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Bootstrapping cascaded random matrix models: Correlations in permutations of matrix products
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Random matrix theory is a useful tool in the study of the physics of multiple scattering systems, often striking a
balance between computation speed and physical rigour. Propagation of waves through thick disordered media,
as arises, for example, in optical scattering or electron transport, typically necessitates cascading of multiple
random matrices drawn from an underlying ensemble for thin media, greatly increasing the computational
burden. Here we propose a dual pool based bootstrapping approach to speed up statistical studies of scattering
in thick random media. We examine how potential matrix reuse in a pool based approach can impact statistical
estimates of population averages. Specifically, we discuss how both bias and additional variance in the sample
mean estimator are introduced through bootstrapping. In the diffusive scattering regime, the extra estimator
variance is shown to originate from samples in which cascaded transfer matrices are permuted matrix products.
Through analysis of the combinatorics and cycle structure of permutations we quantify the resulting correlations.
Proofs of several analytic formulas enumerating the frequency with which correlations of different strengths
occur are derived. Extension to the ballistic regime is briefly considered.
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I. INTRODUCTION

Computational modeling of wave scattering in random
disordered media is a difficult problem that has been re-
searched in earnest in recent decades. A full finite element
based solution of the relevant wave equation offers the great-
est rigour but consequently suffers from limited simulation
volumes and large computational cost [1]. Alternatively, more
approximate methods, such as diffusion-, Monte Carlo-, or
Green’s function-based approaches, balance computation time
with physical rigour to varying degrees [2–5]. Random matrix
approaches in particular typically sacrifice system-specific
details in favor of significantly reduced computation times,
allowing statistical properties, such as mean transmission,
spectral distributions, and phase transitions, to be numerically
investigated [6,7]. Knowledge of such general features of
random scattering media has afforded great physical insights
[8–12] and enabled development of a number of useful tech-
niques, for example, for imaging through scattering media and
wave front control [13–15].

Early random matrix models, such as the circular and
Gaussian ensembles proposed by Wigner and Dyson [16–18],
were based on the assumption of isotropic scattering which
often poorly approximates reality. More sophisticated ran-
dom matrix models have however been developed in an
attempt to capture additional symmetries, constraints or sys-
tem specific properties while preserving numerical speed
[7,19,20]. For example, filtered matrix ensembles can more
accurately simulate transmission in systems where the input
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and output measurement channels are a finite subset of all
potentially available channels [21], whereas Euclidean matrix
ensembles can describe random Green’s matrices relevant to
propagation of waves in collections of point-like scattering
centers [22–24]. Wishart and Jacobi ensembles meanwhile
are also classic ensembles useful, for instance, in the de-
scription of chaotic cavities [25,26]. Cascaded, or coupled,
random matrix models have also seen significant study in
the literature, finding applications in, e.g., electronic trans-
port in wires, quantum chaos, wireless communications, the
study of spin glasses [6,14,27,28], and more. Such mod-
els describe the linear scattering properties of a system,
as described by its (random) transfer matrix T , through
the correctly ordered product of individual transfer matrices
T δ (drawn from an appropriate underlying matrix ensem-
ble) of constituent scattering sites or system components.
Cascaded models can, for example, describe universal con-
ductance fluctuations [29] and naturally introduce a notion of
length to the system such that variations in total transmission
and reflection with system size can be modeled (in con-
trast with more traditional matrix ensembles). Of particular
significance is the Dorokhov-Mello-Pereyra-Kumar (DMPK)
cascaded matrix model [30,31] and its higher-dimensional
and electromagnetic generalizations [32–34], which recognize
that a thick scattering system can be considered as a chain
of thinner, weakly scattering, media. Each successive matrix
in the associated product acts as a perturbation, enabling de-
scription of various wave transport regimes in a scattering
medium (e.g., ballistic, diffusive or localized) through cas-
cades of different lengths. In the so-called ballistic scattering
regime, the average number of scattering events of a wave
propagating in the medium is �1, whereas in the diffusive
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regime, corresponding to thicker media, transmitted waves
undergo many scattering events.

Although allowing a more physically accurate description
of a large variety of scattering systems, cascaded random
matrix techniques can suffer from reduced speed since cal-
culation of the transfer matrix for a single realization of a
thick medium can necessitate generation of a large number of
thin slab matrices. Moreover, statistical convergence is slower
for large thicknesses due to the greater variances typically
involved, thereby requiring more realizations to be simulated
and longer computation times. In this work, our aim is to
investigate computational gains that can be made in cascaded
random matrix models through a bootstrapping approach em-
ploying pools of precalculated matrices. Moreover, we seek to
assess the extent to which use of a pool based bootstrapping
approach can degrade statistical estimates of mean scattering
properties of thick scattering media. In Sec. II, we first in-
troduce and discuss a dual pool bootstrapping method, which
can reduce both the number of matrix generations and matrix
products required for statistical studies of system properties.
In Sec. III, we investigate estimator bias and variance when
mean properties are derived from transfer matrices formed
from products of matrices sampled from a matrix pool P .
We show that bootstrapping can introduce additional estima-
tor fluctuations, the prevalence of which are enumerated in
Sec. IV (supporting proofs based on combinatorics of per-
mutations are presented in the Appendix). Finally, in Sec. V,
we briefly discuss extending our findings to more complex
scenarios.

II. DUAL POOL BOOTSTRAPPING OF CASCADED
RANDOM MATRICES

Computational gains in cascaded random matrix models
can be made if a bootstrapped approach is adopted in which
individual matrices T δ are resampled from an existing set
instead of on-the-fly generation. This sample could, for ex-
ample, represent a pool of pregenerated transfer matrices or
experimental data. To illustrate this principle, consider simu-
lating Nr realizations of the transfer matrix of a medium of
thickness L through cascading Nδ slabs of thickness δL =
L/Nδ using on-the-fly calculations. As indicated in Table I
this would require NrNδ thin-slab matrices to be generated
and calculation of Nr (Nδ − 1) matrix products. Alternatively,
pregeneration of a single pool P1 of N1 such matrices, from
which T δ are resampled as needed, can greatly reduce the
number of matrix generations required if N1 � NrNδ . With
a single matrix pool, however, the required number of ma-
trix products is unaffected (see Table I). In scenarios where
the number of relevant scattering modes can be very large,

TABLE I. Number of calculations required for on-the-fly, single
pool and dual pool approaches.

Matrix generation Matrix product

On-the-fly NrNδ Nr (Nδ − 1)
Single pool N1 Nr (Nδ − 1)
Dual pool N1 N2n� + Nr (N� − 1)

e.g., optical scattering, products of large transfer matrices can
hence still limit total computation time and it is thus prefer-
able to also reduce the number of matrix products. To this
end, a dual pool approach can be adopted whereby the pool
P1 of N1 thin-slab matrices is again pregenerated, however,
additionally a second pool P2 of N2 transfer matrices T�

for sections of intermediate thickness �L is calculated. Each
matrix in P2 is found by cascading n� = �L/δL thin-slab
matrices which are themselves drawn from P1. The dual
pool approach then allows the number of matrix products
to be reduced to N2n� + Nr (N� − 1), where N� = L/�L.
To assess whether a dual pool approach is advantageous, a
determination of the computational complexity, time and the
required memory for each operation must be made. It is also
worthwhile to note that matrix pools can be stored and reused.
By way of an example of potential gains, we note that in
our earlier work [34] use of the dual pool approach allowed
the number of matrix generations and products to be reduced
by approximately three and two orders of magnitude, re-
spectively. Consequently, prohibitive computation times were
overcome enabling statistical characterization of a variety of
polarization scattering phenomena, such as light transmission
and optical depolarization, in multiply scattering media up to
thicknesses of 30 mean-free paths, using 104 realizations for
each length. Physical parameters extracted from our simula-
tions using the bootstrapped approach were found to be in
agreement with previously reported results.

Resampling, or bootstrapping [35–37], approaches, such as
the single or dual pool technique described, although enabling
computational gains, do come at the potential cost of matrix
reuse since, typically, matrices are sampled with replacement.
In a single pool approach, a given transfer matrix T δ sampled
from P1 could in principle be used multiple times in calcula-
tion of T . Similarly, for a dual pool approach a given T δ from
P1 could be used several times when computing single, or dif-
ferent, T� matrices. Moreover, a T� drawn from P2 could be
reused during generation of one or more instance of T . Such
matrix reuse is undesirable since it can introduce residual and
unphysical biases and correlations between individual random
matrices. It is therefore important to establish the nature and
quantify the magnitude of these detrimental effects so as to
assess the viability of use of the bootstrapped approach. This
task forms the focus of the remainder of this work.

III. BOOTSTRAPPED ESTIMATION
OF POPULATION AVERAGES

We begin our analysis by first adopting a more general and
convenient notation to more easily accommodate the different
cases discussed above. Specifically, we consider an ensem-
ble of random M × M transfer matrices X governed by the
probability density function pX(X). As an attempt to avoid
notational clutter in what follows, we assume that transfer
matrices are real, although extension of our results to complex
ensembles is straightforward, as discussed below. We also
construct a pool P of NX transfer matrices X( j), where we
label each matrix in the pool with the superscript j ∈ [1, NX ].
For on-the-fly calculations we can form a single realization
of a cascaded transfer matrix Z by generating N individ-
ual independent X matrices according to the true underlying
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ensemble probability distribution pX(X). The Z matrices pro-
duced in this manner define a second ensemble governed by
the probability density function pZ(Z). Alternatively, when
using a pool-based approach we instead construct realizations
of cascaded transfer matrices Zα(l )

by drawing matrices X( j)

from the pool P and evaluating the ordered matrix products

Zα(l ) =
N∏

p=1

X(α(l )
p ) = X(α(l )

1 )X(α(l )
2 ) · · ·X(α(l )

N ), (1)

where α(l )
p is the pth member of a sequence α(l ). The members

of this sequence correspond to the labels of N matrices drawn
from the pool, such that α(l ) defines the lth realization of
Z. Note that the order of matrix products defined in Eq. (1)
will be assumed throughout this work. As an illustration to
clarify the connection with our earlier discussion, we can
make the associations X = T δ and Z = T�, as corresponds
to a dual pool approach. One possible sampling sequence
α(1) = (2, 2, 1, 2, 1), then means that the first realization of
T� = Zα(1)

is formed from sampling the first matrix in P =
P1 (X(1)) twice and the second matrix (X(2)) thrice, and tak-
ing the appropriately ordered matrix product. Generation of
multiple realizations of Zα(l )

can then be collected to form
P2. Alternative associations include (X,Z) = (T δ,T ) for the
single pool approach or (T�,T ) for the dual pool approach.

A. Estimator bias

Consider now the process of estimating some mean prop-
erty, F = 〈 f (Z)〉, of the true matrix ensemble, where 〈. . .〉
denotes the expectation with respect to pZ(Z) and where
f is some arbitrary function. We may, for instance, wish
to estimate mean transmission, channel capacity, or medium
depolarization [11,38,39]. In practice, to estimate F we would
consider the sample mean F̂ = f̄ = NZ

−1 ∑NZ
l=1 f (Zα(l )

),
where NZ is the number of realizations of Z that we choose
to generate (or sample from a pool) and where F̂ denotes
the estimator of F . The quality of F̂ can be assessed through
evaluation of the estimator bias

bias[F̂ ] = 〈F̂ 〉 − 〈 f 〉. (2)

As an example, consider estimating the mean transfer matrix
F = 〈Z〉, i.e., f (Z) = Z, using the sample mean

Z̄ = 1

NZ

NZ∑
l=1

Zα(l ) = 1

NZ

NZ∑
l=1

N∏
p=1

X(α(l )
p ). (3)

Notably, if all indices in each sequence α(l ) are distinct, then
taking the ensemble average of Eq. (3) reduces to taking the
product of the ensemble means of X, i.e.,

〈Z̄〉 = 1

NZ

NZ∑
l=1

N∏
p=1

〈X(α(l )
p )〉 = 1

NZ

NZ∑
l=1

〈X〉N = 〈Z〉, (4)

since each sample of X is drawn independently from the
underlying ensemble and is identically distributed. In this
scenario it is seen that the sample mean of the matrices Zα(l )

formed from sampling the underlying pool P is an unbiased
estimator of the true ensemble mean. It is simple to show
this is true for more general functions f (Z). When sampling

matrices from the (finite) pool P , however, there is a nonzero
probability that the same matrix is drawn multiple times when
sampling is performed with replacement, i.e., there may be
repeated indices in α(l ). Such matrix repetitions, in general,
will destroy the unbiased nature of our estimator. Continuing
our illustrative example, we can express the sample mean of
the ( j, k)th matrix element, Zjk , in terms of explicit sums over
the matrix elements of the constituent X(α(l )

p ) matrices such
that

〈Z̄ jk〉 = 1

NZ

NZ∑
l=1

∑
u1,...,uN−1

〈
N∏

p=1

X
(α(l )

p )
up−1up

〉
, (5)

where the sums over u1, . . . , uN−1 run from 1 to M and for no-
tational simplicity we let u0 = j, uN = k. The average of the
products appearing in Eq. (5) can be rewritten as the product
of averages as before; however, factors for which α(l )

p are equal
must be grouped together. For instance, again considering the
example whereby α(1) = (2, 2, 1, 2, 1), we can write〈

N∏
p=1

X
(α(1)

p )
up−1up

〉
= 〈

X (2)
u0u1

X (2)
u1u2

X (2)
u3u4

〉〈
X (1)

u2u3
X (1)

u4u5

〉
. (6)

In general, the average of a product, is not commensurate with
the product of averages (e.g., 〈X (1)

u2u3
X (1)

u4u5
〉 �= 〈X (1)

u2u3
〉〈X (1)

u4u5
〉)

and can moreover be nonzero, particularly when the indices
are the same (e.g., u2 = u4, u3 = u5). Consequently, it follows
that when matrices are sampled from P with replacement the
sample mean typically constitutes a biased estimator of the
ensemble mean. Critically, the bias originates from the finite
size of the pool from which we sample X( j) and would not
arise for on-the-fly calculations and is thus an artifact of the
bootstrapped approach. A notable exception is when the X
matrices belong to a zero-mean Gaussian ensemble and each
matrix product Zα is formed from the product of an odd
number of matrices (N is odd). Since all odd moments of a
zero-mean Gaussian process are identically zero and at least
one of the factors in Eq. (5) will necessarily be the average
of an odd number of terms, it follows that Eq. (5) reduces to
zero. More generally, bias can be avoided when X( j) are sam-
pled from P without replacement when generating individual
realizations of Zα, as assumed in the remainder of this work
(although we note different Zα matrices may crucially still
have common X( j) factors). Sampling without replacement
also more closely matches physical reality in the sense that
the probability of any two (or more) sections of a thick random
media being identical is infinitesimally small, such that if this
possibility arises it is, again, purely an artifact of the sampling
procedure that should be avoided.

B. Estimator variance

Having evaluated the bias of F̂ , we now consider the esti-
mator variance var[F̂ ] = 〈F̂ 2〉 − 〈F̂ 〉2. Using the definition of
the sample mean it is simple to show

var[F̂ ] = var[ f (Z)]

NZ
+

NZ∑
l1=1

NZ∑
l2=1
l1 �=l2

cov[ f (Zα(l1 )
), f (Zα(l2 )

)]

N2
Z

,

(7)
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where cov[x, y] = 〈xy〉 − 〈x〉〈y〉 denotes the covariance be-
tween x and y. The first term in Eq. (7) represents the usual
convergence in the mean as governed by the law of large
numbers [40] and hence corresponds to the variance in the
sample mean F̂ for on-the-fly calculations. Additional fluc-
tuations in F̂ , however, can arise when different samples of
Zα are correlated to some degree, as embodied in the second
term of Eq. (7). When the size of the pool P is finite, specific
samples of X(α(l )

p ) can be present in different realizations of
Zα, implying that these correlations are indeed nonzero when
the bootstrapping approach is used.

To assess the strength of these additional fluctuations, we
again consider the simple case for which f (Z) = Z. We there-
fore seek to assess the covariance matrix C for two ordered
matrix products Zα(1)

and Zα(2)
. Element-wise, we therefore

wish to evaluate

C jk
mn = 〈

Zα(1)

jk Zα(2)

mn

〉 − 〈
Zα(1)

jk

〉〈
Zα(2)

mn

〉
. (8)

For simplicity and without loss of generality, we assume that
the first sequence of sampled matrices is α(1) = (1, 2, . . . , N ),
whereas the second sampling sequence α(2) is arbitrary, al-
beit each element is unique since we assumed P is sampled
without replacement to avoid estimator bias (relaxation of this
assumption is discussed in Sec. V). Accordingly we drop the
α(1) dependence of Eq. (8) and let α(2) = α. Expressing the
matrix products of Eq. (1) as sums over components, we can
explicitly write the element-wise covariance in the form

C jk
mn =

∑
u1,...,uN−1
v1,...,vN−1

⎡
⎣〈

N∏
q=1

X (q)
uq−1uq

X
(αq )
vq−1vq

〉

−
〈

N∏
p=1

X (p)
up−1up

〉〈
N∏

q=1

X
(αq )
vq−1vq

〉⎤
⎦, (9)

where again for notational convenience we let v0 = m, vN = n
and the sums over v1, . . . , vN−1 run from 1 to M. With the
sampling assumptions given above and further assuming that
each α is equally likely, the probability that the two samples
of P contain at least one common matrix is

P
({

α
(1)
j

} ∩ {
α

(2)
j

} �= ∅) = 1 −
(

NX − N

N

)/(
NX

N

)
,

where (n
k) denotes the binomial coefficient. Noting, as before,

that samples of X used to generate P are taken indepen-
dently and are by definition identically distributed, we can
match any pairs of X (q) and X (αk ) in Eq. (9) for which
q = αk . A matching pair will generate a factor of the form
〈X (αq )

uαq−1uαq
X

(αq )
vq−1vq〉 in the first term of Eq. (9) and implies

that the matrix X(αk ) is common to both samples of the
matrix pool P . Remaining unpaired matrices, however, de-
couple and reduce to a product of their means. To facilitate
notation, we can momentarily neglect the ordering of the
elements of α and think of it as an integer set. We then in-
troduce the set function ξα associated with α defined such that
ξα({αq1 . . . αqk }) = {q1, . . . , qk}. In words, given some collec-
tion of elements of α, ξα picks out the indices corresponding to
those elements. Defining now the sets M = ξα({1, . . . , N} ∩
α), N = {1, . . . , N} \ α, and N ′ = ξα(α \ {1, . . . , N}), where

\ denotes the set difference, we find that Eq. (9) can be
written as

C jk
mn =

∑
u1,...,uN−1
v1,...,vN−1

⎡
⎣ ∏

q∈M

〈
X

(αq )
u(αq−1)uαq

X
(αq )
vq−1vq

〉

−
∏

q∈M

〈
X (q)

uq−1uq

〉〈
X

(αq )
vq−1vq

〉⎤⎦
×

∏
q∈N

〈
X (p)

up−1up

〉 ∏
q∈N ′

〈
X

(αp)
vp−1vp

〉
. (10)

Equation (10) is valid quite generally, i.e., for arbitrary
pX(X), however to proceed further we must make some re-
strictions on the statistical properties of X. As a simple case,
we assume that individual transfer matrices, X, are defined
by a maximum entropy (i.e., Gaussian) ensemble [31], as is,
for example, appropriate for scattering in the diffusive regime.
For this model, 〈X〉 = O and 〈X (q)

ab X (q)
cd 〉 = r2δacδbd , where O

is the null matrix and δ jk is the Kronecker δ function, i.e., each
individual element of X has equal variance, whereas distinct
elements are uncorrelated. While this model neglects more
complex correlations that may exist in transfer matrices, such
as the memory effect, physics imposed symmetry constraints
or reflection-transmission correlations [41–44], it serves to
sufficiently capture boot-strapping induced correlations that
may arise in cascaded models. Moreover, in practice, con-
stituent transfer matrices used in matrix chained models are
frequently drawn from simpler matrix ensembles such as the
circular or Gaussian ensembles [28,31,45]. The ballistic scat-
tering regime is discussed further below in Sec. V. With these
assumptions C jk

mn is only nonzero when α is an N permutation
of (1, 2, . . . , N ), that is, when the sets of sampled matrices
N and N ′ are empty and M = {1, . . . , N}, such that we can
again enumerate over q, whereby

C jk
mn =

∑
u1,...,uN−1
v1,...,vN−1

N∏
q=1

〈
X

(αq )
uαq−1uαq

X
(αq )
vq−1vq

〉
. (11)

The summations over v1, . . . , vN−1 appearing in Eq. (11) can
be performed analytically yielding

C jk
mn = r2N

∑
u1,...,uN−1

δuα1−1v0δvN uαN

N−1∏
q=1

δuα(q+1)−1uαq
. (12)

To help evaluate C jk
mn we define the multiset β of all in-

dices appearing in Eq. (12) (allowing for repeated indices)
such that β = {uα1−1, v0, uα2−1, uα1 , uα3−1, uα2 , . . . , uαN , vN },
which has cardinality |β| = 2(N + 1), corresponding to the
N + 1 different Kronecker δ functions appearing in Eq. (12).
The elements {u0, uN , v0, vN } each have a multiplicity of
one in β, whereas {u1, u2, . . . , uN−1} have multiplicities
of two. Mirroring the structure of Eq. (12) we fur-
ther define the multisets γ = {uα1−1, v0, uαN , vN } and ζ =
{uα2−1, uα1 , uα3−1, uα2 , . . .} such that β = γ ∪ ζ . Note that
u0 /∈ ζ if and only if α1 − 1 = 0. Similarly, uN /∈ ζ if and only
if αN = N . With these definitions, consider then the form of
Eq. (12) when {u0, uN } /∈ ζ which reduces to (recalling that
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we previously set u0 = j, etc. for convenience)

C jk
mn = r2Nδ jmδkn

∑
u1,...,uN−1

N−1∏
q=1

δuα(q+1)−1uαq
. (13)

The indices appearing in the summations are those contained
in {u1, u2, . . . , uN−1} each with multiplicities of two. We can
thus group together indices that form disjoint closed cycles.
For example, consider the permutation (1)(2,3,5)(4), which
we have written in standard cycle notation [46]. The summa-
tion in this case would take the form⎡

⎣∑
u1

δu1u1

⎤
⎦

⎡
⎣∑

u2

∑
u3

∑
u5

δu2u3δu3u5δu5u2

⎤
⎦

⎡
⎣∑

u4

δu4u4

⎤
⎦,

where the indices are grouped according to the cycle structure.
Given that each index is summed from 1 to M it is quickly seen
that each disjoint set of summations totals M such that

C jk
mn = r2Nδ jmδknMK , (14)

where K is the number of disjoint cycles of indices in the sum
(which we note do not contain u0 or uN ).

Moving now to a more complex case whereby we allow
u0 ∈ ζ , but still restrict uN /∈ ζ , we have

C jk
mn = r2Nδkn

∑
u1,...,uN−1

δu0uαp
δv0uα1−1

N−1∏
q=1
q �=p

δuα(q+1)−1uαq
, (15)

where, since u0 ∈ ζ , we note p is the index such that αp+1 = 1
where p �= 0. We also have that α1 − 1 > 0. We can once
again group indices into summations over closed disjoint cy-
cles of indices, which requires that the cycles do not contain
u0 or v0. Each set of indices that can be so factored contributes
a multiple of M to C jk

mn. We denote the remaining multiset of
indices ψ = {u0, uαp, uα1−1, v0, uαp, uα1−1, u f , ug, . . .}, where
u f and ug denote general indices which will have multiplicity
of two. From the structure of the indices appearing in Eq. (12),
it however follows that indices with multiplicity of two appear
as different arguments to the Kronecker δ functions, i.e., the
remaining summation can be written as

∑
uαp

∑
uα1−1

· · ·
∑

u f

δu0uαp
δuαp u f · · · δu f uα1−1δuα1−1v0 = δ jm.

We thus find that C jk
mn is again given by Eq. (14). Analogous ar-

guments show the same to be true for the case that u0 /∈ ζ , but
uN ∈ ζ . The remaining case ({u0, uN } ∈ ζ ) can be considered
in a similar manner, factoring out disjoint cycles of indices
not containing u0, uN , v0, and vN , each of which contributes a
factor of M. The remaining indices reduce upon summation
to factors of the form δ jkδmn or δ jmδkn depending on the
initial permutation, such that C jk

mn is given either by Eq. (14)
or by

C jk
mn = r2Nδ jkδmnMK . (16)

Given these results we observe that the elements of the
correlation matrix formed from C jk

mn are either zero or a fixed

value (=r2N MK ) for any given permutation α (note C is not
diagonal). Moreover, the number of nonzero elements is

M∑
j,k,m,n=1

δ jkδmn =
M∑

j,k,m,n=1

δ jmδkn = M2 (17)

for all possible permutations. Returning to Eq. (7) for f (Z) =
Z and considering the total variance in our estimate, as shall
be quantified by taking the 1-norm (denoted ‖ . . . ‖1), we can
write

‖var[Ẑ]‖1 = ‖var[Z]‖1

NZ
+

NZ∑
l1=1

NZ∑
l2=1
l1 �=l2

C(K, M, N )

N2
Z

, (18)

where K is a function of the specific sampled sequences α(l1 )

and α(l2 ) (or equivalently the sequences (1, 2, . . . , N ) and α(l )

under a suitable transformation) and

C(K, M, N ) = ‖C‖1 =
M∑

j,k,m,n=1

C jk
mn = r2N MK+2. (19)

The total covariance C(K, M, N ) hence characterizes the de-
gree to which Z(1,...,N ) and Zα are correlated for a given
permutation α (note that with a slight abuse of notation we
use α to denote the permutation described by the sequence
α). Naturally C(K, M, N ) is largest when α is the identity
(whereby K = N), i.e., Zα = Z(1,...,N ). Observing further that
‖var[Z]‖1 = C(N, M, N ), the relative magnitude of each con-
tribution in the second term of Eq. (18) with respect to the first
term is ρ/NZ , where

ρ = C(K, M, N )

C(N, M, N )
= 1

MN−K
(20)

is the Pearson correlation coefficient, which decreases with
matrix size M since K � N . For cascaded transfer matrix
models, the correlations between different matrix products
hence become less significant for systems with large numbers
of scattering modes, therefore promoting the use of bootstrap-
ping techniques in such scenarios. Likewise as the number
of matrices N within each cascade increases, so the potential
correlation between samples decreases in strength.

From a practical standpoint, it may also be of interest to
consider the additional number of realizations of Z that must
be generated using the bootstrapping method as compared
with the on-the-fly approach so as to produce the same to-
tal estimator variance ‖var[Ẑ]‖1. To answer this we recall
Eq. (18) and note that if only the first term is considered the
result corresponds to the total variance of Ẑ for on-the-fly
calculations. Therefore, denoting the total number of realiza-
tions required to produce a given and fixed ‖var[Ẑ]‖1 using a
bootstrapped or on-the-fly approach explicitly as Nbs

Z and Notf
Z ,

it follows [by equating Eq. (18) for the two cases and solving
the resulting quadratic equation in Nbs

Z ] that

Nbs
Z

Notf
Z

≈ 1 +
Nbs

Z∑
l1=1

Nbs
Z∑

l2=1
l1 �=l2

1

MN−K
, (21)
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where we have also used Eq. (20) and assumed that∑
l1

∑
l2 �=l1

ρ � Notf
Z . It therefore follows that the additional

number of realizations required to produce a desired variance
also decreases with increasing matrix size M and number of
matrices N .

Finally, we consider how the results given generalize when
the constituent matrices X are complex. Notably, all results
pertaining to estimator bias presented in Sec. III A are un-
changed. When considering estimator variance, for proper
complex random matrices X with zero mean and equal
variance, i.e., 〈X〉 = O and 〈X (q)

ab X (q)∗
cd 〉 = r2δacδbd , formally

identical results to those given in Sec. III B can also be de-
rived, albeit using complex generalizations to the correlation
functions [such as Eq. (8)], in which the second matrix factor
is conjugated. Note that pseudocorrelation functions are iden-
tically zero for proper random variables, i.e., 〈X (q)

ab X (q)
cd 〉 = 0,

and var[Re(X)] = var[Im(X)] = cov[X,X∗]/2 [47]. For im-
proper X the pseudocorrelation would, however, be nonzero
requiring further analysis, for which specification of both
〈X (q)

ab X (q)
cd 〉 and 〈X (q)

ab X (q)∗
cd 〉 would be needed.

IV. ENUMERATION OF PERMUTED
MATRIX CORRELATIONS

In addition to quantifying the total correlation between
permuted matrix products for a given permutation, it is also
relevant to enumerate the frequency with which each value
of correlation occurs across the symmetric group SN and thus
how often each would appear in the summation of Eqs. (18)
and (21). To begin to answer this we seek a more convenient
way to determine K . To do so we revisit the form of Eq. (12)
and define ordered (N + 1) tuples comprising of the indices
found in the first and second position of each Kronecker
delta, respectively, i.e., p1 = (uα1−1, uα2−1, . . . , uαN −1, vN )
and p2 = (v0, uα1 , uα2 , . . . , uαN−1 , uαN ). Noting that αq − 1
spans [0, N − 1] and αq spans [1, N] for q ∈ [1, N], it
follows that the subscripts are unique within each tuple
and we can equivalently consider the subscripts them-
selves whereby p1 = (α1 − 1, α2 − 1, . . . , αN − 1, N ) and
p2 = (0, α1, α2, . . . , αN−1, αN ). The cycles of the (N + 1)
permutation σ that maps p2 → p1 (i.e., considering σ as a
permutation matrix pT

1 = σpT
2 ) therefore correspond to the

cycles of indices in which we are interested. Specifically, K
is the number of disjoint cycles of σ which do not contain 0
or N , whereby it follows that K � N − 1.

To express σ in terms of α we let p0 = (0, 1, 2, . . . , N ) and
define the (N + 1) × (N + 1) permutation matrices σ1 and σ2

whereby pT
k = σkpT

0 for k = 1, 2. We thus immediately see
that σ2 has the structure

σ2 =
[

1 0T

0 σα

]
, (22)

where σα is the N × N permutation matrix associated with
α and 0 is an N-element column vector of zeros. We
also note pT

1 = σ1σ
−1
2 pT

2 such that σ = σ1σ
−1
2 . Defining the

cyclic-shifting operator

σ+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (23)

which shifts elements in a tuple p to the right in a cyclic
manner, and noting that shifting to the left (as performed by
σ− = σ−1

+ = σ T
+ ) is equivalent to subtraction of unity modulo

N + 1, we can write

σ1 = σ−σ2σ+ =
[
σα 0
0T 1

]
, (24)

yielding

σ = σ−σ2σ
−1
− σ−1

2 . (25)

From Eq. (25) it follows simply that det[σ ] = 1 implying that
σ is always an even permutation [46]. Furthermore, since σ

cannot map the first element of p2 (which is zero by construc-
tion) to the last element of p1 (which is N), it follows that
element (N + 1, 1) of σ is zero, i.e., σN+1,1 = 0.

With this formalism we can thus more simply numerically
enumerate the frequency of C(K, M, N ) across all possible
permutations αN ∈ SN , which we denote ν(K, N ). Note that
the argument M has been omitted since the frequency derives
purely from combinatorial aspects of matrix products and is
hence independent of matrix size. Results are presented in
Table II for small values of N . We note the following results
(which have been numerically verified via exhaustion up to
N = 13):

ν(N − 1, N ) = 1, (26)

ν(N − 2, N ) = N − 1, (27)

ν(N − 3, N ) =
(

N − 1

N − 3

)
+

(
N

N − 3

)
+

(
N + 1

N − 3

)
, (28)

ν(0, N ) = N!/�(N + 2)/2�, (29)

for all N . We observe Eqs. (28) and (29) correspond to in-
teger sequences A005718 and A107991 respectively [48,49].
Mathematical proofs of Eqs. (26)–(29) are presented in the
Appendix. Specifically, we prove Eqs. (26)–(28) through ex-
haustion and further conjecture that the graphical approach
employed to prove Eq. (28) can be extended to other cases. For
Eq. (29), however, we present an alternative approach based
on establishing a bijection to known combinatorial results.

The results of Table II and the analytic formulas for
ν(K, N ) highlight a number of important trends with respect
to correlations between cascaded transfer matrices. Most im-
portantly, it is evident that the relative frequency

νrel = ν(K, N )/N! (30)

of the higher-correlation cases (i.e., smaller S = N − K)
across the symmetric group becomes smaller for larger N .
Consequently, the majority of thick media transfer matrices
found from cascading large numbers of thin-section trans-
fer matrices are only weakly correlated with each other, if
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TABLE II. Table of frequency ν(N, K ) of each value of C(N, K ) for all permutations αN ∈ SN .

�����N
K

0 1 2 3 4 5 6 7 8 9

1 1
2 1 1
3 3 2 1
4 8 12 3 1
5 40 44 31 4 1
6 180 324 145 65 5 1
7 1260 1784 1499 370 120 6 1
8 8064 16 288 9772 5180 805 203 7 1
9 72 576 120 672 113 868 39 032 14 833 1568 322 8 1
10 604 800 1 327 680 958 956 570 044 126 861 37 149 2814 486 9 1

at all. Correlations thus decrease in both relative magnitude
and relative frequency as the number of matrices in a given
product increases and consequently the additional fluctuations
introduced in an estimator F̂ will also typically be lower.
The frequency function ν(K, N ) is nevertheless peaked at a
nonzero correlation, showing a nonmonotonic dependence on
K for a fixed N .

V. ROUTES TO GENERALIZATION

In the above analysis we made a number of restrictive
assumptions. We now briefly discuss and outline how general-
ization of our results could be sought by the interested reader.

First, we note that the statistical model assumed thus far
for the thin section transfer matrix X was appropriate for
the diffusive scattering regime. Alternatively, we can con-

sider the case for which a thin slab only weakly perturbs
the field incident upon it as is more relevant for calcula-
tions in the ballistic regime and DMPK-type models. For
weakly scattering slabs the transfer matrix can be written in
the form X = I + �X, where �X describes the scattering
based perturbation from the identity matrix I. As a simple
model we can assume now 〈�X〉 = O, where O is the null
matrix and 〈�Xab�Xcd〉 = r2δacδbd . It immediately follows
that 〈XabXcd〉 = δabδcd + r2δacδbd such that each individual
element of X has equal variance, whereas distinct off-diagonal
elements are uncorrelated. Note, diagonal elements of the
transfer matrix X describing direct transmission possess a
nonzero mean in contrast with the diffusive result.

For the case that α is an N permutation of (1, 2, . . . , N ) we
note that

C jk
mn =

∑
u1,...,uN−1
v1,...,vN−1

⎡
⎣ N∏

q=1

〈
X

(αq )
uαq−1uαq

X
(αq )
vq−1vq

〉
−

N∏
q=1

〈
X (q)

uq−1uq

〉〈
X

(αq )
vq−1vq

〉⎤⎦ (31)

=
∑

u1,...,uN−1
v1,...,vN−1

⎡
⎣ N∏

q=1

(
δuαq−1uαq

δvq−1vq + r2δuαq−1vq−1δuαq vq

) −
N∏

q=1

δuq−1uqδvq−1vq

⎤
⎦. (32)

Expanding the first product term gives a power series in r2,
for which a general term can be written in the form

r2|γ | ∑
u1,...,uN−1
v1,...,vN−1

∏
q∈β

δuαq−1uαq
δvq−1vq

∏
p∈γ

δuαp−1vp−1δuαpvp, (33)

where β and γ are sets of indices dependent on which term in
the series we consider and β ∪ γ = {1, 2, . . . , N}. Following
a similar logic to above, we can sum over v1, . . . , vN−1 such
that a general term in the expansion is given by

r2|γ | ∑
u1,...,uN−1

δuτ1−1v0δuτ|γ |vN

|β|∏
j=1

δuρ j −1uρ j

|γ |−1∏
k=1

δuτk uτk+1−1 , (34)

where ρ j = αβ j and τk = αγk . Equation (34) can then be
evaluated by counting the cycles of the permutation which
transforms the tuple p1 to p2 for

p1 = (ρ1 − 1, . . . , ρ|γ | − 1, τ1 − 1, τ2 − 1, . . . , τ|τ | − 1, N )

and

p2 = (ρ1, . . . , ρ|γ |, 0, τ1, . . . , τ|τ |−1, N ).

The analysis for a single term in Eq. (32) can thus proceed
in an analogous manner to that given above for the diffusive
regime. Given the indices involved in each term, as defined
by the sets β and γ [cf. Eq. (34)], differ for each term, it
follows that the relevant permutation and the resulting con-
tribution to the total covariance also varies term by term.
Nevertheless, the route to the ballistic regime is apparent,
if not somewhat tedious. Ultimately, similar trends in the
bootstrapped induced fluctuations in estimates of population
averages, in terms of matrix size M and number of factors in
the matrix products N , would result.

Finally, we briefly consider the generalization whereby
matrices X( j) are sampled from the pool P with replacement.
As per our earlier discussion in Sec. III, this sampling strategy
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can introduce undesirable bias in an estimate of the sample
mean, but is simple to implement. The consequence of
sampling from P with replacement, is that indices in both
α(1) and α(2) may be repeated [note it is now necessary to
reintroduce the more general notation since the previous
assumption that α(1) = (1, 2, . . . , N ) does not adequately
encompass all possibilities]. In calculation of covariance
matrix elements [Eq. (9)], repeated indices in α(1) and
α(2) imply that upon grouping averages of like terms [cf.
Eq. (12)], one can obtain higher-order moments. For instance,
if α(1) = (1, 2, 2) and α(2) = (4, 3, 2), the first product
appearing in Eq. (9) would include a factor of the form
〈X (2)

pq X (2)
rs X (2)

uv 〉 (where we let the subscripts take arbitrary
values for simplicity). Use of the moments-cumulant formula
[50] (or Isserlis’ theorem for Gaussian random variables)
would in principle allow such higher-order moments to be
expressed in terms of lower orders. So doing, however,
requires careful attention to be paid to the partitioning of the
index sets for each individual case, which rapidly becomes
cumbersome but is, in principle, possible.

VI. CONCLUSIONS

In this article we have considered the problem of sim-
ulating wave propagation in random media using random
matrices. Through forming the appropriate ordered product
of random transfer matrices drawn from a suitable ensemble,
waves can in principle be propagated through thick media.
Indeed, such cascaded models have spawned a number of
interesting insights into the statistics of, for instance, the
eigenvalues and mode spacings of the underlying ensembles
[28,51–56]. To improve efficiency of cascaded matrix models,
we have here proposed a bootstrapped dual pool approach
whereby after pregeneration of pools of random transfer ma-
trices, many realizations can be simulated through matrix
resampling. The proposed approach not only reduces the
number of matrix generations required, but also reduces the
total number of matrix products, which can limit computation
times when there are many scattering modes available. We
have however also shown that matrix resampling inherent in
the proposed technique can in principle adversely affect the
statistical properties of the resulting ensemble. In particular,
we considered how bootstrapping can introduce undesirable
statistical bias and additional variance in estimates of pop-
ulation averages of properties such as transmission. While
bias was shown to be avoidable through an appropriate sam-
pling strategy, correlations that arise from matrix reuse, and
the additional estimator covariance that follows, remain. The
strength of this additional covariance, as characterized by
Eq. (18), was found to be dependent on the correlation be-
tween different matrix permutations. An extensive study of
the magnitude and frequency of such correlations was thus
also presented, including proofs of a number of closed form
analytic formulas [Eqs. (26)–(29)]. An important finding of
this study was that the consequences of spurious correla-
tions will typically decrease in severity as the dimension
of random matrices and the number of matrix products in-
creases [see Eqs. (20) and (30)]. Fortunately, bootstrapping
approaches are only required in the regime where scattering
channels are numerous and scattering media are many mean-
free paths in length. Our results therefore show that, in spite
of the detrimental statistical effects of bootstrapping, practical

application of either a single or dual pool approach is not
limited by them.
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APPENDIX: MATHEMATICAL PROOFS
OF CORRELATION RESULTS

1. Proof of Eq. (26)

To prove Eq. (26) we begin by considering the cy-
cle type of σ [46]. Specifically we recall that an
N + 1 permutation with ai cycles of length i has cycle type
a = (a1, a2, a3, . . . , aN , aN+1). It follows then that N + 1 =∑

i iai and the total number of cycles Nc = ∑
i ai. Since we

are ultimately interested in the number of cycles K that do not
contain zero or N , we must consider two cases: when zero and
N are in the same cycle whereby Nc = K + 1 (Case A) and
when zero and N are in different cycles, whereby Nc = K + 2
(Case B). Now, assuming K = N − S, we can write

K =
∑

i

ai − � = N − S =
(∑

i

iai

)
− 1 − S, (A1)

where � = 1 for Case A and � = 2 for Case B. Upon rear-
rangement, Eq. (A1) becomes∑

i

(i − 1)ai = a2 + 2a3 + · · · + NaN+1 = S − � + 1.

(A2)

For S = 1 we can see by inspection that the possi-
ble cycle types satisfying Eq. (A2) for Case A are
aA = (N − 1, 1, 0, 0, . . .) such that the cycles must be
(0, N )(1)(2) . . . (N − 1), whereas for Case B aB = (N +
1, 0, 0, 0, . . .) such that the cycles must be (0)(1)(2) . . . (N −
1)(N ). Noting that odd permutations have an even number
of even cycles [46], the former solution, aA, is not permitted
since it describes an odd permutation. There is thus a single
permutation σ = (0)(1)(2) . . . (N − 1)(N ), corresponding to
α = (1)(2) . . . (N ), i.e., the identity, for which S = 1 therefore
completing the proof of Eq. (26).

2. Proof of Eq. (27)

We can approach the proof of Eq. (27) in a similar manner
to that used to prove Eq. (26) above. Consider then possible
solutions of Eq. (A2) when S = 2, i.e., K = N − 2. For Case
A we require

a2 + 2a3 + 3a4 + · · · = 2 (A3)

such that

aA =
{

(N − 3, 2, 0, 0, . . .)
(N − 2, 0, 1, 0, . . .) , (A4)
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TABLE III. Index constraints and corresponding number of al-
lowable permutations for different classes of cycle structure.

Class
Cycle

Structure Constraints Total Cases

B1.1 (0, p)(q, N ) q < p 1
2 (N − 1)(N − 2)

B1.2 (0, p)(q, r) p < r < q 1
6 (N − 1)(N − 2)(N − 3)

B1.3 (p, q)(r, N ) p < r < q 1
6 (N − 1)(N − 2)(N − 3)

B1.4 (p, q)(r, s) p < s < q < r 1
24 (N−1)(N−2)(N−3)(N−4)

B2.1 (0, p, q) q < p 1
2 (N − 1)(N − 2)

B2.2 (p, q, N ) q < p 1
2 (N − 1)(N − 2)

B2.3 (p, q, r) p < r < q 1
6 (N − 1)(N − 2)(N − 3)

corresponding to cycle structures of the form

(0, N )(1)(2) . . . (p, q) . . . (N − 1) (A5)

and

(0, p, N )(1)(2) . . . (p − 1)(p + 1) . . . (N − 1), (A6)

respectively, where p �= q and p, q ∈ [1, N − 1]. Cycle struc-
tures of the form of Eq. (A5) are not permitted since σ cannot
map zero directly to N (σN+1,1 = 0), whereas cycle structures
of the form of Eq. (A6) are permitted such that there are N − 1
corresponding permutations. Inspection of the structure of the
associated permutation matrices also show that they are of the
form required by Eqs. (22)–(25) (this is discussed further in
the next section). For Case B, i.e., � = 2, we require

a2 + 2a3 + 3a4 + · · · = 1, (A7)

which has the solution (a2, a3, . . .) = (1, 0, . . .) such that
aB = (N − 1, 1, 0, 0, . . .). This corresponds to an odd permu-
tation implying these solutions are forbidden. In total there are
hence N − 1 allowed permutations of the form of Eq. (A6) for
which K = N − 2, hence concluding our proof of Eq. (27).

3. Proof of Eq. (28)

To prove Eq. (28) we once more consider the possible
solutions to Eq. (A2) now for S = 3, i.e., K = N − 3, which
are

aA =
⎧⎨
⎩

(N − 5, 3, 0, 0, 0, . . .)
(N − 4, 1, 1, 0, 0, . . .)
(N − 3, 0, 0, 1, 0, . . .)

, (A8)

corresponding to odd (and hence invalid) permutations, and

aB =
{

(N − 3, 2, 0, 0, 0, . . .)
(N − 2, 0, 1, 0, 0, . . .) , (A9)

which correspond to even and hence potentially acceptable
solutions. Seven distinct classes of cycle structures for the
Case B cycle types can be constructed, as are listed in
Table III (omitting one cycles for clarity), where p, q, r, s ∈
[1, N − 1] are all distinct. A naive consideration of the com-
binatorics of possible values of p, q, r, s, however, does not
yield Eq. (28), as some combinations are inconsistent with the
required structure of σ as dictated by Eq. (25). To illustrate we
use the two-line representation of permutations and consider
the ordered action of σ−1

2 and σ1 on the original sequence

[0, 1, 2, . . . , N − 1, N], which can hence be represented using
a three-line representation.

Consider the case when the cycle structure of σ is of
Class B1.1 as an initial illustration. Given that σ−1

2 does not
permute the 0 element [as easily seen from Eq. (22)] we can
immediately populate the 0 element into the first position on
the second row as shown in Fig. 1(a). Further noting that the
cycle structure given in Table III means that under the action
of both permutations 0 → p, we can place p into the first
element of the third row, while simultaneously populating the
pth element with zero. Similarly, σ1 does not affect the last
element of the sequence upon which it acts [cf. Eq. (24)], and
the cycle structure implies N → q (and vice versa), whence
we can fill additional positions in our three-line representation
as also shown in Fig. 1(a). In Fig. 1(a), note that we have
implicitly assumed that p < q. For cycle structures of Class
B1.1, all other cycles are one-cycles such that the elements in
the upper and lower lines must match for all other columns in
our representation (albeit, importantly they need not match in
the middle row). To allow for sequences of general length we
denote these matching elements using ellipses (· · · ).

Blank spaces in Fig. 1(a) correspond to elements that do
not follow directly from the cycle structure of σ and are thus
as yet unknown in general, however, we can attempt to de-
duce them by invoking the transposition structure imposed by
Eqs. (22) and (24). To visualize this structure, assume that σ−1

2
induces the transposition indicated in blue in Fig. 1(a), which
is inherited from, and encoded in, σ−1

α = σ T
α (or equivalently

σα). Crucially, σ1 also derives from σα and so it is helpful to
consider the inverse of the blue transposition, which we have
depicted in Fig. 1(a) in green. Equation (24) however tells us
that to fully describe σ1 we must also consider the cyclic oper-
ator, which ultimately yields the shifted transposition depicted
in red. Individual transpositions arising from the action of σ1

can thus be graphically inferred from each transposition in
σ−1

2 .
With these observations we can now attempt to popu-

late all elements of the three-line representation and exclude
any cases from our enumeration which lead to logical
contradictions. With reference to Fig. 1(b) and again con-
sidering Class B1.1 for p < q, we start by considering the
transposition necessary to place q in the last element of the
second row (depicted in dark blue). As discussed we can
immediately infer that the σ1 must contain the transposition
shown in light blue (we henceforth use the color coding
whereby a dark color transposition infers the corresponding
light colored transposition). Noting the existence of the light
blue transposition, we can back propagate the element in
the final row (here denoted a) to the correct position in the
second row. Since a belongs to a one-cycle, we can then
conclude that σ−1

2 must contain the transposition shown in
dark green, which in turn implies the permutation shown in
light green. This pattern repeats [as shown in both Fig. 1(b)
and Animation 1 of the Supplemental Material [57] until we
reach the light red transposition. This transposition requires
special attention since it contains the 0 element. In particular,
if we back propagate 0 to the middle row, we find that it
necessarily does not originate from the first position. This is a
contradiction with the structure of σ−1

2 , which dictates that 0
must appear in the first position of the middle row. Therefore,
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(a)

(b)

FIG. 1. (a) Three line representation of the sequential permutations σ−1
2 and σ1. The existence of the transposition shown in blue in σ−1

2 ,
which has the inverse shown in green, implies that the shifted inverse transposition shown in red exists in σ1. (b) Example graphical proof
for Class B1.1 cycle structures. Repeated application of the permutation structure shown in (a) leads to a logical contradiction for p < q as
highlighted.

we can conclude that any cycle structure of Class B1.1 with
p < q does not admit a permutation of the correct structure.
Repeating this process, however, starting from the assump-
tion that p > q, generates no such contradiction, as shown
in Animation 1 of the Supplemental Material [57], such that
these cases are admissible. Counting the number of different
possible choices of p and q satisfying this constraint (p >

q) yields (N − 1)(N − 2)/2 acceptable permutations. An ex-
haustive application of these rules to the cycle types defined
in Table III and for different possible orderings of p, q, r, s (as
applicable) is depicted in the animations in the Supplemental
Material [57]. Ultimately we find the index constraints listed
in Table III along with the corresponding number of possible
permutations. In the calculation of the number of possible
permutations it should be remembered that cycles are unique
only up to cyclic permutations. The graphical proof described
above, for example, shows that r < p < q and q < p < r
admit allowable Class B1.2 permutations, however, these dif-
ferent orderings yield identical permutations since the cycles
(q, r) and (r, q) are equivalent. Care must hence be taken not
to count such duplicate permutations multiple times. Finally,
summation of all possibilities listed in Table III and some
simple algebraic manipulation yields our desired result in the
form of Eq. (28). We conjecture such a graphical proof by
exhaustion could be extended to other values of S, however,
we leave this to the enthusiastic reader.

4. Proof of Eq. (29)

Finally, we turn our attention to S = N , i.e., K = 0. We
define ei to be the standard basis vector of the (N + 1) di-
mensional real coordinate space whose ith entry is 1 and the
rest of its entries are 0. The possible solutions of Eq. (A2) are
aA = eN+1 and, for each i ∈ {1, . . . , �(N + 1)/2�}, the vector
aB = ei + eN+1−i.

In our proof of Eq. (29) we treat odd and even N sepa-
rately. Consider first then the case where N = 2n is even. The
solutions for Case B and even N are immediately seen to be
invalid since σ is an even permutation. Consequently, σ must
have cycle type eN+1, i.e., it is an N + 1 cycle. Observe from
Eq. (25) that σ is expressed as the product of σ−, which by

definition is an N + 1 cycle, and another permutation of cycle
type eN+1, since σ2σ

−1
− σ−1

2 is conjugate to σ−. The number
of permutations π of cycle type eN+1 such that σ−π also has
cycle type eN+1 is known to be equal to (2n)!/(n + 1) [58,59].
Hence it immediately follows that

ν(0, 2n) = (2n)!/(n + 1), (A10)

corresponding to Eq. (29) for even N .
We now consider the case for which N = 2n + 1 is odd,

for which we find that Case A solutions are invalid due to
permutation symmetry. Following the above logic, we thus
wish to count the number of permutations π of cycle type
eN+1 such that σ−π is the product of two disjoint cycles c0

and cN with 0 ∈ c0 and N ∈ cN . We let �k (N ) denote the set
of permutations π = σ2σ

−1
− σ−1

2 such that σ−π is the product
of two disjoint cycles c0 and cN with 0 ∈ c0, N ∈ cN , and the
cycle c0 consists of k elements. Furthermore, we let �(N )
denote the set of permutations π of cycle type eN+1 such that
σ−π also has cycle type eN+1. First, we observe that there is
a bijection from �1(N ) to �(N − 1). Indeed, it is straightfor-
ward to check that the cycle (0, α0, . . . , αN−1) ∈ �1(N ) if and
only if (α0 − 1, . . . , αN−1 − 1) ∈ �(N − 1). Using Eq. (A10),
we therefore find that the cardinality of our sets satisfy

|�1(N )| = |�(N − 1)| = (2n)!/(n + 1). (A11)

Next we establish a bijection between the sets �k (N ) and
�k+1(N ) for k ∈ {1, . . . , N − 1}. Supposing that the permu-
tation π = (0, α0, . . . , αN−1) ∈ �k (N ), we can write

σ−π = (0, β1, . . . , βk−1)(γ1, . . . , γN−k, N ). (A12)

Letting g ∈ {0, . . . , N − 1} be the index such that αg =
γN−k + 1 and setting π ′ = (0, αg, αg+1, . . . , αg+N ), with in-
dices reduced modulo N , it follows that

σ−π ′ = (0, γN−k, β1, . . . , βk−1)(γ1, . . . , γN−k−1, N ), (A13)

and hence π ′ ∈ �k+1(N ). This map from �k (N ) to �k+1(N )
has an inverse in the following sense: For k � 1, if we suppose
that the permutation π = (0, α0, . . . , αN−1) ∈ �k+1(N ), we
have

σ−π = (0, β1, . . . , βk−1, βk )(γ1, . . . , γN−k−1, N ). (A14)
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Letting g ∈ {0, . . . , N − 1} be the index such that αg = β2 +
1 if k � 2 and αg = 1 if k = 1, and furthering setting π ′ =
(0, αg, αg+1, . . . , αg+N−1), with indices reduced modulo N , it
then follows that

σ−π ′ = (0, β2, . . . , βk )(γ1, . . . , γN−k−1, β1, N ), (A15)

whereby π ′ ∈ �k (N ).

We have thus established that |�k (N )| = |�k+1(N )| for all
k ∈ {1, . . . , N − 1}. Next, noting that we can write ν(0, N ) =∑N

k=1 |�k (N )|, we can deduce upon using Eq. (A11) that

ν(0, 2n + 1) = (2n + 1)
(2n)!

n + 1
= (2n + 1)!

n + 1
. (A16)

Finally, upon combining Eqs. (A10) and (A16) we obtain
Eq. (29).
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