68], including the
case of stochastic resetting to multiple [69] and random posi-
tions [70]. Other topics for future research are investigation of
ergodic properties [71,72] of generalized HTPs, including the
HTPs under noninstantaneous resetting [56,64,73], resetting
in an interval [74,75], and partial resetting [76,77].

ACKNOWLEDGMENTS

T.S. acknowledges financial support by the German Sci-
ence Foundation (DFG, Grant No. ME 1535/12-1). T.S. is
supported by the Alliance of International Science Orga-
nizations (Project No. ANSO-CR-PP-2022-05). T.S. is also
supported by the Alexander von Humboldt Foundation. T.S.
acknowledges the hospitality and support from the Lorentz
Center in Leiden. A.I. acknowledges the hospitality and sup-
port at the MPIPKS, Dresden.

[1] E. Whittaker, A History of the Theories of Aether and Electricity
(Dover, New York, 1989).

[2] O. Heaviside, Electrical Papers of Oliver Heaviside, Vol. 1
(Chelsea, New York, 1970).

[3] G. H. Weiss, Physica A 311, 381 (2002).
[4] C. Cattaneo, Atti. Sem. Mat. Fis. Univ. Mod. 3, 83 (1948).
[5] D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41 (1989).
[6] J. Masoliver, Phys. Rev. E 93, 052107 (2016).
[7] J. Masoliver and K. Lindenberg, Eur. Phys. J. B 90, 107 (2017).

[8] N. G. Van Kampen, Stochastic Processes in Physics and Chem-
istry (North Holland, Amsterdam, 2007).

[9] W. Horsthemke and R. Lefever, Noise-Induced Transitions:
Theory and Applications in Physics, Chemistry, and Biology
(Springer-Verlag, Berlin, 1984).

[10] V. Balakrishnan, Pramana - J. Phys. 40, 259 (1993).
[11] V. Balakrishnan and C. Van den Broeck, Phys. Rev. E 65,

012101 (2001).
[12] S. Goldstein, Q. J. Mech. Appl. Math. 4, 129 (1951).

024101-8

https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1103/RevModPhys.61.41
https://doi.org/10.1103/PhysRevE.93.052107
https://doi.org/10.1140/epjb/e2017-80123-7
https://doi.org/10.1007/BF02845844
https://doi.org/10.1103/PhysRevE.65.012101
https://doi.org/10.1093/qjmam/4.2.129


FRACTIONAL HETEROGENEOUS TELEGRAPH PROCESSES: … PHYSICAL REVIEW E 110, 024101 (2024)

[13] M. Kac, Some Stochastic Problems in Physics and Mathematics,
Colloquium Lectures in Pure and Applied Science (Magnolia
Petroleum Company, Dallas, 1956), Vol. 2.

[14] M. Kac, Rocky Mountain J. Math. 4, 497 (1974).
[15] N. E. Ratanov, Markov Process. Relat. Fields 5, 53 (1999).
[16] V. E. Shapiro and V. M. Loginov, Physica A 91, 563 (1978).
[17] T. Sandev and A. Iomin, Special Functions of Fractional Cal-

culus: Applications to Diffusion and Random Search Processes
(World Scientific, Singapore, 2022).

[18] K. Górska, Phys. Rev. E 104, 024113 (2021).
[19] K. Górska and A. Horzela, Fract. Calc. Appl. Anal. 26, 480

(2023).
[20] K. Górska, A. Horzela, E. K. Lenzi, G. Pagnini, and T. Sandev,

Phys. Rev. E 102, 022128 (2020).
[21] A. Compte and R. Metzler, J. Phys. A: Math. Gen. 30, 7277

(1997).
[22] R. Hilfer, Fractals 03, 549 (1995).
[23] R. Hilfer and L. Anton, Phys. Rev. E 51, R848(R) (1995);

R. Hilfer, 48, 2466 (1993).
[24] L. Angelani and R. Garra, Phys. Rev. E 100, 052147 (2019).
[25] T. Sandev, L. Kocarev, R. Metzler, and A. Chechkin, Chaos

Solit. Fractals 165, 112878 (2022).
[26] T. Sandev, V. Domazetoski, L. Kocarev, R. Metzler, and A.

Chechkin, J. Phys. A: Math. Theor. 55, 074003 (2022).
[27] Y. E. Litvinenko and R. Schlickeiser, Astron. Astrophys. 554,

A59 (2013).
[28] B. I. Davydov, Dokl. Akad. Nauk SSSR 2, 474 (1934).
[29] O. G. Bakunin, Plasma Phys. Rep. 29, 955 (2003).
[30] O. G. Bakunin, Rep. Prog. Phys. 67, 965 (2004).
[31] T. Ogasawara and S. Toh, J. Phys. Soc. Jpn. 75, 083401

(2006).
[32] K. Kanatani, T. Ogasawara, and S. Toh, J. Phys. Soc. Jpn. 78,

024401 (2009).
[33] L. F. Richardson, Proc. R. Soc. London A 110, 709 (1926).
[34] B. Sawford, Annu. Rev. Fluid Mech. 33, 289 (2001).
[35] I. M. Sokolov, Phys. Rev. E 60, 5528 (1999).
[36] I. M. Sokolov, Phys. Rev. E 66, 041101 (2002).
[37] A. Baule and R. Friedrich, Phys. Rev. E 71, 026101 (2005).
[38] I. M. Sokolov and J. Klafter, Chaos 15, 026103 (2005).
[39] A. Chechkin and I. M. Sokolov, Phys. Rev. E 103, 032133

(2021).
[40] A. G. Cherstvy, A. V. Chechkin, and R. Metzler, New J. Phys.

15, 083039 (2013).
[41] N. Leibovich and E. Barkai, Phys. Rev. E 99, 042138 (2019).
[42] R. Stratonovich, SIAM J. Control 4, 362 (1966); Vestnik

Moskov. Univ. Ser. I Mat. Meh. 1, 3 (1964).
[43] G. E. Andrews, R. Askey, R. Roy, R. Roy, and R. Askey,

Special Functions, Vol. 71 (Cambridge University Press,
Cambridge, 1999).

[44] T. R. Prabhakar, Yokohama Math. J. 19, 7 (1971).
[45] R. Garra and R. Garrappa, Commun. Nonlinear Sci. Numer.

Simul. 56, 314 (2018).
[46] T. Sandev and A. Iomin, Europhys. Lett. 124, 20005 (2018).
[47] H. C. Fogedby, Phys. Rev. E 50, 1657 (1994).
[48] E. Barkai, Phys. Rev. E 63, 046118 (2001).
[49] A. V. Chechkin, M. Hofmann, and I. M. Sokolov, Phys. Rev. E

80, 031112 (2009).

[50] R. K. Singh, T. Sandev, A. Iomin, and R. Metzler, J. Phys. A:
Math. Theor. 54, 404006 (2021).

[51] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and Y.
Roichman, J. Phys. Chem. Lett. 11, 7350 (2020).

[52] B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar, and S.
Ciliberto, Phys. Rev. Res. 2, 032029(R) (2020).

[53] S. Ray, Phys. Rev. E 106, 034133 (2022).
[54] P. C. Bressloff, Phys. Rev. E 102, 042135 (2020).
[55] I. Santra, U. Basu, and S. Sabhapandit, J. Stat. Mech. (2020)

113206.
[56] G. Tucci, A. Gambassi, S. N. Majumdar, and G. Schehr, Phys.

Rev. E 106, 044127 (2022).
[57] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 51,

475003 (2018).
[58] T. Zhou, P. Xu, and W. Deng, Phys. Rev. Res. 2, 013103

(2020).
[59] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601

(2011).
[60] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 47,

285001 (2014).
[61] A. Pal, Phys. Rev. E 91, 012113 (2015); A. Pal and S. Reuveni,

Phys. Rev. Lett. 118, 030603 (2017).
[62] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Phys. Rev.

E 100, 042104 (2019).
[63] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Phys. Rev.

E 100, 012120 (2019); 100, 012119 (2019).
[64] A. S. Bodrova and I. M. Sokolov, Phys. Rev. E 101, 052130

(2020); 101, 062117 (2020).
[65] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Phys. Rev.

E 99, 012141 (2019).
[66] M. A. F. dos Santos, L. Menon, Jr., and C. Anteneodo, Phys.

Rev. E 106, 044113 (2022); L. Menon, Jr., M. A. F. dos Santos,
and C. Anteneodo, J. Stat. Mech. (2023) 123203.

[67] A. Pal, V. Stojkoski, and T. Sandev, arXiv:2310.12057.
[68] S. Jain, D. Boyer, A. Pal, and L. Dagdug, J. Chem. Phys. 158,

054113 (2023).
[69] P. Julián-Salgado, L. Dagdug, and D. Boyer, Phys. Rev. E 109,

024134 (2024).
[70] V. Méndez, R. Flaquer-Galmés, and D. Campos, Phys. Rev. E

109, 044134 (2024).
[71] V. Stojkoski, T. Sandev, L. Kocarev, and A. Pal, Phys. Rev. E

104, 014121 (2021).
[72] W. Wang, A. G. Cherstvy, H. Kantz, R. Metzler, and I. M.

Sokolov, Phys. Rev. E 104, 024105 (2021); D. Vinod, A. G.
Cherstvy, W. Wang, R. Metzler, and I. M. Sokolov, ibid. 105,
L012106 (2022).

[73] M. Radice, Phys. Rev. E 104, 044126 (2021); J. Phys. A: Math.
Theor. 55, 224002 (2022).

[74] A. Pal and V. V. Prasad, Phys. Rev. E 99, 032123 (2019); C.
Christou and A. Schadschneider, J. Phys. A: Math. Theor. 48,
285003 (2015).

[75] G. Tucci, A. Gambassi, S. Gupta, and É. Roldán, Phys. Rev.
Res. 2, 043138 (2020).

[76] O. Tal-Friedman, Y. Roichman, and S. Reuveni, Phys. Rev. E
106, 054116 (2022).

[77] C. Di Bello, A. V. Chechkin, A. K. Hartmann, Z. Palmowski,
and R. Metzler, New J. Phys. 25, 082002 (2023).

024101-9

https://doi.org/10.1016/0378-4371(78)90198-X
https://doi.org/10.1103/PhysRevE.104.024113
https://doi.org/10.1007/s13540-023-00141-8
https://doi.org/10.1103/PhysRevE.102.022128
https://doi.org/10.1088/0305-4470/30/21/006
https://doi.org/10.1142/S0218348X95000485
https://doi.org/10.1103/PhysRevE.51.R848
https://doi.org/10.1103/PhysRevE.48.2466
https://doi.org/10.1103/PhysRevE.100.052147
https://doi.org/10.1016/j.chaos.2022.112878
https://doi.org/10.1088/1751-8121/ac491c
https://doi.org/10.1051/0004-6361/201321327
https://doi.org/10.1134/1.1625992
https://doi.org/10.1088/0034-4885/67/6/R04
https://doi.org/10.1143/JPSJ.75.083401
https://doi.org/10.1143/JPSJ.78.024401
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1146/annurev.fluid.33.1.289
https://doi.org/10.1103/PhysRevE.60.5528
https://doi.org/10.1103/PhysRevE.66.041101
https://doi.org/10.1103/PhysRevE.71.026101
https://doi.org/10.1063/1.1860472
https://doi.org/10.1103/PhysRevE.103.032133
https://doi.org/10.1088/1367-2630/15/8/083039
https://doi.org/10.1103/PhysRevE.99.042138
https://doi.org/10.1137/0304028
https://doi.org/10.1016/j.cnsns.2017.08.018
https://doi.org/10.1209/0295-5075/124/20005
https://doi.org/10.1103/PhysRevE.50.1657
https://doi.org/10.1103/PhysRevE.63.046118
https://doi.org/10.1103/PhysRevE.80.031112
https://doi.org/10.1088/1751-8121/ac20ed
https://doi.org/10.1021/acs.jpclett.0c02122
https://doi.org/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1103/PhysRevE.106.034133
https://doi.org/10.1103/PhysRevE.102.042135
https://doi.org/10.1088/1742-5468/abc7b7
https://doi.org/10.1103/PhysRevE.106.044127
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1103/PhysRevResearch.2.013103
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevE.100.042104
https://doi.org/10.1103/PhysRevE.100.012120
https://doi.org/10.1103/PhysRevE.100.012119
https://doi.org/10.1103/PhysRevE.101.052130
https://doi.org/10.1103/PhysRevE.101.062117
https://doi.org/10.1103/PhysRevE.99.012141
https://doi.org/10.1103/PhysRevE.106.044113
https://doi.org/10.1088/1742-5468/ad0a92
https://arxiv.org/abs/2310.12057
https://doi.org/10.1063/5.0135249
https://doi.org/10.1103/PhysRevE.109.024134
https://doi.org/10.1103/PhysRevE.109.044134
https://doi.org/10.1103/PhysRevE.104.014121
https://doi.org/10.1103/PhysRevE.104.024105
https://doi.org/10.1103/PhysRevE.105.L012106
https://doi.org/10.1103/PhysRevE.104.044126
https://doi.org/10.1088/1751-8121/ac654f
https://doi.org/10.1103/PhysRevE.99.032123
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1103/PhysRevResearch.2.043138
https://doi.org/10.1103/PhysRevE.106.054116
https://doi.org/10.1088/1367-2630/aced1d

