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Robust self-assembly of nonconvex shapes in two dimensions
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We present fast simulation methods for the self-assembly of complex shapes in two dimensions. The shapes
are modeled via a general boundary curve and interact via a standard volume term promoting overlap and
an interpenetration penalty. To efficiently realize the Gibbs measure on the space of possible configurations
we employ the hybrid Monte Carlo algorithm together with a careful use of signed distance functions for
energy evaluation. Motivated by the self-assembly of identical coat proteins of the tobacco mosaic virus which
assemble into a helical shell, we design a nonconvex two-dimensional model shape and demonstrate its robust
self-assembly into a unique final state. Our numerical experiments reveal certain essential prerequisites for
this self-assembly process: blocking and matching (i.e., local repulsion and attraction) of different parts of the
boundary, and nonconvexity and handedness of the shape.
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I. INTRODUCTION

Virus capsids are formed by robust self-assembly from
copies of a small number of different coat proteins into a
unique, often highly symmetric configuration [1]. Yet the coat
proteins themselves have nonsymmetric, nonconvex shapes
which are not intuitive. An example is the single coat protein
of the tobacco mosaic virus (TMV), the copies of which
self-assemble into a helical shell [2,3]. By contrast, the
self-assembly of symmetric, convex shapes tends to lead to
degenerate, nonunique configurations. Lennard-Jones clusters
assembled from radially symmetric particles are prototypi-
cal [4]; a detailed analysis of the degeneracy for the simplified
Heitmann-Radin potential in two dimensions is given in [5].
The self-assembly of copies of a small number of convex
shapes has also been systematically studied [6].

Here we investigate the self-assembly of identical copies
of two-dimensional (2D) shapes, and identify certain essential
features which facilitate robust self-assembly into a unique
configuration, among them nonconvexity.

The shapes are modeled via a general boundary curve and
their interaction is described by an energy functional which
contains a standard volume term promoting overlap and an
interpenetration penalty:

E := V + γ P. (1)

Here γ > 0 is a penalty strength. The penalty term P is
nonuniform, allowing more or less overlap along the bound-
ary. In physical terms, the volume term models depletion
interactions, the penalty term models the impossibility of in-
terpenetration, and the heterogeneity of the boundary captures
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the effect that the hydrophobicity and the local electrostatic
charge of proteins vary on the protein surface.

A common approach to simulate self-assembly is to de-
compose general shapes into simpler components which then
interact via explicit pair potentials. For example, particle mod-
els use the Lennard-Jones pair potential [7] and the mean-field
approach defines effective pair potentials for ellipsoids and
polytopes taking into account the relative orientation [8].

In this paper, we instead represent the shapes using signed
distance functions which are well established in the com-
puter graphics community [9,10]. This type of representation
is also used in the level-set method [11–13]. This approach
allows one to model interactions between complex (non-
convex) shapes without decomposing them into artificial
subcomponents.

The volume and penalty terms are defined via integrals
over the ambient space, which are evaluated using quadrature
over a grid. A key advantage of this approach is that the
computational cost of computing the interaction energy scales
linearly with respect to the number of shapes. By contrast,
pair-potential based methods a priori scale quadratically, and
the reduction of this scaling requires additional ingredients
(neighborhood search).

For the evolution model, we use the hybrid Monte Carlo
(HMC) algorithm [14,15] to compute approximate samples of
the Gibbs measure:

exp(−E (x)/T ). (2)

We design a nonconvex 2D model shape that achieves
robust self-assembly into a unique structure (see Fig. 1). The
shape is inspired by the three-dimensional (3D) shape of the
TMV coat protein. Numerical results show that self-assembly
is sensitive to small changes in the shape, the energy, and the
evolution model. In particular, we demonstrate how making
the shape convex or making the penalty term uniform along
the boundary curve leads to misassemblies.
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FIG. 1. Assembly progress of our model shape during three
simulation runs. Each row corresponds to a run. One can see that
the model shape robustly self-assembles into a unique rotationally
symmetric structure.

II. ENERGY MODEL

The total volume of n given shapes S1, . . . , Sn ⊂ R2 is

λ

(
n⋃

k=1

Sk

)
=

∫
�

1 −
n∏

k=1

(1 − 1Sk (x)) dλ(x). (3)

We replace the indicator function 1Sk with a smooth approx-
imation H[α fk (·)], where fk is the signed distance function

fk (x) :=
{

dist(x, ∂Sk ) if x ∈ Sk,

− dist(x, ∂Sk ) if x /∈ Sk,
(4)

H is the smooth step function

H (t ) :=

⎧⎪⎨
⎪⎩

0 if t < −1,

3
16 t5 − 5

8 t3 + 15
16 t + 1

2 if −1 � t < 1,

1 if 1 � t,

(5)

and α > 0 is the transition steepness. The precise algebraic
form of H is not important. Here, we use the minimal degree
polynomial that makes H twice continuously differentiable.
The volume term is given as

V :=
∫

�

1 −
n∏

k=1

(1 − H (α fk (x))) dλ(x). (6)

The overlap penalty term quantifies how much the shapes
overlap. Its role is to enforce an interpenetration constraint be-
tween the shapes so that the shapes do not collapse into trivial
volume-minimizing structures in which all shapes overlap at
a single point.

The strength of the overlap penalty can vary along the
boundary of the shapes. Some regions allow a lot of overlap,
while other regions allow only minimal overlap. We call these
regions matching and blocking, respectively. To model match-
ing and blocking, we associate a non-negative penalty shift
function gk : R2 → R to each shape Sk so that gk is large on
the matching part of Sk , allowing more overlap, and smaller on

the blocking part, allowing less overlap. The physical origin of
matching and blocking is described in Sec. IV.

The overlap penalty term is given by

P :=
∫

�

n∏
k=1

(1 + R(β[ fk (x) − gk (x)])) dλ(x), (7)

where R is the smooth ramp function

R(t ) :=

⎧⎪⎨
⎪⎩

0 if t < −1,

− 1
16 t4 + 3

8 t2 + 1
2 t + 3

16 if −1 � t < 1,

t if 1 � t,

(8)

and β > 0 is the steepness of the ramp. Note that gk offsets
the signed distance function to control how soon the penalty
becomes active.

The volume interaction term is the result after subtracting∫
�

n∑
k=1

H (α fk (x)) dλ(x) (9)

from the volume term and the penalty interaction term is the
result after subtracting∫

�

1 +
n∑

k=1

R(β[ fk (x) − gk (x)]) dλ(x) (10)

from the penalty term. The subtracted terms are invariant
under rigid movements applied to the shapes.

For our actual simulation, we put the shapes into the flat
torus � := R2/ηZ2 of size η > 0. The shapes S1, . . . , Sn are
rigidly translated and rotated copies of a reference shape S.
Consequently, the signed distance functions fk and penalty
shift functions gk are transformed versions of functions f
and g associated to S. The signed distance function f is ap-
proximated using the procedure detailed in Appendix A. The
integrals are evaluated using an equidistant quadrature grid
with uniform weights (which corresponds in our context of
periodic functions to the trapezoidal rule). For best perfor-
mance, we set the grid spacing just fine enough such that the
acceptance rate of our Metropolis-type evolution algorithm
(introduced in Sec. III) is not too much affected. This ensures
that the numerical errors stay of the same order of magni-
tude as the thermal fluctuations introduced by our evolution
algorithm. In practice, this results in a grid spacing that just
captures the important geometric details.

We visualize the energy terms for a configuration of 16
balls in Fig. 2. The penalty shift function is set to a positive
constant for this visualization.

In summary, our energy model depends on the following
parameters: (1) shape (S), (2) number of copies of the shape
(n), (3) size of ambient space (η), (4) step transition and ramp
steepness (α, β), (5) penalty shift function (g) and penalty
strength (γ ), and (6) quadrature grid spacing.

III. EVOLUTION MODEL

The n copies of the shape can freely translate and rotate.
For each copy, the position and orientation are prescribed
by a translation (an element of R2/ηZ2) and a rotation [an
element of SO(2)] about the shape center. This leads to the
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FIG. 2. Visualization of the energy integrands: (a) volume
[Eq. (6)], (b) penalty [Eq. (7)], (c) volume interaction [Eq. (6) minus
Eq. (9)], and (d) penalty interaction [Eq. (7) minus Eq. (10)]. For the
volume interaction, the integrand of which is negative, bright regions
correspond to low values.

configuration space G := [R2/ηZ2 × SO(2)]n, which is a
compact Lie group.

To drive the simulation, we first tried a standard Brownian
dynamics method and the Metropolis-Hastings algorithm with
a random-walk proposal. However, we found that the HMC
algorithm significantly outperforms these methods when the
dynamics become constrained, as in our case where shapes
attach to each other and then move collectively. The HMC
algorithm computes samples from the Gibbs measure on G
given by

μ(A) := c
∫

A
exp(−E (x)/T ) dλG(x), (11)

where c is the normalization constant, T > 0 is a simulation
temperature parameter, and λG is the Haar measure on G.

An iteration of HMC consists of two steps: First, we com-
pute a trajectory of the artificial Hamiltonian

H (x, p) := E (x)/T + 1
2 〈p, p〉g (12)

with position x in G and velocity p in the Lie algebra g

corresponding to G. This is done by integrating

x′(t ) = p(t ), (13)

p′(t ) = (−1/T )∇E (x(t )) (14)

on the interval [0, L] using the time-reversible and volume-
preserving Leapfrog algorithm. Here, 〈·, ·〉g is a fixed inner
product on g and L > 0 is a fixed trajectory length. The initial
value x(0) is set to the current configuration of shapes and
the initial velocity p(0) is drawn from a Gaussian distribution
with density proportional to

exp
(− 1

2 〈p, p〉g
)
. (15)

We employ the exponential map to adapt the Leapfrog algo-
rithm to our Lie group setting.

The generated proposal x(L) is accepted with probability

min{exp(H (x(0), p(0)) − H (x(L), p(L))), 1}. (16)

If it is accepted, HMC sets the current state to x(L) and
generates a new proposal from this state. Otherwise, a new
proposal is generated from x(0).

It can be shown that the Markov chain generated by this
iteration leaves the Gibbs measure invariant. Invariance is
further discussed in Appendix B.

For the initial shape configuration, we draw a sample
from the Haar measure on G, which means choosing initial
translations uniformly in [0, η)2 and rotations uniformly in
SO(2). To ensure that the shapes do not overlap before the
actual simulation starts, we preprocess this sample using the
Metropolis-Hastings algorithm with a simple repulsive energy
model.

For our simulations, we select the inner product

〈p, q〉g :=
n∑

i=1

σ−2
T

〈
pT

i , qT
i

〉 + σ−2
R pR

i qR
i , (17)

where pT
i and qT

i are the translation components and
pR

i and qR
i are the rotation components. This means that the

initial velocities for HMC are drawn from a normal distribu-
tion with a diagonal covariance matrix. The parameters σT

and σR define the standard deviations of the translation and
rotation components, respectively.

IV. NUMERICAL RESULTS

Our numerical experiments were carried out in the JULIA

programming language [16].

A. Balls assembling into nonunique states

Simulations with simple convex shapes such as balls do
not settle into a unique state (see Fig. 3). We trace this high
degeneracy of the assembled state to the extreme symmetry of
such model shapes.

B. A nonconvex model shape

Some intuition about relevant features leading to unique
assembled states can be gained from biological systems. An
example, the coat protein of the tobacco mosaic virus, is
shown in Fig. 4; it was designed by evolution to robustly
assemble into a helix.

By combining this intuition with numerical tests we de-
signed a 2D model shape (see Fig. 5) which achieves robust
assembly into a unique state. This shape captures some im-
portant features of the TMV protein: it is highly asymmetric,
nonconvex, and handed. The detailed form of our shape is
not important, but—as we demonstrate below—these features
are. A precise description of the model shape is given in
Appendix C. The main simplification is that our model shape
forms a 2D ring, whereas the TMV protein forms a helix, due
to the fact that neighboring proteins are also mildly offset in
the third dimension (see Fig. 4).
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FIG. 3. Assembly progress of balls during three simulation runs.
Each row corresponds to a run. One can see that the balls assemble
into different configurations.

Another important aspect about protein assembly into
unique states is the heterogeneity of the proteins: the hy-
drophobicity and the electrostatic charge vary on the protein
surface, leading to local repulsion and attraction. For a de-
tailed computational model of the resulting heterogeneous
solvation free energy see [17]. As a simple model interaction
that captures this effect, we divide the shape into a matching
and a blocking part (indicated in Fig. 5) which allow more
and less overlap, respectively, with other shapes as explained
in detail in Sec. II.

C. Numerical results for the model shape

We conduct assembly experiments with the simula-
tion parameters in Table II. Using these parameters, we
observe robust self-assembly into a unique configuration

FIG. 4. Coat protein of the tobacco mosaic virus [2,3] (dark
gray), and two neighbors in the native helical assembly (light gray).

FIG. 5. Model protein shape. Like the 3D shape in Fig. 4 it is
asymmetric, nonconvex, and handed. The shape is divided into a light
matching part and dark blocking part.

(see Fig. 1).
To quantify the self-assembly progress, we consider the

graph of correctly attached shapes. In this assembly graph,
the vertices represent the shapes and the edges represent con-
nections between shapes that are (within a small tolerance
in relative translation and rotation) correctly attached to each
other. We call a subset of shapes a correctly assembled compo-
nent if it is a connected component of this graph. The number
of correctly assembled components is a useful measure of
self-assembly progress. Furthermore, we call a configuration
correctly assembled if it consists of a single correctly assem-
bled component.

In Fig. 6 we show the distribution of the number of
correctly assembled components as a function of HMC it-
erations. Initially, there are typically 11 correctly assembled
components, which gradually reduce to one component.
At 104 iterations, most runs are in a correctly assembled
configuration.

1. Parameter identification

To achieve rapid and robust self-assembly, we need the
following.

(1) Convergence. The evolution algorithm should converge
quickly to the Gibbs measure.

(2) The right Gibbs measure. Samples drawn from the
Gibbs measure should be in the assembled state with high
probability.

FIG. 6. Assembly progress from 11 correctly assembled compo-
nents (dark, disassembled configuration) to one component (bright,
fully assembled configuration). The distribution over 512 hybrid
Monte Carlo runs is shown.
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FIG. 7. Self-assembly robustness, showing the proportion of
configurations that are correctly assembled. The proportions are
computed from iterations 9 × 103 to 104 of 16 hybrid Monte Carlo
runs for each choice of parameters.

We investigate how different choices of simulation tem-
perature and penalty strength affect the robustness of self-
assembly. For each choice, we tune the Leapfrog step size
to achieve an acceptance rate of about 65%. The results are
shown in Fig. 7.

It turns out that there is a sweet spot for both parameters:
Low temperatures give more weight to low energy states
but slow down the convergence to the Gibbs measure. High
temperatures converge faster but make the interesting config-
urations less likely to occur. Low penalty strengths give the
evolution algorithm more leeway to perturb shape configu-
rations but increase shape overlap and the probability of the
shapes collapsing. High penalty strengths make the configu-
rations unstable and likely to disassociate.

2. Ablation study

We investigate how the following changes to the shape
influence self-assembly robustness: (1) removing the head
repulsion (Fig. 8), (2) removing the curvature (Fig. 9), and
(3) removing the head (Fig. 10).

For each case, we consider a smooth transition from the
original shape to the modified version and carry out multiple
HMC runs for various points during the transition. We see

FIG. 8. Removing the head repulsion. We change the value of the
penalty shift function on the blocking part. The value 0.5 equals that
on the matching part. (a) Failure modes with 0.5. (b) Assembly rate.

FIG. 9. Removing the curvature. We transition from the default
shape (0) to a triangle shape (1). (a) Failure modes with the triangle
shape. (b) Assembly rate.

in the figures that the self-assembly robustness decays during
this transition.

When self-assembly fails, the question is whether this is
a failure of the energy function (the energy minimizer no
longer corresponds to the assembled state) or a failure of the
evolution model (HMC gets stuck in local minima). In the
three cases that we investigate here, the energy minimizer
still seems to be the fully assembled configuration. However,
the energy difference between the minimizer and the misas-
sembled configurations that HMC gets stuck in is small and
the evolution algorithm is unable to find a path to the global
minimizer.

3. Ground states and symmetry breaking

We use gradient descent to find stationary points (or ground
states) starting from correctly assembly configurations.

The shape we used up to now leads to a perfectly sym-
metric ground state. This state, together with the eigenvalues
of its Hessian, is shown in Fig. 11. The three eigenvalues
near zero correspond to the zero modes of translating and
rotating the whole configuration. These eigenvalues are not
exactly zero since the energy is not perfectly invariant under
these operations due to the use of numerical quadrature on a
finite grid. Since the rest of the eigenvalues are positive, we
conclude that the ground state is a local energy minimizer. In
Fig. 12 we show the energy integrands for the ground state.

FIG. 10. Removing the head. We transition from the default
shape (0) to a headless shape (1). (a) Failure modes with the headless
shape. (b) Assembly rate.
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FIG. 11. (a) Ground state of the default shape. (b) Eigenvalues of
the ground state’s Hessian; see text for detailed interpretation.

The symmetry of the ground state is sensitive to small mod-
ifications of the shape. To explore this, we rescale our shape
along an axis to make it slightly thinner (down to a factor of
0.95). Thinning the shape speeds up the self-assembly while
also causing symmetry breaking for the ground states (see
Fig. 13). If the shape is thinned even more, an additional 12th
shape would be required for complete assembly.

V. DISCUSSION

We have given a proof of concept that demonstrates the po-
tential of our coarse-grained energy and evolution models for
efficiently simulating large-scale self-assembly processes of
proteins. Our simulations of nonconvex model shapes indicate
the significance of two factors for the robust self-assembly
into a unique structure: blocking and matching (i.e., local
repulsion and attraction) of different parts of the boundary,
and nonconvexity and handedness of the shape.

Our paper can be extended in various ways. The obvious
one is simulating self-assembly in three dimensions, which
we are aiming for with future work. To simulate protein

FIG. 12. Visualization of the energy integrands. It is similar to
Fig. 2, except for the ground state shown in Fig. 11.

FIG. 13. (a) A slightly thinner shape self-assembles faster but
leads to ground states with broken symmetry. (b) Assembly rate
computed from HMC iterations 1.5 × 103 to 2 × 103.

self-assembly in three dimensions, the solvent-accessible sur-
face [18] would be the natural choice for the shape that we
would use for our simulations.

Our energy model can be refined in various ways. For
instance underlying mechanisms of matching and blocking,
such as local hydrophobicity and local electrostatic charges,
could be modeled explicitly. Alternatively, one could use
semiempirical refinements of the volume term such as the
morphometric approach for the free solvation energy [19–22]

E = pV + σ A + κ C + κ̃ X, (18)

where the terms are volume (V ), surface area (A), mean width
(C), and Euler characteristic (X ).
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APPENDIX A: APPROXIMATING SIGNED
DISTANCE FUNCTIONS

To approximate the signed distance function (SDF) of a
shape S ⊂ R2, we first sample the exact SDF on a fine grid
in a sufficiently large box containing S. We reduce aliasing by
convolving the result with a Gaussian kernel before subsam-
pling the values on a coarse grid.

From the data on the coarse grid, we construct a smooth
SDF approximation using cubic B-spline functions. In this
construction, we do not interpolate. Instead, we directly take
the subsampled values as coefficients for the tensorized B-
spline functions.

The SDF approximation procedure adds the following pa-
rameters to our energy model: (1) SDF fine and coarse grid
spacing (for sampling the exact signed distance function, re-
spectively, for B-spline coefficients of the approximate signed
distance function) and (2) SDF Gaussian standard deviation
(standard deviation of the Gaussian kernel used to low-pass
filter the samples on the fine grid).
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TABLE I. Description of the model shape.

APPENDIX B: INVARIANCE OF THE GIBBS MEASURE

To show that the Gibbs measure μ is invariant under an
HMC iteration, we check that the transition kernel T of HMC
satisfies detailed balance with respect to μ, that is,∫

B
T (x, A) dμ(x) =

∫
A

T (x, B) dμ(x) (B1)

for all measurable sets A and B. This follows from a straight-
forward calculation that is not specific to our Lie group
setting. An important ingredient in this calculation is that the
Leapfrog algorithm is time reversible and volume preserving.

To show these properties, we recall the Leapfrog algorithm.

p ← p − ε

2T ∇E (x)
x ← expG(εp)x
repeat L − 1 times

p ← p − ε

T ∇E (x)
x ← expG(εp)x

end
p ← p − ε

2T ∇E (x)

Time reversibility follows since

expG(−p) = expG(p)−1. (B2)

To show that Leapfrog is volume preserving, we note that it
is a composition of maps of the form (x, p) 	→ ( f (p)x, p) and

TABLE II. Simulation parameters.

Parameter Value

Number of copies of the shape 11
Size of ambient space (η) 64
Step transition and ramp steepness (1, 1)
Penalty shift value on matching part 0.5
Penalty shift value on blocking part 0.1
Penalty strength 4
Quadrature grid spacing 1
SDF fine grid spacing 0.1
SDF coarse grid spacing 1
SDF Gaussian standard deviation 0.5
Temperature 1.5
Inner product parameters (σT , σR) (1, 0.21)
Leapfrog step size 0.16
Leapfrog iterations 15

(x, p) 	→ (x, p + g(x)). The result then follows by applying
Fubini’s theorem.

APPENDIX C: DESCRIPTION OF MODEL
PROTEIN SHAPE

Our 2D model shape is defined as the region enclosed by
a curve that consists of cubic Beziér segments. Each segment
c : [0, 1] → R2 is given by

c(t ) := (1 − t )3β0 + 3(1 − t )2tβ1 + 3(1 − t )t2β2 + t3β3,

(C1)

where β0, β1, β2, and β3 ∈ R2 are the control points. Ta-
ble I lists the control points for each segment. The segments
are chosen such that the composite curve has a continuous
derivative.

We divide the shape along the line {(9.7, t ) : t ∈ R} into a
matching part (left) and a blocking part (right). The penalty
shift function is set to 0.5 on the matching part and to 0.1 on
the blocking part with a transition between these values via the
smooth step function given in Eq. (5). For our simulations, we
center the shape using a shift by (−3.7, 0.7).

APPENDIX D: SIMULATION PARAMETERS

Table II shows the simulation parameters.
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