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Asymptotic freedom in the lattice Boltzmann theory
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Asymptotic freedom is a feature of quantum chromodynamics that guarantees its well posedness. We derive
an analog of asymptotic freedom enabling unconditional linear stability of lattice Boltzmann simulation of
hydrodynamics. We further demonstrate the validity of the derived conditions via the special case of the
equilibrium based on entropy maximization, which is shown to be uniquely renormalizable.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has become a pop-
ular tool for the simulation of complex fluid dynamics, with
applications ranging from turbulent flows to multiphase [1]
and multicomponent flows, combustion [2], and relativis-
tic flows [3,4]. In LBM, a simple kinetic equation of the
Boltzmann type for the populations of a controlled number
of designer particles’ velocities, forming links of a regular
spatial lattice, is solved numerically in a “stream-along-links
and relax-to-equilibrium at the nodes” fashion. Efficiency and
universality are keywords that one associates with LBM.

At the same time, theoretical foundations of LBM remain
obscure in lieu of longstanding issues of stability and ac-
curacy. The issue of stability dominated LBM research ever
since the appearance of the LBM in the early 1990s [5], up
until very recently. The topic becomes even more intriguing
upon more detailed analysis of the algorithm: The streaming
step can readily be shown to be unconditionally linear stable,
which means the collision step is responsible for the restricted
stability domain. A variety of approaches such as the multiple
relaxation class of models [6,7] has been developed in the
literature, each leading to an incremental increase in stability
domain, and all coming at the cost of considerable hypervis-
cosity. Furthermore, none of the proposed extensions on the
LBM have allowed it to operate beyond the limit,

|u|max = 1 − 1√
3

≈ 0.42; (1)

see [8–10]. Considering that the collisionless system of partial
differential equations is stable, it is, again, clear that the col-
lision operator is the root of the instabilities. In deriving the
proper collision operator, two ingredients can be modified: (a)
the attractor or equilibrium state and (b) the relaxation path.
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While the latter has been the ingredient of choice for most
schemes, it is clear that it cannot be a necessary or sufficient
condition for stability. A necessary condition for stability of
the relaxation from a given state to the attractor, in other
words, a convex combination of both states, would be that
both are stable [11].

In a previous publication (see [10]), a detailed and meticu-
lous study showed that the entropic LBM and corresponding
discrete equilibrium attractor are the only candidates in the lit-
erature satisfying the above-mentioned condition on stability
of the attractor over u ∈ [−1, 1]. Building upon experience
gained from the analysis of the entropic equilibrium, in this
paper, we propose a different approach to LBM by following
the ideas of renormalization group [12–14]. We derive the
necessary and sufficient conditions of linear stability with a
focus on the one-dimensional (1D) D1Q3 system, as condi-
tions for linear stability of the 1D system are necessary for any
higher-dimensional realization. We find that unconditional
stability implies vanishing pressure at large flow velocity,
which bears direct analogy to asymptotic freedom in quan-
tum chromodynamics [15–17]. We show that this change of
paradigm in deriving equilibria leads to unconditionally stable
lattice Boltzmann models.

II. GENERIC LBGK

We consider the lattice Bhatnagar-Gross-Krook (LBGK)
model [18] for nearly incompressible flows,

fi(r + ciδt, t + δt ) − fi(r, t ) = 2β
[

f eq
i (ρ, u) − fi

]
. (2)

Here, fi are the populations of the discrete velocities ci, i =
1, . . . , Q, r is the position in space, t is the time, δt is the time
step, ρ is the fluid density, and u is the flow velocity,

Q∑
i=1

{1, ci} fi = {ρ, ρu}. (3)

Furthermore, β ∈ [0, 1] is the relaxation parameter which is
tied to the viscosity,

ν = ς2δt

(
1

2β
− 1

2

)
, (4)
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where ς = csδr/δt is the lattice speed of sound, δr is the
lattice spacing, while cs is a pure constant dependent on the
choice of the lattice. Below, we use lattice units by setting
δr = δt = 1 and consider the standard first-neighbor lattices
in space dimension D defined as a D-fold tensor product
of one-dimensional velocities ciα ∈ {−1, 0, 1}. These are the
DDQ3D lattices characterized by the lattice speed of sound,

ς = 1√
3
. (5)

A generic class of equilibria, f eq
i , is the focus of our

study. First, we introduce a triplet of functions, �iα (ξ,P ),
iα ∈ {−1, 0, 1}: �0 = 1 − P , �−1 = (1/2)(−ξ + P ), �1 =
(1/2)(ξ + P ). For a D-dimensional lattice, equilibria are de-
fined by a product form,

f eq
i (ρ, u) = ρ

D∏
α=1

�iα
(
uα,Peq

αα

)
. (6)

Here, Peq
αα are diagonal component of the equilibrium pressure

tensor at unit density,

Peq
αα = π∗

αα + u2
α. (7)

LBGK setup becomes complete once the function π∗
αα is spec-

ified.
At this point, a common LBM [3,4,18] suggests isotropic

pressure,

π∗
αα = ς2. (8)

While this seems natural and is equivalent to (6) matching
moments of the classical Maxwellian, it should be remem-
bered that Galilean invariance of LBM is restricted to small
flow velocities, as implied by the lattice constraint, c3

iα = ciα .
Moreover, the second-order moment of the equilibrium is
constrained as follows:

1

ρ

Q∑
i=1

c2
iα f eq

i = Peq
αα � 1. (9)

Comparing (7) and (9), we conclude that the pressure has to
vanish at the highest value of flow velocity,

π∗
αα|uα=±1 = 0. (10)

Obviously, this is not compatible with the isotropic pressure,
and the question of stability of the LBM needs to be examined
in view of the constraint (10).

In order to derive the pressure in a rigorous fashion, we
follow a path inspired by renormalization group and define
a “space of theories” by assuming that the function π∗

αα � 0,
which plays a role of a coupling parameter, may depend on the
flow velocity component uα . Of course, admissible pressure
functions shall be restricted by the consistency constraint at
small flow velocity,

π∗
αα = ς2{1 + O[(uα/ς )4]}, uα/ς → 0, (11)

but otherwise they are arbitrary at the outset of our analysis.
Below, a coarse graining will be performed (the Chapman-
Enskog calculation [19]) to identify the necessary stability
conditions at the fixed point (hydrodynamic limit) and their
implication for the pressure π∗

αα .

III. LINEAR STABILITY: 1D SYSTEM

A. Necessary stability condition: Vanishing lattice
Knudsen number

While we conduct the analysis on the basis of the one-
dimensional LBGK on the D1Q3 lattice, the outcome will be
a necessary stability condition for any higher-dimensional re-
alization. The first Chapman-Enskog approximation results in
the continuity and momentum equations, ∂

(1)
t ρ + ∂xρu = 0,

∂
(1)
t ρu + ∂xρu2 + ∂xρπ∗ = 0, where we omitted index x to

ease notation. We perform the characteristics analysis [10],
which reveals a pair of normal eigenmodes propagating with
the speeds c±,

c± = u + 1

2
∂uπ

∗ ±
√

1

4
(∂uπ∗)2 + π∗, (12)

where a positive square root is assumed, c+ − c− > 0. Con-
versely, upon defining the two sound speeds, ς± = c± − u,
the pressure and its derivative are expressed as

π∗ = −ς+ς−, (13)

∂uπ
∗ = ς+ + ς−. (14)

In the second Chapman-Enskog approximation, the momen-
tum equation is modified by a nonequilibrium term, ∂

(2)
t ρu =

−∂xπ
neq, with the nonequilibrium diagonal component of the

pressure tensor as

πneq = −
(

1 − β

2β

)
(2Aρς2∂xu + B∂xρ). (15)

Here, A (viscosity factor) and B (compressibility error) are

A = 1

2ς2
[3ς2 − (c+)2 − (c−)2 − c+c−], (16)

B = 3ς2u − u3 + (c− − u)(c+ − u)(c+ + c− + u). (17)

Finally, we perform the spectral analysis of the hydrodynamic
equations, linearized around {ρ, u}, to find the following
leading-order dissipation-dispersion relations for the eigenfre-
quencies:

ω± = c±k + iνR±k2 + O(k3), (18)

where k is the wave vector, i = √−1, and ν is the viscosity
(4), while R± are attenuation rates, written in terms of eigen-
modes,

R± = ±c±[3ς2 − (c±)2]

ς2(c+ − c−)
. (19)

Hence, with the positivity of the viscosity ν (4) already estab-
lished by the bound on the relaxation parameter β ∈ [0, 1], the
necessary stability condition of the LBGK system in the long-
wave limit k → 0 is the positivity of attenuation rates (19)
R± � 0; see Fig. 1. The positivity domain of the viscosity
factor (16) is also shown in Fig. 1.

The advantage of using eigenmodes in the present analysis
is that the dissipation-dispersion relations (18) and (19) are
explicit functions of c±. The specific dependence of the atten-
uation rates (19) on c± provides for separable and independent
conditions on c+ and c−. This allows us to immediately find
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FIG. 1. Positivity domain of attenuation rates R± (19) and of the
viscosity factor A (21) as a function of eigenmodes c+ and c−. Red:
Positivity domain of R+. Blue: Positivity domain of R−. Purple:
Positivity domain of both R+ and R− simultaneously. The positive
square root convention in Eq. (12) restricts the stability domain to the
bottom-right quadrant (20), shown with solid black lines. Area inside
dashed black elliptic contour: Positivity domain of the viscosity
factor A (16). Area inside dotted black square: Validity domain of
CFL condition.

that attenuation rates (19) are non-negative if the eigenmodes
(12) satisfy the following inequalities:

0 � c+ � 1, −1 � c− � 0. (20)

Note that the necessary stability condition (20) is also consis-
tent with (and is stronger than) the Courant-Friedrichs-Levy
(CFL) condition [20], max{|c±|} � 1, which tells that no
eigenmode can propagate faster than the maximal speed equal
to the lattice link; see Fig. 1.

Moreover, with the explicit form of the eigenmodes (12),
both the viscosity factor (16) and compressibility error (17)
can equivalently be expressed in terms of the pressure π∗, its
derivative ∂uπ

∗, and flow velocity u,

A = 1

2ς2
[3ς2 − 3u2 − π∗ − ∂uπ

∗(3u + ∂uπ
∗)], (21)

B = −(3u + ∂uπ
∗)π∗ + 3uς2 − u3. (22)

The stability condition (20), along with non-negativity π∗ �
0, implies the following limits of the pressure and its deriva-
tive at the maximal flow velocity |u| = 1:

lim
u→∓1

π∗ = 0, (23)

1 � lim
u→∓1

(±∂uπ
∗) � 2. (24)

In other words, the necessary stability condition (20) for the
slow modes of the D1Q3 lattice Boltzmann model implies
vanishing pressure at the maximal flow velocity |u| = 1. The
domain of existence of ∂uπ

∗ under these constraints is shown
in Fig. 2. Note that the additional condition on positivity of π∗
restricts c+ and c−, as illustrated in Fig. 3.

Based on our earlier assertion of the pressure π∗ as the
coupling parameter, this can be interpreted as a case for
asymptotic freedom: The necessary condition for linear stabil-
ity of the lattice Boltzmann system is the asymptotic vanishing
of the pressure π∗ in the limit of large fluid velocity. Isotropic

-1 -0.5 0 0.5 1

-2

-1

0

1

2

FIG. 2. Domain of existence of ∂uπ
∗ under constraints of (20)

and π∗ � 0. Red curve shows ∂uπ
∗ for the case of entropic equilib-

rium (28).

pressure (8) is not asymptotically free and violates the nec-
essary stability condition (20) at |u|max (1). Differently put,
the pressure “needs to bend” at velocities sufficiently far from
u = 0 and adjust in such a way as to maintain unconditional
stability of the hydrodynamic limit (20). It is important to note
that the conclusion drawn here on the necessary condition for
linear stability also holds for higher-dimensional realizations
since the same normal propagation modes are also present
regardless of the physical dimension of the system.

B. Asymptotically free realizations

In order to find the asymptotically free pressure, we note a
distinguished case when the compressibility error cancels in
the nonequilibrium flux of momentum (15),

B = 0. (25)

With (25), the D1Q3 LBGK model becomes renormalizable:
Since A � 0 for the asymptotically free pressure (see Fig. 1),
the viscosity factor can be absorbed into the viscosity by

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

FIG. 3. Domains of existence of c+ and c− under constraints of
(20) and π∗ � 0. Red curves represent c± for the case of entropic
equilibrium (28).
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FIG. 4. Propagation speed of eigenmodes (left) and pressure π∗

(right) as a function of u for Eq. (28) (red lines) and Eq. (29) (dashed
blue lines). The dashed black lines represent the limit of π∗ = ς 2.

renormalizing the relaxation parameter,

β∗ = ς2A
2ν + ς2A , (26)

whereby Eq. (15) assumes a purely Navier-Stokes form,

πneq = −1 − β∗

2β∗ ρς2(2∂xu). (27)

With (22), the no-compressibility-error condition (25) is a
first-order ordinary differential equation, which admits a
unique solution subject to the initial condition π∗(0) = 1/3,

π∗ = ς2[2
√

1 + (u/ς )2 − 1 − (u/ς )2]. (28)

Direct evaluation verifies that (28) validates the inequalities
(20) and is thus asymptotically free; see Figs. 2 and 3. More-
over, it is striking that with the pressure (28), the equilibrium
(6) coincides with the entropic equilibrium [21–23]. The latter
was postulated in [24] on the basis of the entropy maximum
principle and was recently derived also by coarse graining of
molecular dynamics [25].

The present derivation highlights the unique renormal-
izability of the LBM with entropic equilibrium. Note that
asymptotically free realizations other than the entropic equi-
librium are possible. For example,

π∗ = ς2

[
a(u/ς )2

1 + b(u/ς )2 + 1 − a(u/ς )2

]
, (29)

with a = 2ς4/(4ς2 − 1) and b = ς4/(a − ς2), also satisfies
Eqs. (20), (23), and (24) and is thus linearly stable. Moreover,
as can be seen in Fig. 4, the pressure (29) is close in value
to the entropic result (28). However, unlike the latter, the
pressure (29) still leads to a compressibility error of the same
order as the isotropic pressure (8).

C. Sufficient stability condition: Arbitrary
lattice Knudsen number

The lattice Knudsen number is defined as Kn = (k/2π )δr.
The above necessary stability condition, derived from the
leading-order hydrodynamic limit, pertains to small lattice
Knudsen numbers, Kn → 0. While the necessary stability
condition (20) concerns the long-wave limit, the D1Q3 LBGK
system allows for analytical study of both the necessary and
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FIG. 5. Root locus of the characteristic polynomial of the D1Q3
LBGK model with β = 0.9994 and u = 1. Top left: Isotropic pres-
sure (8). Top right: Asymptotically free pressure (28). Bottom:
Asymptotically free pressure (29).

sufficient stability conditions at all wave numbers k ∈ [0, 2π ],
equivalently at all lattice Knudsen numbers.

The necessary and sufficient conditions for linear stability
of a discrete system are provided by the concept of Schur
stability of the characteristic polynomial [11]. In our case,
roots λ of the third-order characteristic polynomial of the
linearized LBGK (2) must be located within the unit disk in
the complex plane, |λ| � 1. To that end, we use a modified
Jury table algorithm [26,27] to analytically identify the condi-
tions of Schur stability; details of the analysis can be found in
Appendices A and B.

The analysis demonstrates that both the necessary and
the sufficient conditions for the linear stability of the D1Q3
LBGK system are independent of the wave number. Put
differently, the linear stability is independent of the lattice
Knudsen number. This proves that the hydrodynamic limit
stability condition (20) is both necessary and sufficient for the
linear stability of the D1Q3 LBGK.

The effect of the choice of the pressure on the Schur sta-
bility is illustrated in Fig. 5: While the isotropic pressure (8)
leads to |λ| � 1 for some of the roots of the characteristic
polynomial and thus to instability, the asymptotically free
pressure (28) or (29) guarantees |λ| � 1 even for the ultimate
velocity value |u| = 1.

IV. MULTIDIMENSIONAL SYSTEMS

The above stability condition (20) remains necessary in
higher dimensions. Here we consider only the asymptotically
free pressure (28). For the LBGK model on the D2Q9 lattice,
at the Navier-Stokes order, the nonequilibrium pressure tensor
becomes

πneq = −1 − β

2β
ρς2[(A � ∇u) + (A � ∇u)†], (30)
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where � is the Hadamard (componentwise) product of matri-
ces, while the matrix A reads

A =
[

Axx π∗
xx/ς

2

π∗
yy/ς

2 Ayy

]
. (31)

Here, the off-diagonal components are defined by the pressure
(28) as π∗

αα = π∗(uα ), while the diagonal components are
defined by the viscosity factor (21) as Aαα = A(uα ). Thus,
with the properties of the function A already specified, all
components of the matrix A governing the decay rates of both
the normal and the shear modes are non-negative in the entire
range of flow velocity, |ux,y| � 1. Note that the asymptotics
at small velocity, A → 1 − diag{(2/3)(uα/ς )2}, where 1 is
the matrix with all components equal to one, is the same
for both the isotropic and the asymptotically free pressure.
Together with the linearity of the rate-of-strain ∼∇u, the
remaining anisotropy is of the order of ∼u3 and is a universal
consequence of the “cubic anomaly” due to the aforemen-
tioned lattice constraint. At the same time, another anomalous
term of the order of ∼u3 appears in the nonequilibrium
pressure tensor due to compressibility error [proportional to
Bαα = B(uα ); cf. (22)] when the isotropic pressure is used.
For the asymptotically free pressure, the latter error is not
present in (30), and thus it is more accurate than the isotropic
pressure. This is not surprising because the asymptotically
free pressure was derived from the no-compressibility-error
condition. Moreover, the remaining leading-order anomaly
in (31) can be eliminated by renormalization, similar to the
D1Q3 case above, albeit within a multiple relaxation time
setting rather than the LBGK. This is beyond the scope of this
paper.

Schur-stability analysis of the ninth-order characteristic
polynomial in two dimensions becomes cumbersome; hence,
in the present work, we probe the linear stability of the LBGK
by numerically solving the eigenvalue problem. The linear
stability domain of the LBGK with the entropic equilibrium
of Eq. (28) is compared to the isotropic pressure case in
Fig. 6. Also included in the comparison is the second-order
polynomial equilibrium [18] obtained by retaining terms of
the order of uαuβ in the expansion of the equilibrium pop-
ulations. It is apparent that LBGK with the asymptotically
free equilibrium (28) is unconditionally linearly stable: The
stability domain extends to the entire range of flow velocity,
|u| � 1, and is independent of the viscosity ν. The two other
LBGK with the isotropic pressure behave differently: First,
the stability domain is limited by the velocity |u|max (1),
i.e., the value at which isotropic pressure violates the nec-
essary stability condition (20). Above this value, no amount
of viscosity can stabilize the LBGK system. Second, the
stability domain shrinks to nil with the decrease of the vis-
cosity. All of that is in marked contrast to the asymptotically
free LBGK.

V. NUMERICAL SIMULATIONS

A. Sinusoidal density waves

To probe the stability near the |u| = ±1 limit, simulations
were run in a 1D periodic domain of size Nx. The initial

10
-5

10
-3

10
-1

0

0.2

0.4

0.6

0.8

1

FIG. 6. Linear stability domain of D2Q9 LBGK with differ-
ent equilibria. Maximal attainable flow velocity vs viscosity (4).
Red with diamond markers: Second-order polynomial equilibrium
[18]. Blue with square markers: Product-form equilibrium (6) with
isotropic pressure (8). Black with circular markers: Product-form
equilibrium (6) with asymptotically free pressure (28). Horizontal
dotted line: |u|max = 1 − 1/

√
3 (1).

conditions were

u(x, 0) = u0,

ρ(x, 0) = ρ0 + δρ sin (kxx), (32)

where kx = 2πδr/Nx. Velocity u0 was set very close to its
limit, u0 = 0.99, while ρ0 = 1 and δρ = 10−4 was set in
order to maintain the system in the linear regime, and Nx =
256. Simulations were run for different wave numbers, i.e.,
kx ∈ [0, 2π ], and the energy, E = ∫

x
1
2ρu2 + π∗(ρ − ρ0)dx,

was monitored over 50 flow-through periods T = Nx/u0. In
all simulations, the viscosity was set to ν = 10−6. The total
energy evolution in the domain for kx = π is shown in Fig. 7.
It is clear from Fig. 7 that the energy in the system stays almost
unchanged over this rather long period of time, showing that
the system is stable and has low numerical dissipation. For
more details on the measured dissipation rate, we refer inter-
ested readers to our earlier publication [10]. Similar results are

0 10 20 30 40 50

-4

-2

0

2

4

10
-11

FIG. 7. Evolution of energy in domain for the 1D sinusoidal
density waves configuration, for kx = π , u0 = 0.99, and ν = 10−6.
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FIG. 8. Evolution of kinetic energy in domain for the 2D shear
waves configuration, for kx = π , u0 = 0.99, and ν = 10−6.

obtained for all other wave numbers, confirming the analytical
results presented in the previous sections.

B. Convected shear modes

To probe the stability of the additional mode brought about
in multidimensional cases, we consider a domain of size Nx ×
Ny with the following initial conditions:

ux(x, y, 0) = u0,

uy(x, y, 0) = δu0 sin (kxx), (33)

ρ(x, y, 0) = ρ0,

where ρ0 = 1 and kx is defined as for the previous config-
uration. Here, δu0 = 10−4 and Nx = Ny = 256. As for the
previous configuration, the kinetic energy was proved over 50
flow-through periods for different wave numbers. The viscos-
ity was set to ν = 10−6. The results are illustrated in Fig. 8 for
kx = π . It is observed that shear modes are stable and have
almost vanishing dissipation rates even in the limit of rather
large wave numbers, i.e., features resolved by only two grid
points.

VI. CONCLUSION

In summary, seminal work on quantum chromodynamics
[15,16] teaches us that perturbative computations at low en-
ergies in strongly coupled systems are only possible with
asymptotic freedom at high energies. Lattice Boltzmann sys-
tems can be regarded as strongly coupled in lieu of constraints
on the particles’ velocities imposed by the lattice; cf. Eq. (10).
Thus, stable simulations at low flow velocities may require
asymptotic freedom at high velocities.

In order to test this hypothesis, a rigorous approach to
the LBM was developed in this paper. The coupling param-
eter was identified as the equilibrium pressure, while the
coarse graining brought about the necessary stability condi-
tion, which shows that indeed, the asymptotic freedom must
be guaranteed by the equilibrium.

A parallel with the concept of asymptotic freedom can be
further demonstrated by looking at the β function [16,17]
while identifying π∗ as the coupling parameter and u2 as the

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

FIG. 9. The β function (34) of the asymptotically free
pressure (28).

energy scale,

β(π∗) = ∂π∗

∂ ln(u2)
= u

2
∂uπ

∗. (34)

For the entropic result given by Eq. (28), the β function (34)
is plotted in Fig. 9. One clearly observes that for u ∈ [−1, 1]
the β function is nonpositive, β(π∗) � 0, which agrees with
the definition of asymptotic freedom.

It was rigorously shown that the entropic equilibrium sat-
isfies the asymptotic freedom and is uniquely renormalizable.
Moreover, for the LBGK model, regularization of the system
via asymptotic freedom at vanishing lattice Knudsen number
restores linear stability to all lattice Knudsen numbers, that is,
the necessary stability conditions are also sufficient. With the
asymptotically free equilibrium, the LBGK is unconditionally
linearly stable.

Note that while the present work deals with linear stability,
the latter is a necessary condition for the overall stability of
the LBM. In practice, additional mechanisms will be needed,
especially for cases involving strong gradients, for a nonlinear
stabilization. This is one argument in favor of one specific
form of the asymptotically free LBM: the entropic equilib-
rium, which comes equipped with an entropy functional and
associated nonlinear stabilizer.

The practical outcome of this paper is a rigorous algorithm
for the construction of unconditionally linear-stable D1Q3
lattice Boltzmann models based on identification of pressure
as the coupling parameter [cf. Eq. (12)], analysis of conditions
for asymptotic freedom [cf. Eq. (20)], and solving the result-
ing renormalization equations [cf. Eq. (25)]. This perspective
on the lattice Boltzmann construction may be particularly
useful for compressible and multiphase flow LBM simulations
[28,29]. A conventional remedy to LBGK instability invokes
a concept of multiple relaxation times (MRTs), that is, the
relaxation to the equilibrium proceeds at different rates for
different moments of the distribution function [3,4]. However,
the above analysis shows that the necessary stability condition
rather concerns the equilibrium itself. We have performed
a numerical stability test on a variety of conventional MRT
models to find that all of them are bound to fail when the
flow velocity exceeds the same maximum, |u|max (1) [8]. None
of the MRT models with conventional equilibrium produce
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unconditionally stable LBM. In an upcoming contribution,
through the concept of Schur stability discussed here, reinter-
preting MRT schemes as a series of back-to-back relaxation
processes between different quasi-equilibria, we will show
that the unconditional linear stability of individual quasi-
equilibria is necessary for the unconditional linear stability of
the scheme in the entire space of the relaxation parameters. In
a broader sense, a relation between asymptotic freedom and
the entropy maximum principle, which was demonstrated in
the above example, may uncover new insights in statistical
physics.
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APPENDIX A: SCHUR-STABILITY ANALYSIS

1. Linearization of discrete collision-streaming equation

To perform the linear stability analysis, the collision-
streaming evolution equation needs to be linearized as the
equilibrium is a nonlinear term. To that end, the discrete
distribution function is approximated via a first-order Taylor
expansion around f̄i,

fi ≈ f̄i + f ′
i , (A1)

where f ′
i is the linear deviation from the reference state. The

discrete collision-streaming equation, therefore, changes into

f ′
i (r + ci, t + 1) = f ′

i (r, t ) + 2β(Ji j f ′
j − f ′

i ), (A2)

where

Ji j = ∂ f j f eq
i

∣∣
f̄ j
. (A3)

The Jacobian Ji j can further be written as

Ji j = ∂ρ f eq
i

∣∣
ρ̄
∂ f j ρ| f̄ j

+ ∂uα
f eq
i

∣∣
ūα

∂ f j uα| f̄ j
. (A4)

Explicit expressions for the Jacobian of the pressure of
Eq. (28) can be found in [23]. The solution of the above-
linearized discrete system of equations can be written as a
combination of monochromatic plane waves,

f ′
i = F ′

i exp i(k · ci − ωt ), (A5)

where F ′
i ∈ C, ‖k‖ = k is the wave number. The physical

perturbation can be written as

Re( f ′
i ) = |F ′

i | exp [Im(ω)t] cos[k · r − Re(ω)t + arg(F ′
i )],

(A6)

where Re(ω) is the real part of ω linked to the wave propa-
gation and Im(ω) is the imaginary part tied to its attenuation.
Introducing this Fourier expansion in space-time into Eq. (A2)
and making use of the notation F ′ = [ f ′

1, . . . , f ′
Q]† ∈ CQ,

exp (iω)F = MF, (A7)

where

Mi j = exp (−ik · ci )[2βJi j + δi j (1 − 2β )]. (A8)

2. Characteristic polynomial root locus and positivity

Considering the eigenvalue problem of Eq. (A7), intro-
ducing λ = exp(iω), the characteristic polynomial of M is
found as

�(λ) = det(λI − M). (A9)

The linear stability of the corresponding system is guaranteed
if and only if ∀λ|�(λ) = 0, ‖λ‖ � 1, meaning all roots must
be within the unit circle. Such polynomials are called Schur
stable [11].

A variety of lemmas have been developed to assess the
locus of roots of characteristic polynomials, with real or
complex-valued coefficients. Here we use an extension to
the Jury table approach [26] proposed in [27]. Considering
a characteristic polynomial of degree n,

�(λ) = anλ
n + an−1λ

n−1 + · · · + λ0, (A10)

with ∀i ∈ {0, . . . , n}|ai ∈ C, the Jury table is defined as fol-
lows: ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a(n)
n a(n)

n−1 . . . a(n)
0

a(n−1)
n−1 a(n−1)

n−2 a(n−1)
0

. . . . . .

a(1)
1 a(1)

0

a(0)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where a(n)
i = ai and

a(n−1)
n−i = a(n)

n−i+1ā(n)
n − a(n)

0 ā(n)
i−1, i = 1, . . . , n, (A12a)

a(n−2)
n−i = a(n−1)

n−i+1ā(n)
n−1 − a(n−1)

0 ā(n−1)
i−2 , i = 2, . . . , n,

(A12b)

a(0)
0 = ∣∣a(1)

1

∣∣2 − ∣∣a(1)
0

∣∣2
. (A12c)

Here, the complex conjugate of a variable a is denoted as
ā. The polynomial of Eq. (A10) is Schur stable if and only if

a(i)
i � 0 for i = n − 1, . . . , 0. (A13)

APPENDIX B: SCHUR STABILITY
OF THE 1D LBGK SYSTEM

1. The D1Q3 lattice: Case of standard pressure

The case of standard pressure corresponds to the case
where

π∗ = ς2 = 1/3, (B1)

and leads to a characteristic polynomial of order three,

�(λ) = a3λ
3 + a2λ

2 + a1λ + a0, (B2)
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FIG. 10. Root locus (left) and conditions from Jury table (right)
for β = 1/2 and u = 0.4 for π∗ = ς 2.

with a3 = 1 and

a2 = [2βς2 − 2u2β − 2 cos(k) + 2β cos(k) + 2u2β cos(k)

− 2βς2 cos(k) − 1] + 4uβ sin(k)i, (B3a)

a1 = [2 cos(k) − 2β − 2u2β + 2βς2 − 2β cos(k)

+ 2u2β cos(k) − 2βς2 cos(k) + 1] − 4uβ sin(k)i,

(B3b)

a0 = 2β − 1. (B3c)

Applying the Jury table algorithm, the following three con-
ditions of stability are recovered:

1

β
− 1 � 0, (B4a)

[ cos(k) − 1]u4 + [2ς2 − 2 cos(k) − 2ς2 cos(k) − 4]u2

+[cos(k) − ς4 − 2ς2 cos(k) + ς4 cos(k) + 1] � 0,

(B4b)

u6 + (3ς2 + 2)u4 − (3ς4 + 1)u2 + (ς6 − 2ς4 + ς2)

� 0. (B4c)
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FIG. 11. Root locus (left) and conditions from Jury table (right)
for β = 1/2 and u = 0.45 for π∗ = ς 2.

The first condition results in

0 < β � 1, (B5)

and the second with the third one into

|u| � 1 − ς. (B6)

To show the correspondence between the Schur stability and
the conditions out of the Jury table, two different cases are
illustrated in Fig. 10 and Fig. 11. In the left panels of these
figures, the roots of the third-order characteristic polynomial
�(λ), given by Eqs. (B2) and (B3a)–(B3c), are shown in the
complex plane. In the right panels, the coefficients in the first
column of the corresponding Jury table are plotted for differ-
ent wave numbers k. In Fig. 10, the velocity is taken slightly
below the theoretical maximum velocity umax = 1 − 1/

√
3,

and the system is stable as all roots are located within the
unit disk in the left panel, while all coefficients of the first
column of the Jury table are positive for all wave numbers.
This is in contrast to the case of Fig. 11, where the veloc-
ity is taken slightly above the theoretical maximum velocity
umax = 1 − 1/

√
3. Then the roots are not always within the

unit disk, which leads to negative values in the coefficients of
the first column of the Jury table and thus to instability.

2. The D1Q3 lattice: Case of general pressure

In the case of general pressure, the coefficients of the third-
order characteristic polynomial are a3 = 1 and

a2 = [2βπ∗ − 2 cos(k) − 2u2β + 2β cos(k) − 2βπ∗ cos(k) + 2u2β cos(k) − 2uβ∂uπ
∗ + 2uβ∂uπ

∗ cos(k) − 1]

+ 2β sin(k)(2u + ∂uπ
∗)i, (B7a)

a1 = [2 cos(k) − 2β + 2βπ∗ − 2u2β − 2β cos(k) − 2βπ∗ cos(k) + 2u2β cos(k) − 2uβ∂uπ
∗ + 2uβ∂uπ

∗ cos(k) + 1]

− 2β sin(k)(2u + ∂uπ
∗)i, (B7b)

a0 = 2β − 1, (B7c)

which lead to the following conditions of stability:

1

β
− 1 � 0, (B8a)

[ cos(k) − 1]([cos(k) − 1]u4 + 2∂uπ
∗[1 − cos(k)]u3 + {2π∗[cos(k) − 1] + ∂uπ

∗2[1 − cos(k)] + 2[2 + cos(k)]}u2

+2∂uπ
∗{π∗[cos(k) − 1] + cos(k) + 2}u + 2π∗ cos(k) + ∂uπ

∗2[1 + cos(k)] + π∗2[1 − cos(k)] − 1 − cos(k)) � 0, (B8b)

[cos(k) − 1]3[cos(k) + 1]Q(u, π∗, ∂uπ
∗) � 0, (B8c)

015306-8



ASYMPTOTIC FREEDOM IN THE LATTICE BOLTZMANN … PHYSICAL REVIEW E 110, 015306 (2024)

where Q(u, π∗, ∂uπ
∗) is a polynomial of order six in u. Given the sign of the wave-number-dependent coefficients, Eq. (B8c)

reduces to the negativity of the polynomial Q(u, π∗, ∂uπ
∗). Rewriting the polynomial in terms of ς± simplifies the expression

into the product of two polynomials of order three, Q′(u, ς±),

Q′(u, ς±) = u3 + 3ς±u2 + (3ς±2 − 1)u + ς±(ς±2 − 1), (B9)

which have the following roots:

ux = {−(1 + ς±), (1 − ς±), −ς±}, (B10)

which correspond exactly to the positive-definiteness condition on total dissipation of Eq. (19). Finally, by simplifying Eq. (B8b),
we arrive at the following condition:

[1 + cos(k)](c+2 − 1)(c−2 − 1) � 2c+c−(1 + c+c−). (B11)

Using the condition obtained from Eq. (B8c), we can readily show that

0 � [1 + cos(k)](c+2 − 1)(c−2 − 1) � 2, (B12)

while

−2 � 2c+c−(1 + c+c−) � 0, (B13)

proving that condition (B8c) is automatically satisfied when (B8b) is satisfied. This completes the proof that for a general pressure
π∗, the sufficient conditions for stability are the same as the necessary conditions, i.e., positive definiteness of the hydrodynamic
dissipation rate.
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