
PHYSICAL REVIEW E 110, 015310 (2024)

Tensor approximation of functional differential equations

Abram Rodgers1,* and Daniele Venturi 2,†

1Advanced Supercomputing Division, NASA Ames Research Center N258, 258 Allen Rd, Moffett Field, California 94035, USA
2Department of Applied Mathematics, University of California Santa Cruz, 1156 High St, Santa Cruz, California 95064, USA

(Received 7 March 2024; accepted 10 July 2024; published 30 July 2024)

Functional differential equations (FDEs) play a fundamental role in many areas of mathematical physics,
including fluid dynamics (Hopf characteristic functional equation), quantum field theory (Schwinger-Dyson
equations), and statistical physics. Despite their significance, computing solutions to FDEs remains a longstand-
ing challenge in mathematical physics. In this paper we address this challenge by introducing approximation
theory and high-performance computational algorithms designed for solving FDEs on tensor manifolds. Our
approach involves approximating FDEs using high-dimensional partial differential equations (PDEs), and then
solving such high-dimensional PDEs on a low-rank tensor manifold leveraging high-performance (parallel)
tensor algorithms. The effectiveness of the proposed approach is demonstrated through its application to
the Burgers-Hopf FDE, which governs the characteristic functional of the stochastic solution to the Burgers
equation evolving from a random initial state.

DOI: 10.1103/PhysRevE.110.015310

I. INTRODUCTION

Functional differential equations (FDEs) are equa-
tions involving operators (nonlinear functionals) and
derivatives/integrals of such operators with respect to
functions (functional derivatives) and other independent
variables such as space and time [1,2]. FDEs arise naturally
across a spectrum of mathematical physics disciplines. A
classical example in fluid dynamics is the Hopf-Navier-Stokes
equation [3–6]

∂�([θ], t)

∂t
=

d∑
k=1

∫
�

θk (x)

⎛
⎝i

d∑
j=1

∂

∂x j

δ2�([θ], t)

δθk (x)δθ j (x)

+ ν∇2 δ�([θ], t)

δθk (x)

)
dx, (1)

which governs the temporal evolution of the characteristic
functional

�([θ], t) = E

{
exp

[
i
∫

�

u(x, t) · θ(x) dx
]}

. (2)

Here � ⊆ Rd is the spatial domain (d = 1, 2, 3), u(x, t) rep-
resents a stochastic solution of the Navier-Stokes equations

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u,

∇ · u = 0, (3)

corresponding to a random initial velocity distribution [7,8],
E{·} is the expectation over the probability measure of such

*Contact author: abram.k.rodgers@nasa.gov
†Contact author: venturi@ucsc.edu

random velocity distribution, and θ(x) is a divergence-free test
function. Equation (1) involves derivatives of the functional
�([θ], t) with respect to the functions θi(x), i.e., functional
derivatives δ/δθi(x) [2], and derivatives with respect to the
independent variables x j and t .

As is well known, the characteristic functional (2) encodes
the full statistical information of the random field u(x, t) that
solves the Navier-Stokes equations (3), including multipoint
statistical moments, cumulants, and multipoint joint proba-
bility density functions. For instance, by taking functional
derivatives of � we can immediately express the mean and
autocorrelation function of u(x, t) as

E{uk (x, t)} = 1

i

δ�([θ], t)

δθk (x)

∣∣∣∣
θ=0

,

E{uk (x, t)u j (y, t)} = 1

i2

δ2�([θ], t)

δθk (x)δθ j (y)

∣∣∣∣
θ=0

. (4)

Similarly, by evaluating (2) at θi(x) = aiδ(x − y) yields the
one-point characteristic function of the solution u(y, t) at an
arbitrary spatial location y ∈ � as

φ(a, y, t) = E

{
exp

[
i
∫

�

u(x, t) · aδ(x − y)dx
]}

= E{eia·u(y,t)}. (5)

The inverse Fourier transform (in the sense of distributions)
of φ(a, y, t) with respect to the variable a is the probability
density function PDF of the solution u(y, t) at the spatial loca-
tion y ∈ � and time t . Any other statistical property of u(x, t)
can be derived from the characteristic functional (2). For this
reason, the FDE (1) was deemed by Monin and Yaglom ([4],
Ch. 10) to be “the most compact formulation of the general
turbulence problem,” which is the problem of determining the
statistical properties of the velocity and the pressure fields of

2470-0045/2024/110(1)/015310(15) 015310-1 ©2024 American Physical Society

https://orcid.org/0000-0001-8831-8547
https://ror.org/02acart68
https://ror.org/03s65by71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.015310&domain=pdf&date_stamp=2024-07-30
https://doi.org/10.1103/PhysRevE.110.015310

ABRAM RODGERS AND DANIELE VENTURI PHYSICAL REVIEW E 110, 015310 (2024)

the Navier-Stokes equations given statistical information on
the initial state.

Another well-known classical example of functional dif-
ferential equation is the Schwinger-Dyson (SD) equation of
quantum field theory [9,10]. The SD equation describes the
dynamics of the generating functional of the Green functions
of a quantum field theory, allowing us to propagate quantum
field interactions in a perturbation setting (e.g., with Feynman
diagrams) or in a strong coupling regime. The usage of FDEs
saw rapid growth in the 1970s, driven by the realization that
techniques originally developed for quantum field theory by
Dyson, Feynman, and Schwinger could be, at least formally,
extended to other branches of mathematical physics. A pivotal
contribution to this evolution was the ground-breaking work
by Martin, Siggia, and Rose [11]. This work served as a
landmark in the field, showcasing the possibility of applying
quantum field theoretic methods, such as functional integrals
and diagrammatic expansions [12–15], to problems in classi-
cal statistical physics.

More recently, FDEs have appeared in both mean-field
games and mean-field optimal control [16,17]. Mean-field
games are optimization problems involving a large (poten-
tially infinite) number of interacting players. In some cases, it
is possible to reformulate such optimization problems in terms
of a nonlinear Hamilton-Jacobi-Bellman FDE in a Wasser-
stein space of probability measures. The standard form of such
equation is (see [18], p. 1)

∂F ([ρ], t)

∂t
+ W

(
[ρ],

[
δF ([ρ], t)

δρ(x)

])
= 0,

F ([ρ], 0) = F0([ρ]), (6)

where ρ(x) is a d-dimensional probability density function
supported on R ⊆ Rd , δF/δρ(x) is the first-order functional
derivative of F relative to ρ(x), and W is the Hamilton func-
tional

W
(

[ρ],

[
δF ([ρ], t)

δρ(x)

])
=

∫
R

(
x,∇ δF ([ρ], t)

δρ(x)

)
ρ(x) dx

+ J ([ρ]). (7)

Here
 is the Hamilton’s function and J ([ρ]) is an interaction
potential. Mean-field theory is also useful in optimal feedback
control of nonlinear stochastic dynamical systems and in deep
learning. For instance, E and collaborators [17] established the
mathematical groundwork for the population risk minimiza-
tion problem in deep learning by framing it as a mean-field
optimal control problem. This yields a generalized version of
the Hamilton-Jacobi-Bellman equation in a Wasserstein space
of probability measures, which is a nonlinear FDE of the form
(6), e.g., Eq. (20) in [17] and Eq. (1.1) in [19].

In this paper we develop approximation theory and high-
performance computational algorithms designed for solving
FDEs on tensor manifolds. Our approach involves first
approximating FDEs in terms of high-dimensional partial dif-
ferential equations (PDEs), and then computing the solution
to such high-dimensional PDEs on a low-rank tensor manifold
leveraging high-performance (parallel) tensor algorithms. To
this end, we will build upon our recent work on tensors,
i.e., on step-truncation tensor methods [20,21], and demon-
strate convergence to functional approximations of FDEs. In

particular, we study the Burgers-Hopf characteristic func-
tional equation [22–24]

∂�([θ], t)

∂t
=

∫ 2π

0

[
i

2

∂

∂x

δ2�([θ], t)

δθ (x)2
+ γ

∂2

∂x2

δ�([θ], t)

δθ (x)

+ α

∞∑
k=1

(−π)k

(2k + 1)!i2k

δ2k+1�([θ], t)

δθ (x)2k+1

]
θ (x) dx,

(8)

which governs the Hopf characteristic functional of the solu-
tion to the Burgers equation on the unit circle � = [0, 2π]

∂u

∂t
+ u

∂u

∂x
= γ

∂2u

∂x2
+ R(u), (9)

where R(u) = α sin(πu) is a nonlinear reaction term. The
Burgers-Hopf equation (8) has the same structure as the Hopf-
Navier-Stokes equation (1). In fact, by setting α = 0, (8)
becomes identical to (1) when d = 1.

This paper is organized as follows. In Sec. II we briefly
review necessary and sufficient conditions for existence and
uniqueness of solutions to FDEs. In Sec. III we discuss func-
tional approximation of FDEs in terms of high-dimensional
PDEs. In Sec. IV we briefly review numerical tensor methods
approximate the solution of high-dimensional PDEs on tensor
manifolds. In Sec. IV we demonstrate our functional approxi-
mation methods for FDEs to the Burgers-Hopf equation. The
main findings are summarized in Sec. VI. In the Appendix A
we describe the high-performance (parallel) tensor algorithms
we developed to solve high-dimensional PDEs on tensor
manifolds.

II. EXISTENCE AND UNIQUENESS OF SOLUTIONS
TO THE HOPF EQUATION

Back in 1972 Monin and Yaglom stated [4], p. 773 that
“When we tried to develop a complete statistical description
of turbulence with the aid of the Hopf equation for the char-
acteristic functional we found that no general mathematical
formalism for solving linear equations in functional deriva-
tives was available. There are also no rigorous theorems on the
existence and uniqueness of the solution to such equations.”

Since then, there were advancements in the theory of exis-
tence and uniqueness of solutions to the FDE (1). In particular,
it was found the existence of a solution to (1) is strongly
related to the existence of a Hopf-Leray weak solution for
the Cauchy problem of the Navier–Stokes equations, which is
a well-established result for both two- and three-dimensional
Navier-Stokes equations [25–28] (see also [29], Theorem 3.1).
A Hopf-Leray solution is a specific class of weak solutions
to the Navier-Stokes equations (3) defined in an appropriate
function space (see, e.g., [25], Sec. 3), for an initial condition
u0 that is divergence-free in the sense of distributions. Addi-
tionally, Hopf-Leray solutions satisfy the energy inequality

‖u(x, t)‖2
L2(�) + 2ν

∫ t

0
‖∇u(x, s)‖2

L2(�)ds � ‖u0‖2
L2(�).

It can be shown that if there exists a Hopf-Leray solution to the
Navier-Stokes equations, then there exists a statistical solution
to the Hopf-Navier-Stokes equation (1) (see [30], Sec. 5 in

015310-2

TENSOR APPROXIMATION OF FUNCTIONAL … PHYSICAL REVIEW E 110, 015310 (2024)

Ch. 4). A similar results was obtained by Foias in [8], p.
254 for initial velocity conditions described by probability
measures with finite second moments.

Regarding uniqueness of the solution to the Hopf-Navier-
Stokes equation (1), it turns out that this is again connected to
the uniqueness of Hopf-Leray weak solutions to the Navier-
Stokes equation. Indeed, Vishik and Fursikov proved in [30],
Theorem 6.1 that if there exists a unique Hopf-Leray solution
to the Navier-Stokes equation, then any space-time statisti-
cal solution of the Hopf-Navier-Stokes equation is uniquely
determined by the initial probability measure (see also [8],
pp. 323–344). In two spatial dimensions it is well known
that there exists a unique global Hopf-Leray solution, and
therefore a unique statistical solution. The proof was for-
malized by Gishlarkaev in [31] for the Hopf-Navier-Stokes
equation using techniques developed in [30]. The unique-
ness of the Hopf-Leray solution for the three-dimensional
Navier-Stokes equations is still an open problem, and a rather
active area of research. For example, it can be shown that
the Hopf-Leray solution is unique within at least a short-
time integration period if we choose the initial condition
in nonconventional function spaces [26–28,32,33]. Also, the
Hopf-Leray solution is unique and global in time if we choose
the initial data small enough [28,34]. Recently, Galdi proved
[35] that very weak solutions to the Cauchy problem for
the Navier-Stokes equations must be Hopf-Leray solutions
if their initial data are solenoidal with finite kinetic energy.
A smooth (mild or strong) solution of the Navier-Stokes
equations is of course also a Hopf-Leray (weak) solution.
More precisely, it can be shown that a mild solution to
Navier-Stokes in Hs agrees with a weak Hopf-Leray solution
almost everywhere in [0, T ∗). This result, which belongs to
the so-called weak-strong uniqueness methods [36], implies
that weak Hopf-Leray solutions are unique as long as a mild
(or a strong) solution exists. In particular, Leray-Hopf so-
lutions are unique whenever they are regular enough to be
strong solutions. Once the strong solution is integrated past
t ∼ T ∗ (maximum Cauchy development), there is no further
guarantee of uniqueness [28,37]. We also recall that if the
energy inequality that characterizes Hopf-Leray weak solu-
tions is dropped, then it is possible to construct multiple weak
solutions of the Navier-Stokes equations with finite kinetic
energy [38]. On the other hand, weak solutions obeying the
energy inequality are necessarily unique and smooth if they lie
in Lp([0, T]) ⊗ Lq(�) with 2/p + 3/q = 1 and q > 3. These
conditions are known as Prodi-Serrin-Ladyzhenskaya condi-
tions, and they have been recently generalized in various ways
(see [26,39,40]).

Regarding the existence and uniqueness of solutions to
Hopf characteristic functional equations corresponding to
PDEs other than Navier-Stokes, this can be established on a
case-by-case basis by generalizing the results of Theorem 1.1
and Theorem 1.2 in [30], Chapter 5.

III. APPROXIMATION OF FDEs
BY HIGH-DIMENSIONAL PDEs

Consider a well-posed initial/boundary value problem for
an FDE, i.e., a problem that admits a unique solution in some
function space as discussed in Sec. II. How do we compute

the solution? This is a longstanding problem in mathemati-
cal physics and a rather new research area of computational
mathematics.

The FDEs (1) and (6) can be seen as PDEs in an infinite
number of independent variables. Such infinite-dimensional
PDEs may be approximated by PDEs in a finite (though possi-
bly extremely large) number of variables using the functional
analytic methods described in [1,2,18,19]. For instance, we
have shown in [1,2] that Eq. (1) can be approximated by the
high-dimensional linear PDE

∂φ

∂t
=

n∑
p=1

ap

⎛
⎝ν

n∑
k=1

Bpk
∂φ

∂ak
+ i

n∑
j,k=1

Apjk
∂2φ

∂ak∂a j

⎞
⎠, (10)

where

ap =
∫

�

θ · �pdx, Bpk =
∫

�

�p · ∇2�kdx,

Apjk =
∫

�

�p · [(�k · ∇)� j]dx, (11)

{�1(x), . . . ,�n(x)} is a divergence-free basis, and
φ(a1, . . . , an, t) is the characteristic function approximating
the characteristic functional �([θ], t) in the following sense:

φ(a1, . . . , an, t) = �([Pnθ], t), (12)

where Pn is an orthogonal projection onto {�1, . . . ,�n}.
The divergence-free basis {�1, . . . ,�n} can be constructed
in terms of div-free wavelets [41,42], radial basis functions
[43], trigonometric polynomials [44], or eigenvalue problems
for the Stokes operator with appropriate boundary condi-
tions [25]. Approximating the FDE (1) using the PDE (10)
bears a resemblance, in a certain aspect, to what is known
as the “method of lines” for discretizing a nonlinear partial
differential equation into a high-dimensional system of non-
linear ordinary differential equations (ODEs). However, in
the context of FDEs, the “lines” are determined by a hyper-
dimensional PDE instead of a system of ODEs.

In [2], Theorem 7.1 we proved that if we choose the
test function θ(x) in a Sobolev sphere S (�) of H1(�)-div
functions [which is a compact subset of L2(�)-div], then φ

converges uniformly to the characteristic functional � as the
number of independent variables n goes to infinity:

lim
n→∞ sup

θ∈S(�)
t∈[0,T]

|φ(a1, . . . , an, t) − �([θ], t)| = 0. (13)

Moreover, convergence of the high-dimensional PDE to
the FDE can be exponential. The result (13) leverages the
Trotter-Kato approximation theorem [45], p. 210 for abstract
evolution equations in Banach spaces [46].

Gangbo et al. [19] proved a similar result for the nonlin-
ear functional HJB equation (6). Specifically, by evaluating
the functional equation (6) on the Wasserstein space P2(Rd)
(space of probability densities in Rd with finite second-order
moment) with elements

ρn(x) = 1

n

n∑
k=1

δ(x − xk) x, xi ∈ Rd , (14)

015310-3

ABRAM RODGERS AND DANIELE VENTURI PHYSICAL REVIEW E 110, 015310 (2024)

then we can write the FDE (6) as a hyper-dimensional nonlin-
ear PDE

∂ f

∂t
+ 1

n

n∑
k=1

(
xi,

∂ f

∂xk

)
+ j(x1, . . . , xn) = 0, (15)

where f (x1, . . . , xn, t) = F ([ρn], t) (see [19], Eq. (1.2)).
Moreover, if we choose the empirical measure (14) in a
bounded subset B of the Wasserstein space P2(Rd), then
f (x1, . . . , xn, t) converges uniformly to the (unique) solution
of (6) as n goes to infinity ([19], Theorem 1.2):

lim
n→∞ sup

ρn∈B
t∈[0,T]

| f (x1, . . . , xn, t) − F ([ρn], t)| = 0. (16)

The boundedness assumption of B is essential for conver-
gence. Similarly, the compactness assumption of the function
space S in (13) is essential for convergence (see [2], Theorems
7.1 and 8.3).

To solve high-dimensional PDEs such as (10) and (15)
numerically, we need a computational paradigm for PDEs that
can handle tens, hundreds, or thousands of independent vari-
ables efficiently. Such computational paradigm is discussed in
the next section.

IV. TENSOR APPROXIMATION
OF HIGH-DIMENSIONAL PDEs

We have seen in Sec. III that FDEs can be approximated by
high-dimensional PDEs of the form

∂ f (x, t)

∂t
= G(f (x, t), x), f (x, 0) = f0(x), (17)

where f : D × [0, T] → R is an n-dimensional time-
dependent scalar field defined on the domain D ⊆ Rn, T is
the period of integration, and G is a nonlinear operator which
may depend on the variables x = (x1, . . . , xn) ∈ D and may
incorporate boundary conditions. For simplicity, we assume
that the domain D is a Cartesian product of n one-dimensional
domains Di

D = D1 × · · · × Dn. (18)

This factorization holds, e.g., for n-dimensional hyper-cubes,
or for n-dimensional tori (topologically equivalent to hyper-
cubes with periodic boundary conditions). We also assume
that f is an element of a Hilbert space H (D; [0, T]). In these
hypotheses, we can leverage the isomorphism

H (D; [0, T]) ∼= H ([0, T]) ⊗ H (D1) ⊗ · · · ⊗ H (Dn) (19)

and represent the solution of (17) as

f (x, t) ≈
m1∑

i1=1

· · ·
mn∑

in=1

fi1...in (t)hi1 (x1) · · · hin (x1), (20)

where hi j (x j) are one-dimensional orthonormal basis func-
tions of H (Di). Substituting (20) into (17) and projecting onto
an appropriate finite-dimensional subspace of H (�) yields the

semidiscrete form

d f
dt

= G(f), f (0) = f 0, (21)

where f : [0, T] → Rm1×m2×···×mn is a multivariate array with
coefficients fi1...id (t), and G is the finite-dimensional represen-
tation of the nonlinear operator G. The number of degrees of
freedom associated with the solution to the Cauchy problem
(21) is Ndof = m1m2 · · · mn at each time t � 0, which can be
extremely large even for moderately small dimension n. For
instance, the solution of the Boltzmann-BGK equation on a
six-dimensional (n = 6) flat torus [47,48] with mi = 128 ba-
sis functions in each position and momentum variable yields
Ndof = 1286 = 4 398 046 511 104 degrees of freedom at each
time t . This requires approximately 35.18 terabytes per tem-
poral snapshot if we store the solution tensor f in a double
precision IEEE 754 floating point format. Several general-
purpose algorithms have been developed to mitigate such an
exponential growth of degrees of freedom, the computational
cost, and the memory requirements. These algorithms include,
e.g., sparse collocation methods [49–51] and techniques based
on deep neural networks [52,53].

In a parallel research effort that has its roots in quantum
field theory and quantum entanglement, researchers have re-
cently developed a new generation of algorithms based on
tensor networks and low-rank tensor techniques to compute
the solution of high-dimensional PDEs [54–58]. A tensor
network is a factorization of an entangled object such as
a multivariate function or an operator into simpler objects,
e.g., low-dimensional functions or separable operators, which
are amenable to efficient representation and computation. A
tensor network can be visualized in terms of graphs (see
Fig. 1). The vast majority of tensor algorithms currently avail-
able to approximate functions, operators and PDEs on tensor
spaces is based on canonical polyadic (CP) decompositions
[47,56,58,60], Tucker tensors, or tensors corresponding to
binary trees such as tensor train (TT) [61–63] and hierarchical
Tucker (HT) tensors [64–67]. A compelling reason for using
binary tensor trees is that they allow us to construct the tensor
expansion by leveraging the spectral theory for linear oper-
ators, in particular the hierarchical Schmidt decomposition
[61,68–71].

In particular, if we represent f (t) in (21) using the tensor
train (TT) format discussed in the Appendix A at a fixed time
t , we obtain

f [i1, i2, . . . , in] =
r1∑

j1=1

· · ·
rn−1∑

jn−1=1

C1[1, i1, j1]

× C2[j1, i2, j2] · · ·Cd [jn−1, in, 1], (22)

where r = (r1, . . . , rn−1) denotes the multilinear rank. Hence,
to represent f in a TT format we just need to store the the
so-called tensor cores Ci. Similarly, to perform arithmetic
operations on a TT tensor, we manipulate the values stored
in the cores. To apply a distributed memory parallelization of
this data format (see Appendix A 2), we separate the cores
across many compute units along the i1, i2,..., in indices. This
results in a one-dimensional domain decomposition along the
second tensor index for each core.

015310-4

TENSOR APPROXIMATION OF FUNCTIONAL … PHYSICAL REVIEW E 110, 015310 (2024)

FIG. 1. Examples of tensor networks. The vertices represent tensor modes (functions) used in the decomposition. The edges connecting to
vertices represent summation over an index (contraction) between two modes. The free edges represent input variables x j (j = 1, . . . , n).

A. Step-truncation tensor methods

A new class of algorithms to integrate (21) on a low-rank
tensor manifold was recently proposed in [20,21]. These al-
gorithms are known as step-truncation methods, and they are
based on integrating the solution f (t) of the ODE (21) off
the tensor manifold for a short time using any conventional
explicit time-stepping scheme, and then mapping it back onto
the manifold using a tensor truncation operation. To briefly
describe these methods, let us discretize the ODE (21) in time
with a one-step method on an evenly-spaced temporal grid as

f k+1 = ��t (G, f k), f 0 = f (0), (23)

where f k denotes an approximation of f (k�t) for k =
0, 1, . . ., and ��t is an increment function. To obtain a step-
truncation integrator, we simply apply a truncation operator
Ts(·), i.e., a nonlinear projection onto a tensor manifold Ms of
HT (or TT) tensors with multilinear rank s [67], to the scheme
(23) (see Fig. 2). This yields

f k+1 = Ts[��t (G, f k)]. (24)

The need for tensor rank-reduction when iterating (23) can be
easily understood by noting that tensor operations such as the
application of an operator to a tensor and the addition between
two tensors naturally increase tensor rank [72].

We now present the rank-adaptive step-truncation algo-
rithms used here to integrate FDEs on tensor manifolds. The
first one is a truncated version of the Euler forward scheme,

f k+1 = Tr[f k + �tTs[G(f k)]]. (25)

We have shown that this scheme is convergent to first-order in
�t provided the rank r is properly updated at each time step
(see [20] for details). The second step-truncation scheme is
derived from the explicit midpoint rule, and it is defined as

f k+1 = Tα

[
f k + �tTβ

[
G

(
f k + �t

2
Tγ (G(f k))

)]]
, (26)

where α, β, and γ are once again selected adaptively as time
integration advances.

Both (25) and (26) are explicit step-truncation methods.
These schemes are very simple to implement and have proven
successful in integrating initial value problems for a variety
of PDEs [20]. However, the combination of dimensionality,
nonlinearity, and stiffness may introduce time-step restrictions
which could make explicit time integration on tensor mani-
folds computationally infeasible. To overcome this problem,
we recently developed a class of implicit rank-adaptive step-
truncation algorithms for temporal integration PDEs on tensor
manifolds [21]. These algorithms are based on an inexact
Newton’s method with tensor train GMRES iterations [59] to

FIG. 2. Sketch of implicit and explicit step-truncation integra-
tion methods. Given a tensor f k with multilinear rank s on the
tensor manifold Ms, we first perform an explicit time step with
any conventional time-stepping scheme. The explicit step-truncation
integrator then projects ��t (G, f k) to a tensor manifold with rank
s. The multilinear rank s is chosen adaptively based on desired ac-
curacy and stability constraints [20]. On the other hand, the implicit
step-truncation method takes ��t (G, f k) as input and generates a
sequence of fixed-point iterates f [j] shown as dots connected with
blue lines. The last iterate is then projected onto a low-rank tensor
manifold, illustrated here also as a red line landing on Ms. This op-
eration is equivalent to the compression step in the HT/TT-GMRES
algorithm described in [59].

015310-5

ABRAM RODGERS AND DANIELE VENTURI PHYSICAL REVIEW E 110, 015310 (2024)

solve the algebraic equation arising from time discretization
on the tensor manifold.

To describe these methods, let us consider the standard
Euler backward scheme

f k+1 = f k + �tG(f k+1), (27)

and the associated root-finding problem

Hk (f k+1) = f k+1 − f k − �tG(f k+1) = 0. (28)

If G is linear, e.g., for PDEs of the form (10), this reduces to
a linear inversion problem

(I − �tG) f k+1 = f k . (29)

To solve the linear system (29) in a tensor format, we apply
the TT-GMRES method proposed by Dolgov in [59]. For the
implicit midpoint method, the logic is identical. We apply the
above steps to the linear system(

I − 1
2�tG

)
f k+1 = (

I + 1
2�tG

)
f k . (30)

For the fully nonlinear case, one may couple the TT-GMRES
iteration to an inexact Newton method and retain all conver-
gence properties (see [21], Appendix A for further details). In
[21] we have recently show that under mild conditions on the
tensor truncation error, the implicit step-truncation Euler and
implicit step-truncation midpoint converge, respectively, with
order one and order two in �t .

V. BURGERS-HOPF FDE

Consider Burger’s equation on the unit circle � = [0, 2π],

∂u

∂t
+ u

∂u

∂x
= γ

∂2u

∂x2
+ R(u), (31)

with a reaction term R(u) = α sin(πu) and random (2π -
periodic) initial condition u(x, 0).

In our simulations we set α = 10. Let

�([θ (x)], t) = E

{
exp

[
i
∫ 2π

0
u(x, t)θ (x) dx

]}
(32)

be the characteristic functional of the stochastic solution to
(31). It is straightforward to show that �([θ (x)], t) satisfies
the following Burgers-Hopf FDE:

∂�([θ], t)

∂t
=

∫ 2π

0

[
i

2

∂

∂x

δ2�([θ], t)

δθ (x)2
+ γ

∂2

∂x2

δ�([θ], t)

δθ (x)

+ α

∞∑
k=1

(−π)k

(2k + 1)!i2k

δ2k+1�([θ], t)

δθ (x)2k+1

]
θ (x) dx,

(33)

which admits a unique solution due to the uniqueness of
the solution to the weak form of the Burgers equation (see
Sec. II).

Approximating the FDE (33) in terms of a high-
dimensional PDE of the form of (10) and taking the inverse
Fourier transform (in the sense of distributions) yield the

Liouville-type linear hyperbolic conservation law

∂ p

∂t
= −

N∑
i=1

∂

∂u j

[
N∑

j=1

(− uiD
(1)
i j u j

+ δi jR(u j) + γ D(2)
i j u j

)
p

]
, (34)

where δi j is the Kronecker delta and p(u1, u2, . . . , uN , t) is the
joint probability density function of the solution to (31) at all
evenly spaced grid points x j = 2π (j − 1)/N (j = 1, . . . , N),
i.e., uj = u(x j, t).

In Eq. (34), D(1)
i j and D(2)

i j are differentiation matrices. In
our numerical experiments, we use the second-order finite
difference matrix on a periodic domain. From here, it is
straightforward to write a step-truncation tensor method to
solve the high-dimensional PDE (34).

However, this may not yield an accurate scheme due to the
properties of the solution. In fact, it is well known that PDF
equations of the form (34) can develop shocks [73] or can
have solutions converging to Dirac delta functions if the time
asymptotic solution is deterministic. In these cases, it is conve-
nient to first transform the kinetic equation into a cumulative
distribution function (CDF) equation via an integral transform
[74], and then solve such CDF equation. This allows us to
transform PDF shocks into CDF ramps and PDF Dirac deltas
into CDF shocks. In other words, the CDF equations produces
solutions with features that are well known to the numerical
analysis community (shocks, ramps, and solutions with range
bounded in [0,1]) and therefore can be handled with numerical
schemes for hyperbolic conservation laws [75].

By integrating Eq. (34) with respect to the phase variables
{u1, . . . , uN } we obtain the following CDF equation:

∂F

∂t
=

N∑
i, j=1

(
uiD

(1)
i j u j − γ D(2)

i j u j − δi jR(u j)
)∂F

∂ui

−
N∑

i, j=1
i �= j

(
D(1)

i j ui − γ D(2)
i j

) ∫ u j

−∞

∂F

∂ui
du j

− α

N∑
j=1

sin(πu j)
∂F

∂u j
, (35)

where

F (u1, . . . , un, t) =
∫ u1

−∞
· · ·

∫ un

−∞
p(v1, . . . , vn, t)dv1 · · · dvn.

(36)

With the CDF F (u1, . . . , uN , t) available it is straightforward
to compute the PDF

p(u1, . . . , uN , t) = ∂nF (u1, . . . , uN , t)

∂u1 · · · ∂uN
. (37)

To apply the proposed step-truncation tensor methods to
Eq. (35), we discretize the phase space in terms of a N-
dimensional hypercube centered at the origin which covers the
support of p(u1, u2, . . . , uN , t). For the specific application at
hand such a hypercube is � = [−1.3, 1.3]N . On the boundary
of �, it is straightforward to show that the derivative of F

015310-6

TENSOR APPROXIMATION OF FUNCTIONAL … PHYSICAL REVIEW E 110, 015310 (2024)

FIG. 3. Sketch of the logical flow to transform a random nonlinear initial value problem (IVP) for the Burgers equation into the (linear)
Burgers-Hopf FDE, which is linear. The Burgers-Hopf FDE is subsequently approximated using the methods outlined in Sec. III. This yields
an N-dimensional characteristic function equation of the form (10). By taking the inverse Fourier transform of such characteristic function
equation and integrating it with respect to the phase variable we obtain the N-dimensional CDF equation shown above. The CDF equation is
then solved using the proposed step-truncation tensor methods.

normal to the hypercube boundary is zero. Therefore we may
apply outflow boundary conditions, i.e., set ∂F/∂u j = 0 at the
boundary of �. We discretize each variable ui in � on an
evenly spaced grid with ni = 64 points. Also, we approximate
the integrals in (35) using the trapezoidal rule, and the par-
tial derivatives with centered second-order finite differences.
For the initial condition, we set the CDF to be a prod-
uct of N zero-mean Gaussian CDFs with standard deviation
σ = 0.25, i.e.,

F (u1, . . . , uN , 0) =
N∏

k=1

g(uk), (38)

where

g(u) = 1

2

[
1 + erf

(
u

σ
√

2

)]
(39)

and erf(x) is the standard error function.

Numerical results

To solve the high-dimensional CDF equation (35) ap-
proximating the Burgers-Hopf FDE (33) we developed a
high-performance (parallel) tensor code implementing the
step truncation tensor methods discussed in Sec. IV A.

We first perform a numerical study to verify temporal
accuracy of order one and order two of the proposed step-
truncation tensor methods applied to the high-dimensional
CDF equation (35) (see Fig. 3). To stabilize explicit step-
truncation methods, we add a numerical diffusion term
proportional to the round-off error in �t to the right-hand side
of (35), in a similar manner to the Lax-Wendroff method [76].
To guarantee that we are accurately capturing second- and
first-order errors in time, we must ensure that the semidiscrete
PDE we are solving for our reference solution matches that
of our step-truncation integrators. To this end, we compute
the local truncation errors of each scheme by computing its
difference with a Richardson extrapolation (see [77], II.4) of
it to one order higher; i.e., we take two steps of size �t/2 and

combine it with a step of size �t to create a more accurate
estimate for the purposes of comparing it to a single step of
size �t . To this end, we calculate the local truncation errors
by computing the difference between the prediction of each
scheme and a Richardson extrapolation of one order higher
(as outlined in [77], II.4). In other words, we take two steps
of size �t/2 and integrate them with a step of size �t to
generate a more precise estimation for comparison with a
single step of size �t . The results are shown in Fig. 4. It is seen
that the explicit/implicit Euler and explicit/implicit midpoint
step-truncation integrators have accuracy of order one and
order two, respectively. To quantify the errors, we constructed
a benchmark CDF via Monte Carlo simulation. In practice, we
sampled 5 × 106 initial conditions u(x, 0) from the Gaussian
distribution described above, computed the solution u(x, t)
of (31) using the Fourier pseudospectral method [78], and
then used a kernel density estimator (KDE) [79] to obtain the
one-point and the two-points CDFs. This allows us to study
convergence of the solutions to the CDF equation (35) as
we increase the dimension N of the PDE. This convergence
study is crucial for establishing convergence of the solution
of the CDF equation (35) to the solution of the Burgers-Hopf
FDE. For this analysis, we selected the explicit step-truncation
midpoint tensor method as the temporal integrator, due to its
favorable performance and ease of implementation.

In Fig. 5 we plot the joint CDF of u(0, t) and u(π, t) at t =
{0, 0.04, 0.08, 0.012} computed with Monte Carlo, and the
proposed step-truncation midpoint tensor method applied to a
20-dimensional (N = 20) CDF equation (35). Clearly there is
visual agreement between the results form the tensor simula-
tion and the results form Monte Carlo simulation. In Fig. 6 we
demonstrate convergence of the solution to the CDF equation
(35), the Burgers-Hopf FDE, as we increase the dimension N
from 8 to 20. The error plot in Fig. 6 represents the L2 error
between the joint CDFs shown in Fig. 5. Run time increases
considerably with dimension though, especially for moder-
ately high solution ranks. For example, once rank surpasses
100, the N = 20 case requires approximately 45 minutes per

015310-7

ABRAM RODGERS AND DANIELE VENTURI PHYSICAL REVIEW E 110, 015310 (2024)

Local Truncation Error

FIG. 4. Local truncation errors [calculated as O(�t p+1) for and order p method] of the proposed step-truncation tensor methods. These
errors are computed by comparing one time step of step-truncation method with its Richardson extrapolation. It is seen that explicit/implicit
Euler and explicit/implicit midpoint step-truncation methods have accuracy of order one and order two, respectively.

t = 0.0 t = 0.04 t = 0.08 t = 0.12

MC CDF

ST CDF

MC PDF

FIG. 5. Two joint CDF of u(0, t) and u(π, t). The CDF is computed by generating numerical solutions to (35) for N = 20 using the
proposed step-truncation tensor methods, and then marginalizing the solution in the remaining 18 variables. We also show a Monte Carlo
estimate of the joint CDF obtained by sampling 5 × 106 solutions to (31).

015310-8

TENSOR APPROXIMATION OF FUNCTIONAL … PHYSICAL REVIEW E 110, 015310 (2024)

FIG. 6. Left: Highest rank of the tensor train cores for tensor solutions of the CDF to Eq. (35) computed with the explicit step-truncation
midpoint method for dimension N = {8, 12, 16, 20}. Right: Convergence of the solution to the CDF equation (35) the Burgers-Hopf FDE as
we increase the dimension N from 8 to 20. The error plot represents represents the L2 error between the joint CDFs shown in Fig. 5.

time step on an Intel i9-7980xe workstation. The storage of the
CDF tensor solution in 20 dimensions requires approximately
690 megabytes per temporal snapshot for tensor ranks of the
order of 150. This is a significant compression of a multidi-
mensional double precision floating point array of size 6420,
which would normally require approximately 1022 petabytes.
That is to say that we capture O(10−2) accuracy of the data
while achieving a data compression ratio of 1.44 × 1026% and
data space savings of approximately 100%. Of course, 690
megabytes is not negligible on practical computing systems.
It is essentially nothing compared to the decompressed data
though. In Fig. 7 we compare the CDF of u(0, t) computed
by solving the CDF equation (35) with N = {8, 12, 16, 20}
and then marginalizing, with a benchmark CDF obtained by
Monte Carlo simulation of (31). It is seen that as we increase
the dimension N the marginal of the CDF tensor solution
approaches the Monte Carlo benchmark.

While our numerical tensor schemes are accurate and prov-
ably convergent, they may not preserve important properties
of the CDF solution, such as positivity, monotonicity, and
range in [0,1]. The development of a structure-preserving ten-
sor integration schemes is indeed a rather unexplored research
area. One possibility is to enforce structure at the level of the
tensor truncation operation, i.e., perform rounding conditional
to some required property. For instance, if we are interested in
enforcing non-negativity in a step-truncation tensor scheme,
then we can simply replace the truncation operator based on
recursive QR decomposition (see the Appendix A), with the
distributed non-negative tensor truncation discussed in [80].
Another approach to enforce structure can be built directly
at the level of the tensor equations. This approach was re-
cently proposed by Einkemmer et al. [81–83] in the context of
Vlasov and Vlasov-Poisson kinetic equations. The resulting
dynamical low-rank algorithm conserves mass, momentum,
and energy.

VI. SUMMARY

In this paper, we developed approximation theory and
high-performance computational algorithms to solve func-
tional differential equations (FDEs) on tensor manifolds. Our

approach involves initially approximating the given FDE with
a high-dimensional partial differential equation (PDE) using
the functional methods described in [1,2,19]. Subsequently,
we compute the numerical solution of such PDE using par-
allel (rank-adaptive) step-truncation methods [20,21]. This
is an effective strategy for tackling the long-standing prob-
lem of computing numerical solutions to FDEs, opening
avenues for further research and practical applications in com-
putational mathematics and physics. We demonstrated the
effectiveness of the proposed approach through its application
to the Burgers-Hopf FDE, which governs the characteristic
functional of the stochastic solution to the Burgers equa-
tion evolving from a random initial state. Our numerical
results and convergence studies indicate that tensor methods,
while computationally intensive, represent a tractable way to
solve functional differential equations.

The code for material in this paper can be found at our
GitHub repository [84].

ACKNOWLEDGMENTS

This research was supported by the U.S. Army Research
Office Grant No. W911NF1810309. A.R. would like to ac-
knowledge the Transformational Tools and Technologies (T3)
Project for partially funding his Ph.D. research through the
NASA Pathways internship program.

APPENDIX A: TENSOR ALGORITHMS

In this Appendix, we describe the high-performance (paral-
lel) tensor algorithms we developed to solve high-dimensional
PDEs on tensor manifolds, in particular the CDF equa-
tion discussed in Sec. V. To this end, we begin with a brief
review of the algebraic representation of the tensor train (TT)
format [85].

1. Tensor train (TT) format

A tensor in f ∈ Rn1×n2×···×nd is in TT format if there
is an array of positive integers (called the TT rank) r =
(r0, r1, r2, . . . , rd−1, rd) with r0 = 1 = rd and a list of or-
der three tensors (called the TT cores) C = (C1,C2, . . . ,Cd)

015310-9

ABRAM RODGERS AND DANIELE VENTURI PHYSICAL REVIEW E 110, 015310 (2024)

t = 0.0 t = 0.04

t = 0.08 t = 0.12

FIG. 7. CDF of u(0, t) computed by solving Eq. (35) with the proposed step-truncation tensor method. It is seen that as we increase the
dimension N [number of independent variables in the CDF equation (35)] the tensor solution converges to the Monte Carlo benchmark (black
continuous line).

where Ck ∈ Rrk−1×nk×rk such that the entries of f may be
written as the iterated matrix product

f [i1, i2, . . . , id] =
r1∑

j1=1

· · ·
rd−1∑

jd−1=1

C1[1, i1, j1]

× C2[j1, i2, j2] · · ·Cd [jd−1, id , 1]. (A1)

Though rather involved at first glance, the above expression
may be derived by writing a multivariate function series
expansion by the method of separation of variables, rearrang-
ing the expression into a finite sequence of infinite matrix

products, truncating the series so that the matrix products
are finite, then discretizing in space so that the multivari-
ate function is sampled on a tensor product grid. From this
perspective, it becomes apparent that the tensor train cores
represent a two-dimensional array of functions of a single
variable and the ranks are the number of functions present in a
series expansion approximation. A more concrete exploration
of this perspective is given in [61,86].

Due to the iterated matrix product definition of the format,
it becomes apparent that a number of arithmetic operations
may be represented in the format by producing a new TT
tensor with different ranks. In particular if f , g have TT core

015310-10

TENSOR APPROXIMATION OF FUNCTIONAL … PHYSICAL REVIEW E 110, 015310 (2024)

ALGORITHM 1. Left orthogonalization.

lists C, D, then by a simple inductive argument, we have

f [i1, i2, . . . , id] + g[i1, i2, . . . , id]

=
r1∑

j1=1

· · ·
rd−1∑

jd−1=1

[C1[1, i1, j1] | D1[1, i1, j1]

×
[

C2[j1, i2, j2]
∣∣ 0

0
∣∣ D2[j1, i2, j2]

]
· · ·

[
C1[:, id , 1]
D1[:, id , 1]

]
.

(A2)

Thus the sum w = f + g is a TT tensor with cores obtained
by concatenating those of f and g. Scalar multiplication by a
number α is straightforward and can be implemented by just
scaling any of the cores

α f [i1, i2, . . . , id] =
r1∑

j1=1

· · ·
rd−1∑

jd−1=1

(αC1[1, i1, j1])

× C2[j1, i2, j2] · · ·Cd [jd−1, id , 1].

(A3)

In order to perform more sophisticated operations such
as tensor truncations, we must frequently reshape the tensor
cores into lower dimensional arrays. Two particularly useful
reshapings are the horizontal flattening

H : Ra×b×c −→ Ra×(bc) C[i, j, k] �−→ H[i, j + bk],

and the vertical flattening,

V : Ra×b×c −→ R(ab)×c C[i, j, k] �−→ V [i + a j, k].

The above maps are two-dimensional array analogs of the
vectorization of a tensor, in which we have the coordinates
listed as C[i, j, k] = v[i + a j + abk]. Note that when the en-
tries of a tensor are stored contiguously in computer memory,
no memory movement or copying needs to be done to inter-
pret a tensor as its flattening or vectorization. To undo the
flattening in an algorithm, we denote copying all the entries
as C = reshape(H) or C = reshape(V).

ALGORITHM 2. Truncation of a TT Tensor.

The general procedure of truncating the ranks of a TT
tensor comes in two phases. The first phase is to collect all
the norm of the tensor into a single core through a sequence of
matrix factorizations, leaving all other cores to have Frobenius
norm 1. Then a sequence of SVDs are applied, multiplying a
nonunitary factor from a tensor train core to its neighboring
cores. The first phase is called orthogonalization of a TT
tensor, and we now present an algorithm for it.

There are two variants of orthogonalization we will dis-
cuss. One is Left-to-Right orthogonalization and the other
Right-to-Left orthogonalization. They are the same algorithm
mirrored across the middle core of the tensor train, and each
step in one is a transpose of its counterpart in the other. A TT
tensor is left orthogonal if for c = 1, 2, . . . , d − 1, we have
V (Cc)�V (Cc) = I. Similarly, a TT tensor is right orthogonal
if for c = 2, 3, . . . , d , we have H(Cc)H(Cc)� = I. One may
transform the cores of a TT tensor to be left orthogonal while
the full tensor is unchanged by applying iterated matrix factor-
izations. All we must do is sequentially flatten, orthogonalize
by QR decompoosition, then unflatten each core, until the final
one is reached. This process is summarized in Algorithm 1.
For the right orthogonal case, the procedure is largely iden-
tical, though we use LQ factorization, the lower-triangular
orthogonalizing decomposition, instead.

We now describe one algorithm for truncation of a tensor
train given an orthogonalized TT tensor. The process is es-
sentially the same as orthogonalization: we apply a sequence
of orthogonal matrix factorizations to each core, multiplying
one of the terms into that core’s left or right neighbor. We
then replace the current core with the entries of an orthogonal
factor. The difference in this algorithm is that we apply an
SVD rather than QR or LQ factorization. The term “trunca-
tion” comes from truncating the singular value decomposition
series expansion of a matrix up to a desired tolerance. This
truncation is described as the rounding algorithm in [63]. We
present the right orthogonal variant of it here as Algorithm 2.
There is no clear general rule for preferring one left or
right variant truncation algorithm. They have identical com-
putational costs and similar formulations. It is possible that
differing runtime will occur based on row-major versus col-

015310-11

ABRAM RODGERS AND DANIELE VENTURI PHYSICAL REVIEW E 110, 015310 (2024)

FIG. 8. Parallel memory layout for the tensor train format. This
graphic shows a visualization of the data layout described by equa-
tion (A4) with d = 4 tensor cores and P = 4 compute nodes. Each
tensor core is split up into blocks which store a contiguous segment
of memory, depicted here in different shades.

umn major layout of the matrices, though this is highly
dependent on the specific memory mapping and workspaces
used in the SVD, QR, and LQ calls.

2. Parallel algorithms for tensor train arithmetic

Among the arithmetic operations performed on the tensor
train during the evolution of the solution to a differential
equation, the most costly is the truncation. This is due to
the the fact that it requires data access and editing of ev-
ery core twice. Due to the sequential nature of the loops in
Algorithms 1 and 2 we see that parallelizing the inner loop
would be most effective. To this end, we follow the approach
of [87]. Our extension of the algorithms presented in [87]
can be found at our GitHub repository [84]. Since the rank
of the tensor train is expected to change frequently during
program execution, we must split the memory stored on a total
of P compute nodes in a manner independent of the tensor
rank. To this end, we introduce a P × d memory partition
matrix M with positive integer values so that for each core
Ck ∈ Rrk−1×nk×rk , we have

∑P
p=1 M[p, k] = nk . This matrix

describes a block-tensor storage layout for the tensor train
core list. More precisely, for each core Ck , we define an array
of core blocks (C1

k,C2
k, . . . ,CP

k) with array sizes defined via
Cp

k ∈ Rrk−1×M[p,k]×rk so that

Ck[i, (1, . . . , nk), j] =

⎡
⎢⎢⎢⎢⎣

C1
k[i, (1, . . . , M[1, k]), j]

C2
k[i, (1, . . . , M[2, k]), j]

...

CP
k [i, (1, . . . , M[P, k]), j]

⎤
⎥⎥⎥⎥⎦. (A4)

In other words, each distributed memory compute node with
index p stores the core list (Cp

1,Cp
2, . . . ,Cp

d). These cores
are treated as being “stacked” on top of each other, with the
process index denoting the “top” of the tensor core. This is
depicted in Fig. 8. This memory layout is designed so that

V (Ck) =

⎡
⎢⎢⎢⎢⎣
V

(
C1

k

)
V

(
C2

k

)
...

V (CP
k)

⎤
⎥⎥⎥⎥⎦ and

H(Ck) = [
H

(
C1

k

) | H
(
C2

k

) | · · · | H
(
CP

k

)]
.

We may therefore compute a flattening of the cores without
any memory movements or cross-node communications by
reinterpreting the array storage offsets in column major lay-
out. Additionally, sums and scalar multiplications of tensors
may also be computed in parallel without communications.
We may simply repeat the serial summation and scalar multi-
ply algorithms, but applied to the distributed memory core list
(Cp

1,Cp
2, . . . ,Cp

d).
This parallel layout also allows for straightforward applica-

tions of finite difference stencils. Consider a finite difference
stencil which requires s many points where the number of
one-dimensional ghost cells required is g = (s − 1)/2. Let
DFD be the linear operator for this stencil. To apply a partial
derivative in variable k to a TT tensor, we replace the entries of
core Ck with the entries of DFD applied to Eq. (A4) for each
i, j. To perform the parallel version of this stencil, we first
perform a nonblocking communication to deliver the ghost
cells of compute node p to their neighboring nodes p ± 1.
For nodes p = 1 or p = P, we instead rely on discrete bound-
ary condition formulas, communicating again between nodes
p = 1 and p = P if periodic boundary conditions are required.
After boundary condition communications, every processor
has an appropriate local version of the finite difference sten-
cil, which is identical save for the definition of the ghost
cells.

Numerical integration is similar, though instead of shar-
ing ghost cells of compute node p with compute node p ±
1, we need only pass the data with compute node p + 1,
due to the one-sided stencil of a cumulative summation
formula.

a. Parallel tall-skinny QR factorization

In order to truncate a TT tensor with the described block
memory layout, we must perform a distributed memory QR
factorization on a matrix of the form

A =

⎡
⎢⎢⎢⎢⎣

A1

A2

...

AP

⎤
⎥⎥⎥⎥⎦,

ALGORITHM 3. Parallel left orthogonalization.

015310-12

TENSOR APPROXIMATION OF FUNCTIONAL … PHYSICAL REVIEW E 110, 015310 (2024)

FIG. 9. Parallel TSQR algorithm with 4 compute notes. A binary
tree is formed which outlines the communication pattern for calcu-
lating the R factor. At each level, the node with larger ID sends its
R factor to the tree sibling it connects to. The sibling then does a
QR factorization with a concatenated pair of child R factors. This
process repeats until the final R factor is found at the root of the
tree stored on processor p = 1. We then broadcast this matrix to
all other processors. To get the Q factor, we store the orthogonal
Qi for each tree node i and multiply the parent’s Qi on the right
side of the child’s Q factor, traversing the tree from the root to
the leaves. This results in a distributed memory orthogonal matrix
Q = [Q1; Q2; Q3; Q4].

or equivalently, perform an LQ factorization on the hor-
izontally concatenated transpose of A. For mathematical
simplicity, we present only the QR variant, though our GitHub
code available at [84] has both variants. One such factorization
amenable to this layout is the Tall-Skinny QR (TSQR) fac-
torization [88]. This algorithm uses a binary tree structure to
define a communication pattern for decomposing the QR fac-
torization of A into a collection of smaller QR factorizations,
avoiding communications if possible. By factoring the blocks
into their own QR factorizations, we see that the Q factor
may be presented as a sequence of products of block diagonal
matrices. This process is then applied to a recursive binary tree
to track the nesting of the orthogonal Q factor. The final result
is an orthogonal matrix Q = [Q1; Q2; . . . ; QP] distributed in
the same block layout as A and an upper triangular matrix
R copied across all compute nodes. See Fig. 9 for a visual
representation of the binary tree storage structure for the case
P = 4. The transposed version of this algorithm is called
the Wide-Fat LQ (WFLQ) factorization and has the same
tree data storage structure, but every matrix factorization is
transposed.

ALGORITHM 4. Parallel TT truncation.

b. Parallel orthogonalization and truncation

We now introduce a parallelization of Algorithms 1 and 2.
It can be seen that parallelizing the orthogonalization algo-
rithms is as simple as replacing the QR factorizations with
their TSQR variants. However, the truncation is requires a bit
of manipulation. In order to parallelize this, we first note the
following relationship of the SVD and QR factorizations:

QR = A = U�V �,

R = Q�U�V �.

Thus, R has the same singular values as A, and so truncating
an SVD of R produces the same approximation error as trun-
cating A directly. Since the TSQR algorithm is designed to
produce a copy of R on each compute node, we apply a shared
memory SVD redundantly on this copied R to determine the
truncated tensor. This process is formalized in Algorithms 3
and 4.

These algorithms are designed so that the only communi-
cations required are those that are involved in the computation
of the QR or LQ factorizations. Each algorithm is mathemat-
ically equivalent to its serial counterpart. The core difference
is the use of a superscript p = 1, 2, . . . , P, to denote which
matrices take on different values within the different compute
nodes. Matrices which are numerically identical across all
nodes lack this superscript.

[1] D. Venturi, The numerical approximation of nonlinear func-
tionals and functional differential equations, Phys. Rep. 732, 1
(2018).

[2] D. Venturi and A. Dektor, Spectral methods for nonlinear func-
tionals and functional differential equations, Res. Math. Sci. 8,
27 (2021).

[3] E. Hopf, Statistical hydromechanics and functional calculus,
J. Rat. Mech. Anal. 1, 87 (1952).

[4] A. S. Monin and A. M. Yaglom, Statistical Fluid
Mechanics, Volume II: Mechanics of Turbulence (Dover,
Mineola, New York, 2007).

[5] K. Ohkitani, Study of the Hopf functional equation for turbu-
lence: Duhamel principle and dynamical scaling, Phys. Rev. E
101, 013104 (2020).

[6] G. Rosen, Functional calculus theory for incompressible fluid
turbulence, J. Math. Phys. 12, 812 (1971).

015310-13

https://doi.org/10.1016/j.physrep.2017.12.003
https://doi.org/10.1007/s40687-021-00265-4
https://doi.org/10.1103/PhysRevE.101.013104
https://doi.org/10.1063/1.1665649

ABRAM RODGERS AND DANIELE VENTURI PHYSICAL REVIEW E 110, 015310 (2024)

[7] N. Vakhania, V. Tarieladze, and S. Chobanyan, Probability Dis-
tributions on Banach Spaces (Springer, Boston, 1987).

[8] C. Foias, Statistical study of Navier-Stokes equations, part I,
Rend. Sem. Mat. Univ. Padova 48, 219 (1973).

[9] M. E. Peskin and D. V. Schroede, An Introduction to
Quantum Field Theory (CRC Press, Boca Raton, Florida,
2018).

[10] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena,
4th ed. (Oxford University Press, New York, 2002).

[11] P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics
of classical systems, Phys. Rev. A 8, 423 (1973).

[12] R. Phythian, The functional formalism of classical statistical
dynamics, J. Phys. A: Math. Gen. 10, 777 (1977).

[13] R. V. Jensen, Functional integral approach to classical statistical
dynamics, J. Stat. Phys. 25, 183 (1981).

[14] R. Phythian, The operator formalism of classical statistical dy-
namics, J. Phys. A: Math. Gen. 8, 1423 (1975).

[15] B. Jouvet and R. Phythian, Quantum aspects of classical and
statistical fields, Phys. Rev. A 19, 1350 (1979).

[16] L. Ruthotto, S. Osher, W. Li, L. Nurbekyan, and S. W. Fung,
A machine learning framework for solving high-dimensional
mean field game and mean field control problems, Proc. Natl.
Acad. Sci. USA 117, 9183 (2020).

[17] W. E, J. Han, and Q. Li, A mean-field optimal control formula-
tion of deep learning, Res. Math. Sci. 6, 10 (2019).

[18] Y. T. Chow, W. Li, S. Osher, and W. Yin, Algorithm for
Hamilton–Jacobi equations in density space via a generalized
Hopf formula, J. Sci. Comp. 80, 1195 (2019).

[19] W. Gangbo, S. Mayorga, and A. Swiech, Finite dimensional ap-
proximations of Hamilton-Jacobi-Bellman equations in spaces
of probability measures, SIAM J. Math. Anal. 53, 1320
(2021).

[20] A. Rodgers, A. Dektor, and D. Venturi, Adaptive integration
of nonlinear evolution equations on tensor manifolds, J. Sci.
Comput. 92, 39 (2022).

[21] A. Rodgers and D. Venturi, Implicit integration of nonlinear
evolution equations on tensor manifolds, J. Sci. Comput. 97,
33 (2023).

[22] K. Ohkitani, Remarks on the principles of statistical
fluid mechanics, Phil. Trans. R. Soc. A. 380, 20210077
(2022).

[23] D. D. Janocha, M. Waclawczyk, and M. Oberlack, Lie sym-
metry analysis of the Hopf functional-differential equation,
Symmetry 7, 1536 (2015).

[24] M. Frewer and G. Khujadze, Comments on Janocha et al. Lie
symmetry analysis of the Hopf functional-differential equation.
Symmetry 2015, 7, 1536–1566, Symmetry 8, 23 (2016).

[25] L. Berselli and S. Spirito, On the existence of Leray-Hopf weak
solutions to the Navier-Stokes equations, Fluids 6, 42 (2021).

[26] G. Prodi, Un teorema di unicità per le equazioni di Navier–
Stokes, Annali di Matematica 48, 173 (1959).

[27] J. Leray, Sur le mouvement d’un liquide visqueux emplissant
l’espace, Acta Math. 63, 193 (1934).

[28] E. Fabes, B. Jones, and N. Rivière, The initial value problem
for the Navier-Stokes equations with data in lp, Arch. Rational
Mech. Anal. 45, 222 (1972).

[29] R. Temam, Navier-Stokes Equations: Theory and Numerical
Analysis (AMS Chelsea Publishing, Providence, Rhode Island,
1984).

[30] M. J. Vishik and A. V. Fursikov, Mathematical Problems of Sta-

tistical Hydromechanics, 2nd ed. (Kluwer Academic Publishers,
Dordrecht, Netherlands, 1988).

[31] V. I. Gishlarkaev, Uniqueness of a solution to the Cauchy prob-
lem for the Hopf equation in the two-dimensional case, J. Math.
Sci. 169, 64 (2010).

[32] T. Barker, Uniqueness results for weak Leray-Hopf solutions of
the Navier-Stokes system with initial values in critical spaces,
J. Math. Fluid Mech. 20, 133 (2018).

[33] T. Barker, About local continuity with respect to l2 initial data
for energy solutions of the Navier-Stokes equations, Math. Ann.
381, 1373 (2021).

[34] T. Kato, Strong l p-solutions of the Navier-Stokes equation in
Rm, with applications to weak solutions, Math. Z. 187, 471
(1984).

[35] G. P. Galdi, On the relation between very weak and Leray-Hopf
solutions to Navier–Stokes equations, Proc. Amer. Math. Soc.
147, 5349 (2019).

[36] S. Dubois, Uniqueness for some Leray–Hopf solutions to the
Navier–Stokes, J. Diff. Equ. 189, 99 (2003).

[37] H. Fujita and T. Kato, On the Navier–Stokes initial value prob-
lem. I, Arch. Rational Mech. Anal. 16, 269 (1964).

[38] T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions
to the Navier–Stokes equation, Ann. Math. 189, 101 (2019).

[39] D. Kang and B. Protas, Searching for singularities in Navier–
Stokes flows based on the Ladyzhenskaya–Prodi–Serrin condi-
tions, J. Nonlinear Sci. 32, 81 (2022).

[40] J. Serrin, The initial value problem for the Navier–Stokes
equations, in Proceedings of a Symposium Conducted by the
Mathematics Research Center, United States Army, at the Uni-
versity of Wisconsin, Madison, April 30-May 2, 1962 (The
University of Wisconsin Press, 1963), p. 69.

[41] E. Deriaz and V. Perrier, Divergence-free and curl-free wavelets
in two dimensions and three dimensions: Application to turbu-
lent flows, J. Turbul. 7, 1 (2006).

[42] E. Deriaz and V. Perrier, Direct numerical simulation of turbu-
lence using divergence-free wavelets, Multiscale Model. Simul.
7, 1101 (2009).

[43] E. J. Fuselier and G. B. Wright, A radial basis function
method for computing Helmholtz–Hodge decompositions, IMA
J. Numer. Anal. 37, 774 (2017).

[44] G. Sacchi-Landriani and H. Vandeven, Polynomial approxi-
mation of divergence-free functions, Math. Comput. 52, 103
(1989).

[45] K.-J. Engel and R. Nagel, One-Parameter Semigroups for
Linear Evolution Equations, Graduate Texts in Mathematics
(Springer-Verlag, New York, 1999), Vol. 194.

[46] D. Guidetti, B. Karasozen, and S. Piskarev, Approximation
of abstract differential equations, J. Math. Sci. 122, 3013
(2004).

[47] A. M. P. Boelens, D. Venturi, and D. M. Tartakovsky, Tensor
methods for the Boltzmann-BGK equation, J. Comput. Phys.
421, 109744 (2020).

[48] G. Dimarco and L. Pareschi, Numerical methods for kinetic
equations, Acta Numerica 23, 369 (2014).

[49] H. J. Bungartz and M. Griebel, Sparse grids, Acta Numerica 13,
147 (2004).

[50] V. Barthelmann, E. Novak, and K. Ritter, High dimensional
polynomial interpolation on sparse grids, Adv. Comput. Math.
12, 273 (2000).

[51] A. Narayan and J. Jakeman, Adaptive Leja sparse grid con-

015310-14

http://www.numdam.org/article/RSMUP_1972__48__219_0.pdf
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1088/0305-4470/10/5/011
https://doi.org/10.1007/BF01022182
https://doi.org/10.1088/0305-4470/8/9/011
https://doi.org/10.1103/PhysRevA.19.1350
https://doi.org/10.1073/pnas.1922204117
https://doi.org/10.1007/s40687-018-0172-y
https://doi.org/10.1007/s10915-019-00972-9
https://doi.org/10.1137/20M1331135
https://doi.org/10.1007/s10915-022-01868-x
https://doi.org/10.1007/s10915-023-02352-w
https://doi.org/10.1098/rsta.2021.0077
https://doi.org/10.3390/sym7031536
https://doi.org/10.3390/sym8040023
https://doi.org/10.3390/fluids6010042
https://doi.org/10.1007/BF02410664
https://doi.org/10.1007/BF02547354
https://doi.org/10.1007/BF00281533
https://doi.org/10.1007/s10958-010-0039-2
https://doi.org/10.1007/s00021-017-0315-8
https://doi.org/10.1007/s00208-020-02020-6
https://doi.org/10.1007/BF01174182
https://doi.org/10.1090/proc/14764
https://doi.org/10.1016/S0022-0396(02)00108-0
https://doi.org/10.1007/BF00276188
https://doi.org/10.4007/annals.2019.189.1.3
https://doi.org/10.1007/s00332-022-09832-7
https://doi.org/10.1080/14685240500260547
https://doi.org/10.1137/070701017
https://doi.org/10.1093/imanum/drw027
https://doi.org/10.1090/S0025-5718-1989-0971405-9
https://doi.org/10.1023/B:JOTH.0000029696.94590.94
https://doi.org/10.1016/j.jcp.2020.109744
https://doi.org/10.1017/S0962492914000063
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1023/A:1018977404843

TENSOR APPROXIMATION OF FUNCTIONAL … PHYSICAL REVIEW E 110, 015310 (2024)

structions for stochastic collocation and high-dimensional
approximation, SIAM J. Sci. Comput. 36, A2952 (2014).

[52] M. Raissi and G. E. Karniadakis, Hidden physics models:
Machine learning of nonlinear partial differential equations,
J. Comput. Phys. 357, 125 (2018).

[53] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, J. Comput. Phys. 378, 686
(2019).

[54] B. N. Khoromskij, Tensor numerical methods for multidimen-
sional PDEs: Theoretical analysis and initial applications, in
CEMRACS 2013—Modelling and Simulation of Complex Sys-
tems: Stochastic and Deterministic Approaches, ESAIM Proc.
Surveys Vol. 48 (EDP Sciences, Les Ulis, 2015), pp. 1–28.

[55] M. Bachmayr, R. Schneider, and A. Uschmajew, Tensor
networks and hierarchical tensors for the solution of high-
dimensional partial differential equations, Found. Comput.
Math. 16, 1423 (2016).

[56] A. M. P. Boelens, D. Venturi, and D. M. Tartakovsky, Parallel
tensor methods for high-dimensional linear PDEs, J. Comput.
Phys. 375, 519 (2018).

[57] A. Dektor and D. Venturi, Tensor rank reduction via coordinate
flows, J. Comput. Phys. 491, 112378 (2023).

[58] H. Cho, D. Venturi, and G. E. Karniadakis, Numerical methods
for high-dimensional kinetic equations, in Uncertainty Quan-
tification for Kinetic and Hyperbolic Equations, edited by S. Jin
and L. Pareschi (Springer, 2017), pp. 93–125.

[59] S. V. Dolgov, TT-GMRES: Solution to a linear system in the
structured tensor format, Russ. J. Numer. Anal. Math. Mod. 28,
149 (2013).

[60] G. Beylkin and M. J. Mohlenkamp, Numerical operator calcu-
lus in higher dimensions, Proc. Natl. Acad. Sci. USA 99, 10246
(2002).

[61] A. Dektor and D. Venturi, Dynamic tensor approximation
of high-dimensional nonlinear PDEs, J. Comput. Phys. 437,
110295 (2021).

[62] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk, Spectral
tensor-train decomposition, SIAM J. Sci. Comput. 38, A2405
(2016).

[63] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci.
Comput. 33, 2295 (2011).

[64] R. Schneider and A. Uschmajew, Approximation rates for
the hierarchical tensor format in periodic Sobolev spaces,
J. Complexity 30, 56 (2014).

[65] L. Grasedyck and C. Löbbert, Distributed hierarchical SVD in
the hierarchical Tucker format, Numer. Linear Algebra Appl.
25, e2174 (2018).

[66] A. Etter, Parallel ALS algorithm for solving linear systems in
the hierarchical Tucker representation, SIAM J. Sci. Comput.
38, A2585 (2016).

[67] A. Uschmajew and B. Vandereycken, The geometry of algo-
rithms using hierarchical tensors, Linear Algebra Appl. 439,
133 (2013).

[68] A. Dektor, A. Rodgers, and D. Venturi, Rank-adaptive tensor
methods for high-dimensional nonlinear PDEs, J. Sci. Comput.
88, 36 (2021).

[69] M. Griebel and G. Li, On the decay rate of the singular val-
ues of bivariate functions, SIAM J. Numer. Anal. 56, 974
(2018).

[70] A. Rodgers and D. Venturi, Stability analysis of hierarchical
tensor methods for time-dependent PDEs, J. Comput. Phys.
409, 109341 (2020).

[71] T. Kato, Perturbation Theory for Linear Operators, Classics
in Mathematics (Springer-Verlag, Berlin, 1995), reprint of the
1980 edition.

[72] D. Kressner and C. Tobler, Algorithm 941: htucker—A Matlab
toolbox for tensors in hierarchical Tucker format, ACM Trans.
Math. Softw. 40, 1 (2014).

[73] H. Cho, D. Venturi, and G. E. Karniadakis, Statistical analysis
and simulation of random shocks in Burgers equation, Proc. R.
Soc. A 2171, 1 (2014).

[74] D. Venturi, D. M. Tartakovsky, A. M. Tartakovsky, and G. E.
Karniadakis, Exact PDF equations and closure approximations
for advective-reactive transport, J. Comput. Phys. 243, 323
(2013).

[75] J. S. Hesthaven, Numerical Methods for Conservation Laws:
From Analysis to Algorithm (SIAM, Philadelphia, 2018).

[76] P. Lax and B. Wendroff, Commun. Pure Appl. Math. 13, 217
(1960).

[77] E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Dif-
ferential Equations I, Nonstiff Problems, 2nd rev. ed., Springer
Series in Computational Mathematics Vol. 8 (Springer, Berlin,
1993).

[78] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods
for Time-Dependent Problems (Cambridge University Press,
Cambridge, UK, 2007).

[79] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, Kernel density
estimation via diffusion, Ann. Stat. 38, 2916 (2010).

[80] M. Bhattarai, G. Chennupati, E. Skau, R. Vangara, H. Djidjev,
and B. Alexandrov, Distributed non-negative tensor train
decomposition, in 2020 IEEE High Performance Extreme Com-
puting Conference (HPEC) (IEEE, Piscataway, NJ, 2020),
pp. 1–10.

[81] L. Einkemmer and I. Joseph, A mass, momentum, and energy
conservative dynamical low-rank scheme for the Vlasov equa-
tion, J. Comput. Phys. 443, 110495 (2021).

[82] L. Einkemmer and C. Lubich, A low-rank projector-splitting in-
tegrator for the Vlasov-Poisson equation, SIAM J. Sci. Comput.
40, B1330 (2018).

[83] L. Einkemmer and C. Lubich, A quasi-conservative dynami-
cal low-rank algorithm for the Vlasov equation, SIAM J. Sci.
Comput. 41, B1061 (2019).

[84] https://github.com/akrodger/paratt
[85] I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for

multidimensional arrays, Linear Algebra Appl. 432, 70 (2010).
[86] A. Dektor and D. Venturi, Dynamically orthogonal tensor meth-

ods for high-dimensional nonlinear PDEs, J. Comput. Phys.
404, 109125 (2020).

[87] H. A. Daas, G. Ballard, and P. Benner, Parallel algorithms for
tensor train arithmetic, SIAM J. Sci. Comput. 44, C25 (2022).

[88] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
Communication-optimal parallel and sequential QR and LU
factorizations, SIAM J. Sci. Comput. 34, A206 (2012).

015310-15

https://doi.org/10.1137/140966368
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/s10208-016-9317-9
https://doi.org/10.1016/j.jcp.2018.08.057
https://doi.org/10.1016/j.jcp.2023.112378
https://doi.org/10.1515/rnam-2013-0009
https://doi.org/10.1073/pnas.112329799
https://doi.org/10.1016/j.jcp.2021.110295
https://doi.org/10.1137/15M1036919
https://doi.org/10.1137/090752286
https://doi.org/10.1016/j.jco.2013.10.001
https://doi.org/10.1002/nla.2174
https://doi.org/10.1137/15M1038852
https://doi.org/10.1016/j.laa.2013.03.016
https://doi.org/10.1007/s10915-021-01539-3
https://doi.org/10.1137/17M1117550
https://doi.org/10.1016/j.jcp.2020.109341
https://doi.org/10.1145/2538688
https://doi.org/10.1016/j.jcp.2013.03.001
https://doi.org/10.1002/cpa.3160130205
https://doi.org/10.1214/10-AOS799
https://doi.org/10.1016/j.jcp.2021.110495
https://doi.org/10.1137/18M116383X
https://doi.org/10.1137/18M1218686
https://github.com/akrodger/paratt
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1016/j.jcp.2019.109125
https://doi.org/10.1137/20M1387158
https://doi.org/10.1137/080731992

