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In this work, we develop a phase-field-based lattice Boltzmann (LB) method for a two-scalar model of the
two-phase flows with interfacial mass or heat transfer. Through the Chapman-Enskog analysis, we show that the
present LB method can correctly recover the governing equations for phase field, flow field, and concentration or
temperature field. In particular, to derive the two-scalar equations for the mass or heat transfer, we propose a new
LB model with an auxiliary source distribution function to describe the extra flux terms, and the discretizations
of some derivative terms can be avoided. The accuracy and efficiency of the present LB method are also tested
through several benchmark problems, and the influence of mass or heat transfer on the fluid viscosity is further
considered by introducing an exponential relation. The numerical results show that the present LB method is
suitable for the two-phase flows with interfacial mass or heat transfer.
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I. INTRODUCTION

Two-phase flows with interfacial mass and heat transfer
are widely encountered in many scientific and engineering
fields, including chemical reactors [1,2], boiling [3,4], PEM
electrolysis cell [5], combustion [6], and carbon sequestra-
tion [7]. These complex problems involve a range of physical
processes that occur at different scales and include multiple
fields, and it is difficult to obtain the analytical solutions. With
the development of the computer techniques and scientific
computing, the numerical simulation has become an essential
tool for these problems [8–10] and some different numerical
methods have also been developed to capture the details at the
interface of two-phase flows [11,12]. The key to investigate
the interfacial mass or heat transfer is threefold: (i) capturing
or tracking the fluid interface, (ii) describing the convection
and diffusion of mass or heat transfer in the bulk phase, and
(iii) determining the mass or heat transport at the interface.

Generally speaking, the methods for capturing or tracking
the fluid interface can be divided into two main kinds, i.e., the
sharp-interface and diffuse-interface methods. In the sharp-
interface method, for instance, the volume of fluid (VOF)
method [13,14] and the level set method [15,16], the interface
thickness is assumed to be zero, which may be not true since
the interface usually has a thin but nonzero thickness for the
two-phase flows in reality. On the contrary, in the diffuse-
interface method, the interface is assumed to have a finite
but nonzero thickness, and all physical variables (e.g., density
and velocity) and parameters (e.g., viscosity and diffusivity)
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change smoothly across the interface. As one of the diffuse-
interface methods, the phase-field model has been widely used
in the simulation of multiphase flows [17–20] since it does
not need to track interface explicitly, and simultaneously, it
can preserve mass conservation. Two-phase problems with
the mass and heat transfer involve disparate lengths and time
scales, and the scalar quantities often experience very large
diffusivity ratios between different phases [21,22], which may
lead to an unphysical leakage (artificial diffusion) at the in-
terface and negative concentration [23]. To overcome the
artificial diffusion, a consistent treatment on the advection
term of both discontinuities should be introduced, which can
ensure the interface and the species concentration disconti-
nuity surface are advected synchronously and preserve the
positivity of scalars [24–26]. However, most works are lim-
ited to the VOF method, and the studies on diffuse-interface
method for scalar transport are relatively rare. Recently, Mir-
jalili et al. [27] proposed a phase-field-based two-scalar model
for the two-phase problems including the interfacial mass and
heat transfer with arbitrary diffusivity ratios, and this model
can prevent the unphysical leakage of mass and heat at the
interface by preserving the thermodynamic equilibrium of the
steady-state solution.

Over the past three decades, the lattice Boltzmann (LB)
method has become a powerful computational tool in the
study of complex fluid flows [28–30], such as the multiphase
and multicomponent flows [31–34], dendritic growth [35,36],
phase transition [37,38], and the fluid flows in porous me-
dia [39,40], due to its features of kinetic background, easy
implementation of boundary conditions, and fully parallel
algorithm. Recently, the LB method has also been adopted to
investigate the coupling problems of interfacial mass and heat
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transfer in two-phase flows [41–44]. To accurately describe
the concentration or temperature scalar at the interface, Lu
et al. [45] analyzed the relation between Henry’s law and the
weight coefficients in LB model for conjugate mass trans-
fer, while the selection of parameters is restricted. Inspired
by the continuum species transfer (CST) method [46], Yang
et al. [47] directly added the CST model as a source term into
the convection-diffusion equation, but the mass flux continuity
at the interface is established in the VOF framework. Later,
Tan et al. [48] adopted a unified single-field concentration
equation based on the phase-field method in Ref. [49], and
considered the gas contraction at the gas-liquid interface by
introducing a source term. Recently, a diffuse-interface LB
model for surfactant transport was proposed in Ref. [50],
which has been further extended to solve a unified convection-
diffusion equation with the Neumann boundary conditions in
complex geometries [51]. However, all above works were car-
ried out based on one-scalar models, which still has a special
limitation on the diffusivity ratio and may bring an unphysical
leakage when the ratio of diffusivity is large.

In this work, we will propose a phase-field-based LB
method for the two-phase problems with interfacial mass or
heat transfer based on the two-scalar model developed by
Mirjalili et al. [27]. In Sec. II, the governing equations for
two-phase flows with interfacial mass or heat transfer are
introduced, including the Allen-Cahn equation for phase field,
the Navier-Stokes equations for flow field, the two-scalar
equations, as well as the degenerate one-scalar equation for
mass or heat transfer. In Sec, III, the LB method for the
governing equations are designed, and through the Chapman-
Enskog analysis [29,52] the two-scalar model can be correctly
recovered from the present LB method. In Sec. IV, the numer-
ical validations and discussion are performed through several
benchmark problems, and finally, some conclusions are sum-
marized in Sec. V.

II. GOVERNING EQUATIONS FOR INTERFACIAL MASS
OR HEAT TRANSFER IN TWO-PHASE FLOWS

In this section, we introduce the governing equations for
the interfacial mass or heat transfer in two-phase flows.
Specifically, the conservative Allen-Cahn equation [53] is
employed to describe the phase field, and the incompress-
ible Navier-Stokes equations are utilized to describe the flow
behavior of the complex system. Additionally, the concen-
tration field or temperature field is characterized by using
either the one-scalar or two-scalar model proposed by Mir-
jalili et al. [27].

A. Allen-Cahn equation for phase field

Based on the phase-field theory, the Allen-Cahn equa-
tion for the interface capturing can be expressed by [53]

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
Mφ

(
∇φ − 4φ(1 − φ)

W
n
)]

, (1)

where φ is the order parameter with φ = 1 in fluid 1 and
φ = 0 in fluid 2, u is the fluid velocity, Mφ is the mobility
coefficient, W is the interface thickness, and n = ∇φ/|∇φ| is
the unit normal vector. Usually the initial distribution of the

order parameter is approximated by the following hyperbolic
tangent profile,

φ(x) = 1

2
+ 1

2
tanh

2l (x)

W
, (2)

where l (x) is a signed-distance function.

B. Incompressible Navier-Stokes equations for flow field

To describe the fluid flows, we consider the following
Navier-Stokes equations for incompressible Newtonian fluids,

∇ · u = 0, (3a)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + ∇uT )]

+ Fs + G, (3b)

where ρ is the fluid density, p is the hydrodynamic pressure,
μ is the dynamic viscosity, Fs = μφ∇φ is the surface tension
force, and G is a body force, such as gravity ρg. Here μφ is
the chemical potential defined by

μφ = 4βφ(φ − 1)(φ − 0.5) − k∇2φ, (4)

where β and k are physical parameters that depend on the
interface thickness W and the surface tension coefficient σ ,

β = 12σ

W
, k = 3σW

2
. (5)

The density ρ in Eq. (3b) is usually a linear function of the
order parameter φ,

ρ = φ(ρ1 − ρ2) + ρ2, (6)

where ρ1 and ρ2 are the densities of the pure fluid 1 and fluid
2, respectively. In addition, the dynamic viscosity μ is also a
linear combination of viscosities μ1 and μ2 in fluids 1 and 2,

μ = φ(μ1 − μ2) + μ2. (7)

C. Two-scalar equations for mass or heat transfer

The mass or heat evolution in a two-phase system includes
the transport in the bulk of each phase and the mass or heat
transfer at the two-phase interface. Usually, the mass trans-
port in the bulk phases can be described by the following
convection-diffusion equation,

∂ c̃i

∂t
+ ∇ · (c̃iu) = ∇ · (Di∇c̃i ), (8)

where i = 1, 2 represents the phase index, c̃i is the concentra-
tion and Di is the diffusivity in phase i. To satisfy the mass
conservation in a closed system, the mass flux transfer at the
interface should satisfy

D1∇nc̃1 = D2∇nc̃2, (9)

which is a special case of the general boundary conditions at
the two-phase interface [54]. Actually, the velocity is smooth
across the fluid interfaces, and thus the convective flux con-
sidered in Ref. [54] can be neglected. Similarly, the governing
equation for heat transport in the bulk phases is given by

∂ q̃i

∂t
+ ∇ · (q̃iu) = ∇ ·

(
ki

ρiCp,i
∇q̃i

)
, (10)
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where ki is the heat conductivity, Cp,i is the specific heat
capacity. The heat balance at the interface is given by

k1

ρ1Cp,1
∇nq̃1 = k2

ρ2Cp,2
∇nq̃2. (11)

Due to the chemical or thermal equilibrium at the interface,
one can obtain the following relations,

c̃1

c̃2
= H,

q̃1

q̃2
= ρ1Cp,1

ρ2Cp,2
, (12)

where H is the Henry coefficient in Henry’s law.
Taking the two-dimensional case as an example, we can

obtain the following equation from Eq. (8) through introduc-
ing c̃i being the average of concentration in y direction,

∂ c̃i

∂t
+ ∂ (c̃iu)

∂x
= ∂

∂x

(
Di

∂ c̃i

∂x

)
. (13)

The y-averaged mean concentration values in each phase
are then denoted by c̃1(x) = c1(x)/φ(x) and c̃2(x) =
c2(x)/[1 − φ(x)]. Based on this assumption, Eq. (13) can be
further rewritten as

∂c1

∂t
+ ∂ (c1u)

∂x
= φ

∂

∂x

(
D1

∂ c̃1

∂x

)
, (14a)

∂c2

∂t
+ ∂ (c2u)

∂x
= (1 − φ)

∂

∂x

(
D2

∂ c̃2

∂x

)
, (14b)

where the relation ∂tφ + u · ∇φ = 0 is used. If the scalar
only exists in phase 1 and does not diffuse into phase 2, i.e.,
D2 = 0, we can derive D1∂xc̃1∂xφ = 0 according to Eq. (9),
and similarly, we have D2∂xc̃2∂xφ = 0 in phase 2. Therefore,
Eq. (14) can be rewritten as

∂c1

∂t
+ ∂ (c1u)

∂x
= ∂

∂x

(
D1φ

∂ c̃1

∂x

)

= ∂

∂x

[
D1

(
∂c1

∂x
− 4(1 − φ)c1

W
n
)]

, (15a)

∂c2

∂t
+ ∂ (c2u)

∂x
= ∂

∂x

(
D2(1 − φ)

∂ c̃2

∂x

)

= ∂

∂x

[
D2

(
∂c2

∂x
+ 4φc2

W
n
)]

, (15b)

where the following approximation for the gradient of order
parameter is adopted,

∇φ = 4φ(1 − φ)

W
n. (16)

To further describe the interfacial mass or heat transfer at
fluid interface, the interface flux terms should be introduced
into Eq. (15), and the two-scalar equations can be given

by [27]

∂c1

∂t
+ ∇ · (c1u) = ∇ ·

[
D1

(
∇c1 − 4(1 − φ)c1

W
n
)]

+ ADm[Keqc2φ − c1(1 − φ)]

− Dm∇φ · ∇(c1 + Keqc2), (17a)

∂c2

∂t
+ ∇ · (c2u) = ∇ ·

[
D2

(
∇c2 + 4φc2

W
n
)]

+ ADm[c1(1 − φ) − Keqc2φ]

+ Dm∇φ · ∇(c1 + Keqc2), (17b)

where A is a free parameter representing an inverse time scale
to thermodynamic equilibrium, Dm is the mixed diffusivity
and can be expressed as

Dm = D1D2

KeqD1(1 − φ) + D2φ
. (18)

Here Keq is used to represent an arbitrary jump in the equilib-
rium scalar concentration at the interface, Keq = H is for mass
transfer while Keq = ρ1Cp,1/ρ2Cp,2 for heat transfer.

D. One-scalar model for mass or heat transfer

If we introduce c = c1 + c2 to be the total species concen-
tration content per total volume, then from Eq. (15) and the
thermodynamic equilibrium at the interface, i.e., c̃1 = Keqc̃2,
the following consistent one-scalar model can be obtained,

∂c

∂t
+ ∂ (cu)

∂x
= ∂

∂x

[
[D1φKeq + D2(1 − φ)]

∂ c̃2

∂x

]
. (19)

By using the relation c = c̃1φ + c̃2(1 − φ) and extending
the above one-dimensional equation, a consistent one-scalar
model for total species concentration content per total volume
can be derived,

∂c

∂t
+ ∇ · (cu) = ∇ ·

[
Deff∇

(
c

Keff

)]
, (20)

where the effective diffusivity is given by

Deff = D1Keqφ + D2(1 − φ), (21)

and the equilibrium concentration ratio across the interface is

Keff = Keqφ + (1 − φ). (22)

III. LATTICE BOLTZMANN METHOD
FOR THE TWO-PHASE FLOWS WITH INTERFACIAL

MASS OR HEAT TRANSFER

In this section, we introduce several LB models for the gov-
erning equations introduced in above section. Usually, the LB
method can be categorized into single-relaxation-time [55],
two-relaxation-time [56,57], and multiple-relaxation-time
(MRT) [52,58] models based on the different forms of col-
lision term employed. To present a general method, the
MRT-LB model is adopted in this work.
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A. Lattice Boltzmann model for phase field

Following the previous work [59], the MRT-LB evolution
equation for the phase-field model (1) can be written as

f j (x + c jδt, t + δt ) = f j (x, t ) − �
f
jk

[
fk (x, t ) − f eq

k (x, t )
]

+ δt
(
δ jk − �

f
jk/2

)
Fk (x, t ), (23)

where the f j (x, t ) represents the particle distribution function
at position x and t along the discrete velocity direction j
( j = 0, 1, 2, · · · , q with q being the number of the discrete
velocity), f eq

j (x, t ) is the corresponding equilibrium distri-

bution function, (� f
jk ) is a q × q invertible collision matrix,

and c j is the discrete velocity and δt is the time step. For
the Allen-Cahn Eq. (1), the equilibrium distribution function
f eq

j (x, t ) can be defined as

f eq
j = ω jφ

(
1 + c j · u

c2
s

)
, (24)

where ω j is the weight coefficient, cs represents the lattice
sound speed. In order to exactly recover the Allen-Cahn equa-
tion, the source distribution function Fj (x, t ) is given by

Fj = ω j

[
c j · ∂t (φu)

c2
s

+ c j · 4φ(1 − φ)

W
n
]
, (25)

and the order parameter φ can be calculated by

φ =
∑

j

f j . (26)

In addition, through some asymptotic analysis methods, the
mobility can be determined by

Mφ = δt

(
1

s1, f
− 1

2

)
c2

s , (27)

where s1, f is the relaxation parameter corresponding to the
first-order moment of the distribution function f j , and is also
an eigenvalue of the collision matrix (� f

jk ).

B. Lattice Boltzmann model for flow field

For the Navier-Stokes equations for flow field, the MRT-
LB evolution equation can be expressed as [59]

g j (x + c jδt, t + δt ) = gj (x, t ) − �
g
jk

[
gk (x, t ) − geq

k (x, t )
]

+ δt
(
δ jk − �

g
jk/2

)
Gk (x, t ), (28)

where gj (x, t ) is the distribution function of fluid field, (�g
jk )

is also a collision matrix. Gj (x, t ) is a distribution function
related to the surface tension force and body force. geq

j (x, t )
represents the equilibrium distribution function, and can be
designed as

geq
j =

{ p
c2

s
(ω j − 1) + ρs j (u), j = 0,

p
c2

s
ω j + ρs j (u), j �= 0,

(29)

where s j (u) is given by

s j (u) = ω j

[
c j · u

c2
s

+ (c j · u)2

2c4
s

− u · u
2c2

s

]
. (30)

In order to recover the incompressible Navier-Stokes equa-
tions, the force distribution function Gj (x, t ) can be
defined as

Gj = ω j

[
c j · (μφ∇φ + G)

c2
s

+ (ρ1 − ρ2)u∇φ : c jc j

c2
s

]
. (31)

With the zeroth-order and first-order moments of the distribu-
tion function g j , the pressure p and macroscopic velocity u
can be evaluated by

u = 1

ρ

⎡⎣∑
j

c jg j + 0.5δt (μφ∇φ + G)

⎤⎦, (32a)

p = c2
s

1 − ω0

⎡⎣∑
i �=0

g j + δt

2
(ρ1 − ρ2)u · ∇φ + ρs0(u)

⎤⎦.

(32b)

Finally, based on the Chapman-Enskog analysis, the fluid
dynamic viscosity is given by

μ = ρδt

(
1

s2,g
− 1

2

)
c2

s , (33)

where s2,g is the relaxation parameter corresponding to the
second-order moment of the distribution function gj , and is
also an eigenvalue of the collision matrix (�g

jk ).

C. Lattice Boltzmann model for concentration or temperature
field with two-scalar equations

To accurately consider the third terms in the right-hand
side of Eq. (17) at the order of the derivative operator, we
will introduce the corresponding auxiliary source distribution
function in the present LBM. The MRT-LB evolution equa-
tions for the two-scalar mass or heat model [Eq. (17)] read

h1, j (x + c jδt, t + δt )

= h1, j (x, t ) − �
h1
jk

[
h1,k (x, t ) − heq

1,k (x, t )
]

+ δt
(
δ jk − �

h1
jk/2

)
H1,k (x, t ) + δt H̃1, j (x, t ), (34a)

h2, j (x + c jδt, t + δt )

= h2, j (x, t ) − �
h2
jk

[
h2,k (x, t ) − heq

2,k (x, t )
]

+ δt
(
δ jk − �

h2
jk/2

)
H2,k (x, t ) + δt H̃2, j (x, t ), (34b)

where h1, j (x, t ) and h2, j (x, t ) are the distribution functions
of concentrations c1 and c2, heq

1, j (x, t ) and heq
2, j (x, t ) are the

corresponding equilibrium distribution functions, H1, j (x, t ),
H2, j (x, t ), H̃1, j (x, t ), H̃2, j (x, t ) are the distribution functions
of the source terms in Eq. (17), (�h1

jk ) and (�h2
jk ) are the colli-

sion matrices. The equilibrium distribution function heq
1, j (x, t )

and heq
2, j (x, t ) can be presented as

heq
1, j = ω jc1

(
1 + c j · u

c2
s

)
, (35a)

heq
2, j = ω jc2

(
1 + c j · u

c2
s

)
. (35b)

Usually, when the LB model is applied for convection dif-
fusion (17), the extra flux terms need to be discretized by
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some finite-difference schemes. In contrast, to overcome this
problem, we introduce the following distribution functions
H1, j (x, t ) and H2, j (x, t ) to deal with the source terms, and the
distribution functions H̃1, j (x, t ) and H̃2, j (x, t ) to handle the
interface flux terms in Eq. (17), which are given by

H1, j = ω j

(
c j · ∂t (c1u)

c2
s

+ c j · 4(1 − φ)c1

W
n

+ ADm[Keqc2φ − c1(1 − φ)]

)
, (36a)

H2, j = ω j

(
c j · ∂t (c2u)

c2
s

− c j · 4φc2

W
n

+ ADm[c1(1 − φ) − Keqc2φ]

)
, (36b)

H̃1, j = −ω jDm∇φ · ∇(c1 + Keqc2), (36c)

H̃2, j = ω jDm∇φ · ∇(c1 + Keqc2). (36d)

Through the Chapman-Enskog analysis shown in Ap-
pendix A, the macroscopic concentrations c1 and c2 can be
calculated by the following equations,

c1 =
∑

j

h1, j + δt

2
ADm[Keqc2φ − c1(1 − φ)], (37a)

c2 =
∑

j

h2, j + δt

2
ADm[c1(1 − φ) − Keqc2φ]. (37b)

The following relations between the diffusivities and dimen-
sionless relaxation times can be derived,

D1 = δt

(
1

s1,h1

− 1

2

)
c2

s , (38a)

D2 = δt

(
1

s1,h2

− 1

2

)
c2

s , (38b)

where s1,h1 and s1,h2 are the relaxation parameters correspond-
ing to the first-order moments of the distribution functions h1, j

and h2, j , and are also two eigenvalues of the matrices (�h1
jk )

and (�h2
jk ).

Furthermore, it should be noted that the derivative terms
in Eqs. (36c) and (36d) should be discretized with suitable
difference schemes. By summing Eq. (A9) over j, we can
derive a local computing scheme of ∇c1 and ∇c2 in the LB
framework,

∇c1 = s1,h1

δtc2
s

[
−
∑

c jh1, j + c1u − 0.5δt∂t (c1u)

+ D1
4(1 − φ)c1

W

∇φ

|∇φ|

]
, (39a)

∇c2 = s1,h2

δtc2
s

[
−
∑

c jh2, j + c2u − 0.5δt∂t (c2u)

− D2
4φc2

W

∇φ

|∇φ|

]
, (39b)

where the gradient of order parameter and its gradient norm
can be also calculated by a local scheme [60],

|∇φ| = −|C| − B

D
, (40a)

∇φ = C

D + B/|∇φ| , (40b)

where D = −δtc2
s /s1, f , B = 4Mφδtφ(1 − φ)/W , and C =∑

c j f j − φu + 0.5δt∂t (φu). As an alternative, one can also
use the following second-order isotropic central scheme for
the gradient operator,

∇χ (x) =
∑
j �=0

ω jc jχ (x + c jδt )

c2
s δt

, (41)

where χ represents the order parameter φ and the concentra-
tions c1, c2. In addition, the Laplace operator in Eq. (4) is
usually computed by

∇2φ(x) =
∑
j �=0

2ω j[φ(x + c jδt ) − φ(x)]

c2
s δt2

. (42)

D. Lattice Boltzmann model for concentration or temperature
field with one-scalar equation

The LB evolution equation for the one-scalar mass or heat
model [Eq. (20)] can be expressed as

h3, j (x + c jδt, t + δt )

= h3, j (x, t ) − �
h3
jk

[
h3,k (x, t ) − heq

3,k (x, t )
]

+ δt
(
δ jk − �

h3
jk/2

)
H3,k (x, t ), (43)

where the h3, j (x, t ) is the concentration distribution function
of total concentration c, heq

3, j (x, t ) is the equilibrium distribu-
tion function, which can be designed as

heq
3, j =

⎧⎨⎩c + (ω j − 1)c/Keff, j = 0,

ω jc/Keff + ω jc j · cu/c2
s , j �= 0,

(44)

and H3, j (x, t ) is the auxiliary source distribution function,

H3, j = ω j
c j · ∂t (cu)

c2
s

. (45)

The macroscopic scalar concentration c can be computed by

c =
∑

j

h3, j, (46)

and the effective diffusivity can be determined by the follow-
ing relation,

Deff = δt

(
1

s1,h3

− 1

2

)
c2

s , (47)

where s1,h3 is the relaxation parameter corresponding to the
first-order moment of the distribution function h3, j , and is also
an eigenvalue of the collision matrix (�h3

jk ).
Finally, it is known that the collision step of the MRT-LB

method is usually conducted in the moment space by the
transformation matrix M through mψ = (M jkψk ). With the
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help of transformation matrix, the evolution equation can be
rewritten as

ψ j (x + c jδt, t + δt )

= ψ j (x, t ) − (M−1SψM) jk
[
ψk (x, t ) − ψ

eq
k (x, t )

]
+ δt[M−1(I − Sψ/2)M] jk�k (x, t ) + δt�̃ j (x, t )

= M−1
jk

[
(I − Sψ )mψ + Sψmeq

ψ + δt (I − Sψ/2)m�

]
k

+ δt�̃ j (x, t ), (48)

where ψ = f , g, h1, h2, h3, � = F, G, H1, H2, H3, and
�̃ j (x, t ) = 0 for � = F, G, H3. Here the transformation
matrix M, the diagonal relaxation matrix Sψ and the moments
meq

ψ and m� are given in Appendix B.

IV. NUMERICAL VALIDATIONS AND DISCUSSION

In this section, we first validate the accuracy of the pro-
posed MRT-LB method, and the consistency between the
two-scalar model and the one-scalar model by some bench-
mark problems. Then the present method is extended to
study the more practical problems where the viscosity is re-
lated to concentration. In LB method, the D1Q3, D2Q9, and
D3Q15 lattice structures are applied for the one-dimensional,
two-dimensional, and three-dimensional problems [55]. In
the following simulations, the half-way anti-bounce-back
boundary scheme [61] is adopted for the Dirichlet boundary
condition, the half-way bounce-back scheme [62] is applied
for no-flux scalar and no-slip velocity boundary conditions,
and the nonequilibrium extrapolation scheme [63] is adopted
for pressure boundary condition. Due to the parallelism of
LB method, the GPU-CUDA tool is adopted to improve the
computational efficiency. Some parameters in our simulations
are fixed as Mφ = 0.1, A = 1000, and W = 4δx, the free re-
laxation parameters in MRT-LB model are set to be 1 without
otherwise stated.

A. One-dimensional tests

In this part, we consider a one-dimensional static droplet
in the domain [−1, 1] with different initial distributions and
boundary conditions of the concentration or temperature. Here
the lattice spacing and time step are set to be δx = 0.01 and
δt = 10−4, which leads to s1, f = 1.25.

1. Pseudo-single-phase case

We first consider a pseudo-single-phase problem with the
matched diffusivities on the two sides of the fluid interface,
i.e., D1 = D2, thus, the interface has no effect on the transport
of the concentration throughout the whole domain. In this
study, the physical parameters are D1 = D2 = 1 and Keq =
1, the relaxation parameters are s1,h1 = s1,h2 = 0.2857. The
scalar concentrations are initialized as c1(x, t = 0) = 5e−4x2

φ

and c2(x, t = 0) = 5e−4x2
(1 − φ), and the periodic boundary

condition is imposed on the left and right boundaries. In
addition, the signed-distance function is give by l (x) = −(x −
0.5)(x + 0.5).

Figure 1 illustrates the profiles of the order parameter, the
concentrations of one-scalar and two-scalar models, as well

FIG. 1. The distributions of two-scalar and one-scalar models at
the same time for pseudo-single-phase case, and the time intervals
between adjacent concentration profiles are identical.

as the solution at equilibrium state. From this figure, one can
find that the numerical results of one-scalar and two-scalar
models are consistent with each other, and they are in good
agreement with the analytical solution at the equilibrium state,
which indicates that the present LB method is accurate for
both one-scalar and two-scalar models.

2. Flat equilibrium case

When the concentrations are initialized by c1(x, t = 0) =
2φ and c2(x, t = 0) = 0, l (x) = −(x − 0.5)(x + 0.5) and the
periodic boundary condition is used, the equilibrium profiles
of c1 and c2 are the flat inside and outside of the drop with a
jump controlled by parameter Keq, and c1 + Keqc2 should also
keep a flat profile in the whole domain.

First, we consider the case of D1 = D2 = Keq = 1. The
evolutions of concentrations c1 and c2 as well as c1 + Keqc2

are shown in Figs. 2(a) and 2(b), where the equilibrium jump
of c1 and c2 is zero because of Keq = 1, and the final profile
of c1 + Keqc2 becomes flat at the value of 1. Then we set
Keq = 1/3 and plot the results in Figs. 2(c) and 2(d). From
these two figures, one can observe that there is a concentration
jump of c1 and c2 at the interface, but the final distribution of
c1 + Keqc2 is flat at the equilibrium state. Furthermore, the
results in Figs. 2(e) and 2(f) demonstrate that the concen-
tration profiles at equilibrium state are the same as those in
Figs. 2(c) and 2(d), while the diffusion process presents some
differences due to D1 = 10. In conclusion, the concentrations
change more rapidly with the increase of diffusivity D1 or
D2, but the equilibrium distributions of them are determined
by the concentration ratio Keq. It should be noted that all
of the above results are consistent with those reported in
Ref. [27].

3. Linear equilibrium case

We now continue to consider a droplet placed on the right
half of the domain by l (x) = x, the initial distributions of con-
centrations are c1(x, t = 0) = 2φ and c2(x, t = 0) = 0, and
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FIG. 2. Evolutions of the concentrations c1, c2, and c1 + Keqc2 at different cases [(a) and (b): D1 = D2 = Keq = 1; (c) and (d): D1 = D2 = 1
and Keq = 1/3; (e) and (f): D1 = 10, D2 = 1, and Keq = 1/3].

the Dirichlet boundary conditions are given by c1(x = 0, t ) =
c2(x = 0, t ) = 0 and c1(x = 2, t ) = 2, c2(x = 2, t ) = 0. In this
case, the equilibrium solutions of concentrations are expected
to be linear profiles with a jump at the interface.

We conduct some simulations with different parameters
and present the results in Fig. 3, where the values of s1,h1

and s1,h2 are the same as those stated above. As shown
in Figs. 3(a) where D1 = D2 = Keq = 1, the equilibrium

concentrations at the interface remain continuous without any
concentration jumps since Keq = 1, which is similar to that in
Sec. IV A 2. Figure 3(b) shows the profile of c1 + Keqc2, and
a linear equilibrium profile with a slope of 1 can be observed.
When increasing the diffusivity in phase 1 to be D1 = 10, the
equilibrium concentration in phase 1 is expected to be greater
than that in phase 2, which can be confirmed by the results in
Figs. 3(c) and 3(d). In addition, there is also no concentration
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FIG. 3. Evolutions of the concentrations c1, c2, and c1 + Keqc2 at linear equilibrium cases [(a) and (b): D1 = D2 = Keq = 1; (c) and (d):
D1 = 10, D2 = 1, and Keq = 1; (e) and (f): D1 = D2 = 1 and Keq = 1/3].

jump at the interface due to the choice of Keq = 1. Figures 3(e)
and 3(f) present the concentration profiles under the condition
of Keq = 1/3 and D1 = D2 = 1. From these figures, one can
find that when the system reaches to the equilibrium state, the
concentration jump can be observed at the phase interface,
which indicates that the slope of the concentration c1 + Keqc2

is greater than 1 in phase 1 but less than 1 in phase 2. Overall,
the concentration profiles at equilibrium state in Fig. 3 are in
good agreement with those in the previous work [27].

4. Case with a large diffusivity ratio

As highlighted in the previous work [27], the one-scalar
model exhibits unphysical leakage for the problems with a
large diffusivity ratio, whereas the two-scalar model can over-
come this drawback. To confirm this statement, we consider
an interfacial mass transfer problem with a large diffusivity
ratio (D1 = 1 and D2 = 10−4) and conduct some simulations.
Initially, the concentrations are set as c1 = φ and c2 = 0 in
two-scalar model, whereas in the one-scalar model, c = φ,
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FIG. 4. A comparison of one-scalar and two-scalar models for the case with a large diffusivity ratio D1 = 1/D2 = 104 [(a) two-scalar
model and (b) one-scalar model].

FIG. 5. The predicted profiles of heat content at y = z = 0.5 [(a) t = 13, (b) t = 40, (c) t = 80, and (d) t = 250].
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FIG. 6. Evolution of the normalized heat content in the gas phase.

and the order parameter is determined by Eq. (2) with l (x) =
−(x − 0.5)(x + 0.5). Here s1,h1 = 0.2857 and s1,h2 = 1.9989
in two-scalar model, while s1,h3 varies from 0.2857–1.9989
due to the nonconstant diffusivity Deff. Figure 4 presents a
comparison of the two models with Keq = 1. From this figure,
one can see that the profile of concentration based on the
two-scalar model is close to the initial distribution, while in
the one-scalar model, there is a portion of the solute leaks
from phase 1 to phase 2, which deviates a lot from the actual
results.

B. Multidimensional tests

According to the results of one-dimensional numerical
tests, the two-scalar model and the one-scalar model have a
good agreement under the same diffusivity, and the two-scalar
model can prevent the leakage of one-scalar model for the
problem with a large diffusivity ratio. In the following, we will
consider more practical problems to test present LB method.

1. Bubble depletion

The problems considered above only involve the interfa-
cial mass transfer between two phases, while in this part,
the process of heat transfer in a three-dimensional bubble
will be considered. A bubble (phase 1) with the radius R =
0.32 is placed in the center of a cubic domain 1 × 1 × 1,
and it is surrounded by liquid of phase 2. Specifically, the
signed-distance function for order parameter is defined by
l (x) = R −

√
(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2. The heat

content is initialized to be q1 = φ, q2 = 0, and they will
diffuse into the whole domain until reach to the equilibrium
state under the physical parameters of D1 = 3.62 × 10−4,
D2 = 3.62 × 10−9, and Keq = 10−5. In our simulations, the
grid size is 100 × 100 × 100, the time step is δt = 10−4, and
the relaxation parameters are s1, f = 1.25, s1,h1 = 0.6305, and
s1,h2 = 2. Figure 5 shows the heat content solutions of two-
scalar model at y = z = 0.5 and different moments. From this
figure, we can observe that the heat diffusing outward from
the bubble is easy to accumulate at the gas-liquid interface.
Additionally, it can be seen from the figure that our results are
in good agreement with previous results [27], and also, the
total heat content of the system q1 + q2 is always conserved
during the evolution, which also indicates the accuracy of the
LB method.

To further make a quantitative comparison, we calculate
the normalized total heat content in the gas phase Q/Q0,
where Q0 = ∫ q1 dV is the initial total heat content. As seen
from Fig. 6, the present result is close to the analytical solution
and is more accurate than the data in Refs. [24,27].

2. Bubble rising

It is noted that in above problems, only phase field and
mass or heat transfer are involved. To further validate the
present LB method, the influence of fluid field is also con-
sidered. To this end, the interfacial transfer of oxygen content
within a two-dimensional rising bubble is investigated. In
our simulations, a gas bubble (phase 2) with the radius

FIG. 7. Snapshots of the oxygen concentration during bubble rising [(a) t = 0.21 s, (b) t = 0.84 s, (c) t = 1.47 s, the solid black line
represents the interface of two phases].
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FIG. 8. Evolution of the normalized oxygen content in the gas
phase.

R = 0.5 mm is initially located at the position (4 mm, 3 mm)
in the square computational domain 8 mm × 16 mm, and
thus the signed-distance function is given by l (x) =√

(x − 0.0004)2 + (y − 0.0003)2 − R. The oxygen contents
in gas and liquid phases are initialized by c1 = 0 and c2 =
1 − φ. In this problem, we consider the material properties of
two fluids to be ρ1 = 1000 kg/m3, ρ2 = 1.2 kg/m3, μ1 = 1 ×
10−2 Pa s, μ2 = 1.8 × 10−5 Pa rms, σ = 0.0728 kg/s2, and
the buoyancy force with g = 9.8 m/s2 is imposed on the
two fluids. The diffusivities of oxygen in gas and liquid are
D1 = 10−6 m2/s and D2 = 5 × 10−6 m2/s, and the Henry’s
coefficient is Keq = 1/33 at standard conditions. Additionally,
the grid size is set to be 192 × 384, the interface thickness
is W = 5δx, the relaxation times are given by s1, f = 0.5155,
s1,h1 = 1.9944, s1,h2 = 1.9716, and s2,g ∈ [1.9716, 1.9944].
Figure 7 plots the oxygen content in water (c2) at the moments
of t = 0.21 s, 0.84 s, 1.47 s. From this figure, it can be found
that with the rise of the bubble, the oxygen content around
the bubble gradually changes from a ring shape to a dragged

wake, but, the maximum value of the oxygen content is always
near the bottom of the bubble.

A further analysis of the rising bubble is shown in Fig. 8
where the normalized total oxygen content in water C/C0

under three different grid resolutions are displayed, and a
larger grid resolution can lead to the better convergence of the
model predictions. In this figure, C0 = ∫ c2 dV is the initial
total heat content, τ = 0.013 s is a dimensionless time, and
one can find that our results with a larger bdfx grid resolution
are more close to Ref. [26].

C. Concentration or temperature-dependent-viscosity system

We note that the viscosity in two-phase system with the
mass or heat transfer is usually given by Eq. (7), which is the
constant value in pure fluids. However, this relation may be
not ture since the viscosity should also depend on the concen-
tration and temperature [64–66]. In general, the increase of
concentration leads to an increase of the fluid viscosity, and in
the following, the exponential form is adopted,

ln μ = c1 ln μ1 + c2 ln μ2. (49)

1. Layered Poiseuille flow

We first focus a layered two-phase Poiseuille flow driven
by a constant force G = (Gx, 0) in a two-dimensional channel
[−0.05, 0.05] × [−0.5, 0.5]. The fluid interface is described
by the signed-distance function l (x) = −y, the initial concen-
trations are set to be c1 = φ and c2 = 0, and the diffusivities
are D1 = D2 = 1. In our simulations, the grid size is 15 ×
150, the densities ρ1 = 10 and ρ2 = 1, and the viscosities
μ1 = 1 and μ2 = 0.1.

For the first case with Keq = 1, as shown in Fig. 9(a),
the concentration distribution reaches to a flat profile at the
steady state. Figure 9(b) shows the evolution of the numerical
horizontal velocity, which is also consistent with the above
analytical solution at the final steady state.

To show the effect of concentration field on the
fluid velocity, we conduct a comparison between the

FIG. 9. Evolutions of some physical quantities of the layered Poiseuille flow [(a) concentrations c1, c2, and c1 + Keqc2, (b) horizontal
velocity].
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FIG. 10. The predicted horizontal velocities under different density ratios [(a) ρ1 = 1, (b) ρ1 = 100, (c) ρ1 = 150, (d) ρ1 = 1000].

concentration-independent-viscosity and the concentration-
dependent-viscosity. As seen from Fig. 10, the maximum
velocity of the flow field decreases when the influence of con-
centration is included, which can be explained by the fact that
the increase of concentration gives rise to a higher viscosity of
the fluid, and the maximum velocity would be reduced when
other conditions are not changed.

Finally, we consider the effect of interfacial concentration
ratio with Keq varying from 0.001–100, and plot the results
in Fig. 11 where ρ1 = 10. From this figure, one can observe
that with the increase of Keq, the horizontal velocity of the
flow field gradually decreases, which can be attributed to the
fact that when the initial concentrations in two phases are
the same, an increase in the concentration ratio will lead to a
larger concentration gradient between the two phases, which
results in an increase of flow resistance and a decrease of the
horizontal velocity.

2. Gas displacement of crude oil

The last problem we considered is the displacement of
liquid by gas under different saturations. A channel with
length L = 4.0 and width W = 0.8 is full of the liquid phase

except for the region x < 0.1 filled by gas (phase 1), i.e.,
l (x) = 0.1 − x. At the beginning, the concentration in the

FIG. 11. The predicted horizontal velocity with different values
of Keq.
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FIG. 12. The displacement of crude oil by gas under different initial concentrations in oil [(a) c2 = 0.001, (b) c2 = 0.4, (c) c2 = 0.8].

gas is fixed as c1 = 0.8, and other physical parameters are
D1 = D2 = 1 and Keq = 2. The properties of two pure fluids
are set as ρ1 = ρ2 = 1, μ1 = 1, μ2 = 10, and σ = 2 × 10−9.
The fluids are driven by the pressure drop δp = 0.01. In
this study, the lattice spacing is δx = 0.01 and time step is
δt = 10−4, the relaxation time parameters are s1, f = 1.9881,
s2,g ∈ [1.4507, 1.8864], and s1,h1 = s1,h2 = 1.8868. Figure 12
presents the displacement process of two-phase fluids with
different initial concentrations c2 at the same time interval.
From this figure, it can be seen that when the initial concentra-
tion in liquid phase is small [see Fig. 12(a)], the concentration
gradient between the two phases is large, and the displacement
speed is the fastest. When the concentration in liquid phase
increases to 0.4 and 0.8, as shown in Figs. 12(b) and 12(c), the
displacement velocity gradually decreases with the decrease
of concentration difference between the two phases. These
results also demonstrate that the concentration field has a
significant influence on the velocity of viscous fingering.

V. CONCLUSIONS

In this paper, we develop an MRT-LB method for the
conjugate interfacial mass or heat transport in two-phase
flows. Through the Chapman-Enskog analysis, the governing
equations in Ref. [27] can be correctly recovered from the
proposed LB method. In the present LB method, some proper
auxiliary terms in LB evolution equations are constructed to

recover the complex nonlinear source terms in the two-scalar
model for mass or heat transfer, and the discretizations of
some derivative terms can be avoided. In addition, the LB
model for one-scalar equation of concentration field is also
developed to perform some comparisons. To test the present
LB method and show the difference between one-scalar and
two-scalar models, we first consider some one-dimensional
problems, and the numerical results are in good agreement
with the analytical solutions and data reported in some pre-
vious works. To conduct more validations, some practical
multidimensional problems are also studied, and the results
illustrate the accuracy and efficiency of present LB method.
Moreover, the systems with the concentration or temperature-
dependent viscosity are also considered, and the results show
that the distribution of concentration has a significant influ-
ence on the flow field.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF THE MRT-LB MODEL FOR THE TWO-SCALAR EQUATIONS

For simplicity but without losing the generality, we only conduct the Chapman-Enskog analysis on the MRT-LB model for
Eq. (17a). We first expand the distribution functions h1, j , H1, j , H̃1, j , as well as the time and space derivatives in different order
of a small expansion parameter ε as

h1, j = h(0)
1, j + εh(1)

1, j + ε2h(2)
1, j + · · · , H1, j = εH (1)

1, j + ε2H (2)
1, j , H̃1, j = ε2H̃ (2)

1, j , ∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1. (A1)

According to Eqs. (35a) and (36), one can obtain the following moment conditions:∑
j

e j�
h1
jk = s0,h1 ek,

∑
j

c j�
h1
jk = s1,h1 ck,

∑
j

c jc j�
h1
jk = s2,h1 ckck,

∑
j

heq
1, j = c1,

∑
j

c jh
eq
1, j = c1u,

∑
j

c jc jh
eq
1, j = c2

s c1I,
∑

j

H1, j = MH1 = ADm[Keqc2φ − c1(1 − φ)],

∑
j

c jH1, j = ∂t (c1u) + c2
s

4(1 − φ)c1

W
n,

∑
j

H̃1, j = −Dm∇φ · ∇(c1 + Keqc2). (A2)
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Then we have ∑
j

h(1)
1, j = −δt

2
M (1)

H1
,
∑

j

h(2)
1, j = −δt

2
M (2)

H1
,
∑

j

H (1)
1, j = M (1)

H1
,
∑

j

H (2)
1, j = M (2)

H1
. (A3)

Applying Taylor expansion to LB evolution Eq. (34a), one can derive

Djh1, j + δt

2
Dj

2h1, j + · · · = −�
h1
jk

δt

(
h1,k − heq

1,k

)+ (δ jk − �
h1
jk/2

)
H1,k + H̃1, j, (A4)

where Dj = ∂t + c j · ∇. Substituting Eq. (A1) into above equation, one can get the following equations at different orders of ε,

h(0)
1, j = heq

1, j, (A5a)

D1 jh
(0)
1, j = −�

h1
jk

δt
h(1)

1,k + (δ jk − �
h1
jk/2

)
H (1)

1,k , (A5b)

∂t2 h(0)
1, j + D1 jh

(1)
1, j + δt

2
D2

1 jh
(0)
1, j = −�

h1
jk

δt
h(2)

1,k + (δ jk − �
h1
jk/2

)
H (2)

1,k + H̃ (2)
1, j , (A5c)

where D1 j = ∂t1 + c j · ∇1. Summing Eq. (A5b) over j yields

∂t1 c1 + ∇1 · (c1u) = M (1)
H1

. (A6)

From Eq. (A5b), we have

δt

2
D2

1 jh
(0)
1, j = −1

2
D1 j�

h1
jkh(1)

1,k + δt

2
D1 j
(
δ jk − �

h1
jk/2

)
H (1)

1,k . (A7)

Substituting Eq. (A7) into Eq. (A5c), one can obtain the following equation,

∂t2 h(0)
1, j + D1 j

(
δ jk − �

h1
jk/2

)
h(1)

1,k + δt

2
D1 j
(
δ jk − �

h1
jk/2

)
H (1)

1,k = −�
h1
jk

δt
h(2)

1,k + (δ jk − �
h1
jk/2

)
H (2)

1,k + H̃ (2)
1, j . (A8)

Based on Eq. (A5b), we also have

c jh
(1)
1, j = δt

(
�

h1
jk

)−1[−ckD1kh(0)
1,k + (δ jk − �

h1
jk/2

)
ckH (1)

1,k

]
, (A9)

substituting Eq. (A9) into Eq. (A8), one can derive

∂t2 h(0)
1, j = ∇1 ·

{
δt

[(
�

h1
jk

)−1 − 1

2

](
ckD1kh(0)

1,k − ckH (1)
1,k

)}− �
h1
jk

δt
h(2)

1,k + (δ jk − �
h1
jk/2

)
H (2)

1,k + H̃ (2)
1, j .

(A10)

Summing Eq. (A10) over j and applying the conditions in Eqs. (A1) and (A3), we get

∂t2 c1 = ∇1 ·
[

D1

(
∇1c1 − 4(1 − φ)c1

W

∇1φ

|∇φ|
)]

+ M (2)
H1

− Dm∇1φ · ∇1(c1 + Keqc2), (A11)

where D1 = δt (1/s1,h1 − 1/2)c2
s . Finally, combining Eqs. (A6) and (A11), one can recover the following governing equation,

∂t c1 + ∇ · (c1u) = ∇ ·
[

D1

(
∇c1 − 4(1 − φ)c1

W
n
)]

+ ADm[Keqc2φ − c1(1 − φ)] − Dm∇φ · ∇(c1 + Keqc2). (A12)

APPENDIX B: TRANSFORMATION MATRICES AND MOMENTS OF D1Q3, D2Q9, AND D3Q15 LATTICE STRUCTURES

In this Appendix, we will give the transformation matrix M, diagonal relaxation matrix Sψ and the moments of two-scalar
model in our numerical simulations.

In D1Q3 lattice structure: Shi = diag(s0,hi , s1,hi , s2,hi ), where i = 1, 2,

M =

⎛⎜⎝1 1 1

0 1 −1

0 1 1

⎞⎟⎠, meq
hi

= M

⎛⎜⎝heq
i,0

heq
i,1

heq
i,2

⎞⎟⎠ =

⎛⎜⎝ ci

ciux/c

ci/3

⎞⎟⎠, mH1 = M

⎛⎜⎝H1,0

H1,1

H1,2

⎞⎟⎠ =

⎛⎜⎝ ADm[Keqc2φ − c1(1 − φ)]

∂t (c1ux )/c + 4c(1 − φ)c1∂xφ/3W |∇φ|
ADm[Keqc2φ − c1(1 − φ)]/3

⎞⎟⎠,

mH2 = M

⎛⎜⎝H2,0

H2,1

H2,2

⎞⎟⎠ =

⎛⎜⎝ ADm[c1(1 − φ) − Keqc2φ]

∂t (c2ux )/c − 4cφc2∂xφ/3W |∇φ|
ADm[c1(1 − φ) − Keqc2φ]/3

⎞⎟⎠. (B1)

Here the sound speed is c2
s = c2/3 with lattice speed c = δx/δt .
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In D2Q9 lattice structure: Shi = diag(s0,hi , s1,hi , s1,hi , s2,hi , s2,hi , s2,hi , s3,hi , s3,hi , s4,hi ),

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, meq
hi

= M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

heq
i,0

heq
i,1

heq
i,2

heq
i,3

heq
i,4

heq
i,5

heq
i,6

heq
i,7

heq
i,8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci

ciux/c

ciuy/c

ci/3

ci/3

0

ciux/3c

ciuy/3c

ci/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

mH1 = M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1,0

H1,1

H1,2

H1,3

H1,4

H1,5

H1,6

H1,7

H1,8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ADm[Keqc2φ − c1(1 − φ)]

∂t (c1ux )/c + 4c(1 − φ)c1∂xφ/3W |∇φ|
∂t (c1uy)/c + 4c(1 − φ)c1∂yφ/3W |∇φ|

ADm[Keqc2φ − c1(1 − φ)]/3

ADm[Keqc2φ − c1(1 − φ)]/3

0

∂t (c1ux )/3c + 4c(1 − φ)c1∂xφ/9W |∇φ|
∂t (c1uy)/3c + 4c(1 − φ)c1∂yφ/9W |∇φ|

ADm[Keqc2φ − c1(1 − φ)]/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, mH2 =M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H2,0

H2,1

H2,2

H2,3

H2,4

H2,5

H2,6

H2,7

H2,8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ADm[c1(1 − φ) − Keqc2φ]

∂t (c2ux )/c − 4cφc2∂xφ/3W |∇φ|
∂t (c2uy)/c − 4cφc2∂yφ/3W |∇φ|

ADm[c1(1 − φ) − Keqc2φ]/3

ADm[c1(1 − φ) − Keqc2φ]/3

0

∂t (c2ux )/3c − 4cφc2∂xφ/9W |∇φ|
∂t (c2uy)/3c − 4cφc2∂yφ/9W |∇φ|

ADm[c1(1 − φ) − Keqc2φ]/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B2)

In D3Q15 lattice structure: Shi = diag(s0,hi , s1,hi , s1,hi , s1,hi , s2,hi , s2,hi , s2,hi , s2,hi , s2,hi , s2,hi , s3,hi , s3,hi , s3,hi , s3,hi , s4,hi ),

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

0 1 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1

0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1

0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1

0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, meq
hi

=M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

heq
i,0

heq
i,1

heq
i,2

heq
i,3

heq
i,4

heq
i,5

heq
i,6

heq
i,7

heq
i,8

heq
i,9

heq
i,10

heq
i,11

heq
i,12

heq
i,13

heq
i,14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci

ciux/c

ciuy/c

ciuz/c

ci/3

ci/3

ci/3

0

0

0

ciux/3c

ciuy/3c

ciuz/3c

0

ci/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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mH1 = M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1,0

H1,1

H1,2

H1,3

H1,4

H1,5

H1,6

H1,7

H1,8

H1,9

H1,10

H1,11

H1,12

H1,13

H1,14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ADm[Keqc2φ − c1(1 − φ)]

∂t (c1ux )/c + 4c(1 − φ)c1∂xφ/3W |∇φ|
∂t
(
c1uy

)
/c + 4c(1 − φ)c1∂yφ/3W |∇φ|

∂t (c1uz )/c + 4c(1 − φ)c1∂zφ/3W |∇φ|
ADm[Keqc2φ − c1(1 − φ)]/3

ADm[Keqc2φ − c1(1 − φ)]/3

ADm[Keqc2φ − c1(1 − φ)]/3

0

0

0

∂t (c1ux )/3c + 4c(1 − φ)c1∂xφ/9W |∇φ|
∂t
(
c1uy

)
/3c + 4c(1 − φ)c1∂yφ/9W |∇φ|

∂t (c1uz )/3c + 4c(1 − φ)c1∂zφ/9W |∇φ|
0

ADm[Keqc2φ − c1(1 − φ)]/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, mH2=M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H2,0

H2,1

H2,2

H2,3

H2,4

H2,5

H2,6

H2,7

H2,8

H2,9

H2,10

H2,11

H2,12

H2,13

H2,14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ADm[c1(1 − φ) − Keqc2φ]

∂t (c2ux )/c − 4cφc2∂xφ/3W |∇φ|
∂t
(
c2uy

)
/c − 4cφc2∂yφ/3W |∇φ|

∂t (c2uz )/c − 4cφc2∂zφ/3W |∇φ|
ADm[c1(1 − φ) − Keqc2φ]/3

ADm[c1(1 − φ) − Keqc2φ]/3

ADm[c1(1 − φ) − Keqc2φ]/3

0

0

0

∂t (c2ux )/3c − 4cφc2∂xφ/9W |∇φ|
∂t
(
c2uy

)
/3c − 4cφc2∂yφ/9W |∇φ|

∂t (c2uz )/3c − 4cφc2∂zφ/9W |∇φ|
0

ADm[c1(1 − φ) − Keqc2φ]/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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