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Evaluation of the non-Newtonian lattice Boltzmann model coupled with off-grid bounce-back
scheme: Wall shear stress distributions in Ostwald–de Waele fluids flow
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We present a comprehensive analysis of the non-Newtonian lattice Boltzmann method (LBM) when it is
used to simulate the distribution of wall shear stress (WSS). We systematically identify sources of numerical
errors associated with non-Newtonian rheological behavior of fluids in off-grid geometries. We implement the
single relaxation time, Bhatnagar-Gross-Krook (BGK), and multiple relaxation time (MRT) collision operators
and investigate flow in a two-dimensional channel aligned with lattice directions and off-grid Hagen-Poiseuille
flow of Ostwald–de Waele (power-law) fluids. As for boundary conditions, we implement constant body
force-driven and pressure-driven flows. These two boundary conditions have different numerical challenges,
which include numerical stability, accuracy, mass conservation, and compressibility effects, which are inherent
in the LBM method. Our results indicate that MRT, when the relaxation times are adequately tuned in the
non-Newtonian case, significantly improves the WSS distribution accuracy and the numerical stability of the
LBM. MRT also enhances the stability and accuracy for non-Newtonian fluids compared with the Newtonian
case, meaning that it is questionable if a BGK collision operator is appropriate to use in a non-Newtonian
case with off-grid boundaries. When analyzing the non-Newtonian LBM in the context of staircase walls and
interpolated bounce-back (IBB) walls, a MRT collision operator with the appropriate choice of tunable relaxation
times makes it possible to achieve numerically accurate results without a significant increase in grid resolution
for matching to the analytical solution of WSS distributions.

In analyzing the non-Newtonian flows, we show that the viscosity dependency of bounce-back walls in the
BGK-LBM deviates from the results obtained under Newtonian assumptions. The power-law index further
influences these discrepancies, and errors caused by the viscosity dependency of the bounce-back boundary
conditions can be effectively mitigated by implementing the MRT procedure. Results show that non-Newtonian
fluids, in contrast with the Newtonian assumption, encounter a greater mass imbalance when flowing through a
periodic system with IBB walls. MRT can address this challenge, as it allows for independent adjustments of
physical relaxation times and enhances mass conservation in the case of non-Newtonian fluids. In pressure-driven
non-Newtonian flows, there is a significant impact of bulk viscosity. This aspect is often overlooked in Newtonian
simulations but can significantly impact fluid adapting to rapid changes in local effective viscosity. One of our
main conclusions is that the MRT collision operator with tuned relaxation times can effectively resolve numerical
problems caused by non-Newtonian rheological properties and off-grid geometries. We also provide practical
guidelines for selecting the most suitable simulation approach.

DOI: 10.1103/PhysRevE.110.015305

I. INTRODUCTION

Wall shear stress (WSS) must be precisely modeled for
simulation tools to work well, especially when dealing with
non-Newtonian fluids in industrial and medical applications.
In a biomedical context and non-Newtonian blood rheology,
it has been discovered that WSS plays a pivotal role in re-
modeling the endothelium, the inner layer of vascular walls
[1]. The remodeling process of the endothelium can assist in
understanding the underlying cause of vascular diseases and
atherosclerosis [2]. The relationship between the mechanical

*Contact author: hamed.vaseghnia@uis.no

impact on vascular walls and the onset of vascular disease
can be quite complex. Consequently, it is imperative for
simulation tools to model WSS accurately. In the case of
Newtonian fluids, WSS can be easily determined by exam-
ining the linear relationship between the velocity gradient
of the fluid at the boundary and the stress. However, when
dealing with non-Newtonian fluids, the relationship between
stress and strain becomes nonlinear, leading to complexi-
ties [3]. Non-Newtonian fluids exhibit various characteristics,
including shear-dependent viscosity, viscoelasticity, and the
ability to undergo thixotropy or rheopexy [4]. Generalized
Newtonian fluid models can accurately describe the predomi-
nant behavior observed in most non-Newtonian fluids, which
exhibit shear-thinning or thickening characteristics. In this
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framework, the viscosity of the fluid is not constant but varies
with the shear strain rate, as dictated by the constitutive equa-
tions of the stress tensor.

In recent years, several numerical techniques have been
proposed to model the intricate behavior of non-Newtonian
fluid flows [5–7]. Among them, the lattice Boltzmann method
(LBM) has emerged as a viable alternative to conventional
Navier-Stokes solvers. This is primarily due to its advanta-
geous features, including low computational cost, capabilities
of parallel programming, and ability to handle wall boundary
conditions locally [8,9]. The LBM also has a unique charac-
teristic that enables calculating the local components of the
stress tensor in fluid flow without estimating velocity gradi-
ents, which is necessary for Navier-Stokes solvers [10]. This
property of LBM is helpful in various simulation applications,
including non-Newtonian fluid dynamics and multiscale and
multiphase flows. Calculating the shear rate locally makes
simulations more accurate and detailed, particularly in places
with complicated shapes and high velocity gradients. By fa-
cilitating a more thorough and accurate understanding of fluid
behavior across a range of scales and flow conditions, this
approach increases the practicality of LBM in addressing var-
ious fluid dynamics problems such as WSS modeling. These
attributes have contributed to the increasing use of the LBM
in analyzing non-Newtonian fluids [11–16].

The implementation of the hydrodynamic boundary con-
ditions at the level of the mesoscopic distribution functions
of LBM and fluid-solid interactions has been the subject
of numerous theoretical and numerical studies [17–20]. The
deployment of boundary conditions, numerical accuracy,
and kinetic-theory analysis of specific models were some
of the topics covered in these investigations. The simple
bounce-back technique, suggested by Ladd [21], provides the
foundation for most later refined bounce-back designs and has
been extensively used for fluid-solid interaction problems in
LBM simulations. The primary idea of the bounce-back rule is
that, when a lattice particle at a boundary node moves toward a
solid surface along a link, it reverses direction upon contacting
the boundary. As a result, the unknown distribution function
is the incident distribution function plus a term that accounts
for the impact of wall velocity [22]. The bounce-back scheme
technically differs from other approaches that require stability
treatment and ensures solution stability even when approach-
ing the instability limit of relaxation times [23]. Also, mass
conservation at stationary boundaries is rigorously ensured
since bounce-back relies on reflections, which is crucial, es-
pecially in problems where total mass plays a significant
role [24]. However, it has been shown that the bounce-back
condition only ensures greater-than-first-order precision if the
wall passes halfway through the lattice links and the surface is
aligned with the lattice discrete directions [22]. Both criteria
are violated in curved and nonplanar boundary configura-
tions where the wall cuts the lattice connections at different
distances and the bounce-back becomes first-order accurate.
A simple approach for handling complex no-slip boundaries
using the bounce-back scheme is to approximate them with
a staircase shape. This approach requires a higher resolution
in the computational domain to prevent unfavorable inaccura-
cies caused by stair-shaped approximations and artificial wall
roughness [25]. Bouzidi et al. [18] presented an enhanced

scheme to achieve higher accuracy by modifying the bounce-
back enclosure rule by implementing interpolation schemes.
These schemes require nonlocal surface smoothing processes,
which allow the generation of off-grid boundary locations
from voxel data and enable the resolution of the actual bound-
ary location with subgrid precision [25]. The proposed scheme
effectively maintains second-order accuracy in the solution
and proves to be computationally efficient for resting bound-
aries. However, this approach has some limitations. Since the
reflection of particle distributions relies on boundary locations
and interpolations rather than directly reflecting the particles,
there is a risk of violating mass conservative characteristic of
the bounce-back approach.

Furthermore, combining the bounce-back method and the
Bhatnagar-Gross-Krook (BGK) collision model introduces a
dependence on viscosity for accurately determining the place-
ment of the no-slip boundary [26]. Consequently, using the
bounce-back scheme in this scenario may introduce addi-
tional error terms that are not accounted for in the standard
Chapman-Enskog analysis [27]. One implication of these er-
rors is the emergence of a small slip velocity at the solid wall
in continuum flows, which is associated with relaxation rates
[22,28]. This effect becomes even more pronounced in com-
plex fluids modeled using the LBM, where relaxation rates are
nonconstant, and the fluid does not strictly adhere to Newton’s
law of viscosity. Therefore, addressing numerical issues in the
features of the LBM becomes crucial, especially when dealing
with non-Newtonian fluids and WSS distributions on off-grid
wall boundaries.

The behavior of the WSS in LBM simulations was care-
fully examined for the first time by Stahl et al. [25]. They
proposed a scheme to calculate the normal wall vectors nec-
essary for determining WSS. In that study, the primary cause
of the inaccuracy was revealed to be the distortion of the
velocity field near the staircase boundaries. In inclined two-
dimensional (2D) Poiseuille and Womersley flows, Kang and
Dun [29] investigated the accuracy of the WSS for BGK and
multiple relaxation time (MRT) collision operators coupled
with halfway and interpolated bounce-back (IBB) methods.
They reported similar results for BGK and MRT with the
selected parameters. Shimogonya et al. [30] proposed a hemo-
dynamic index for predicting the onset of a cerebral aneurysm
using LBM. They define this index as the temporal fluctu-
ations of tension forces exerted on endothelial cells. Using
the bounce-back boundary method and LBM, Kang [31] ex-
amined the error of WSS measurements in oscillatory blood
flows. Kang [31] indicated that blood flow simulations should
be performed at a very high resolution since WSS measure-
ments should be carried out at a specific distance from the
wall. However, to the best of our knowledge, WSS distribu-
tions of the non-Newtonian fluids and the complexity of the
fluids behavior have been overlooked in the existing literature.
It has been shown empirically that using a Newtonian vis-
cosity model may underestimate WSS, as the shear-thinning
effects of the fluids lead to an increase in WSS, and ac-
cordingly, more careful treatments should be done in these
measurements and studies [32,33]. Note that the accuracy of
WSS measurements highly depends on the choice of alterna-
tive wall boundary conditions. Curved boundary assessments
and WSS evaluations may be possible with other approaches,
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including immersed boundary [34] and ghost cell methods
[35,36]. While, in this paper, we focus mainly on the popular
bounce-back technique, additional investigation is necessary
to develop improved boundary conditions that enable accurate
WSS calculations using other aproaches.

In this paper, we comprehensively evaluate the conven-
tional BGK and MRT collision operators within the context
of the D2Q9 non-Newtonian LBM to simulate WSS distri-
butions. Our evaluation is based on the application to the
off-grid Hagen-Poiseuille flow of Ostwald–de Waele fluids,
also known as power-law fluids. The selection of Ostwald–de
Waele fluids for this paper is motivated by the availability of
analytical solutions, enabling a detailed and comprehensive
analysis of the performance of the numerical solver in simulat-
ing these complex fluid behaviors. A spectrum of generalized
Newtonian models exists, including the Carreau, Carreau-
Yasuda, Herschel-Bulkley, Cross, and Casson models, which
can accurately model shear-viscosity profiles tailored to spe-
cific problems [37–39]. However, the absence of analytical
solutions for these models prevents their direct inclusion in
this paper. Nevertheless, the analyses conducted in this paper
are expandable to all non-Newtonian models coupled with
LBM, and the application of these models can affect the
accuracy of results.

The evaluation focuses on two distinctive flow scenarios
of constant body force- and pressure-driven flows. We aim
to identify and comprehend the sources of errors associated
with each scenario and the behavior of complex fluids through
a systematic analysis. Specifically, we investigate various as-
pects such as numerical stability, accuracy, mass conservation,
and mitigating compressibility effects inherent in the LBM.

The remaining sections of this paper are organized as fol-
lows: In Sec. II, we present challenges in the non-Newtonian
LBM and the assessment procedure. In the first part of Sec. III,
we thoroughly assess the sources of numerical errors and
instabilities in the non-Newtonian LBM in aligned channel
flows. We scrutinize its capabilities and limitations to un-
derstand its applicability comprehensively. Subsequently, in
the second part of Sec. III, we examine a detailed analysis
of the sources of numerical errors and instabilities that arise
in the context of non-Newtonian fluid flows and the off-grid
bounce-back method. We also explore potential techniques
to mitigate these issues using MRT as an advanced collision
operator. Finally, in Sec. IV, we summarize the essential find-
ings and provide conclusive remarks based on the research
conducted throughout this study.

II. METHODOLOGY

A. Tracing errors in LBM coupled with non-Newtonian fluid
model

Due to the bounce-back condition at walls, an imbalance
in the distribution of particles is created and generates a mo-
mentum transfer, which gives rise to WSS. The LBM uses the
bounce-back scheme for walls aligned with its Cartesian grid,
but this method inaccurately represents curved boundaries as
stair shaped walls, increasing computational costs due to the
need for finer grids. The IBB [18] method addresses this
by interpolating functions from nearby nodes to accurately

model curved boundaries, enhancing accuracy and efficiency
in LBM simulations. Fluid dynamics and flow conditions near
solid boundaries influence these interpolated values. However,
due to the interpolation process, there is a loss of information
regarding the precise fluid state at the boundaries, which leads
to a mass imbalance issue. This nonconservative behavior can
lead to spurious flows or inaccuracies in simulations, espe-
cially in periodic systems driven by forces, without additional
treatments for mass conservation. For non-Newtonian fluids,
the accuracy of the boundary condition is even more critical
because the viscosity is not constant and can vary significantly
throughout the domain. Therefore, it is essential to address
mass conservation of the non-Newtonian fluids in periodic
systems.

In the context of LBM, the BGK collision approach has
been successfully used in various fluid mechanics applica-
tions. It exhibits instabilities at high Reynolds numbers and
introduces a dependency on viscosity at the wall boundaries
when coupled with the bounce-back scheme. Instabilities arise
from the evolution of moments of the distribution function
that cannot be directly linked to physical quantities in fluid
mechanics [23,40]. d’Humières [23] proposed the MRT ap-
proach to address this flaw by substituting a matrix for the
scalar relaxation time. The main idea behind MRT collision
is to independently relax each moment and transform the
collision step into momentum space. This approach helps to
prevent instabilities caused by the temporal expansion of these
unphysical moments [41].

Additionally, bulk viscosity measures the resistance of a
fluid to volume changes under compression or expansion. Its
adjustment is available as an independent tunable parameter
offered by the MRT collision operator. In these cases, the
bulk viscosity represents energy dissipation due to volume
changes. Also, it is known that LBM recovers the Navier-
Stokes equations with an assumption of small compressibility
originating from the underlying kinetic theory [42], which
can be affected by the bulk viscosity relaxation modifications.
Since viscosity variations in non-Newtonian fluids lead to
different wave and pressure propagation patterns, accurately
adjusting the bulk viscosity relaxation time is vital for precise
fluid flow simulations.

Accordingly, in this paper, we address the challenges men-
tioned with non-Newtonian fluids by conducting a systematic
study using the Hagen-Poiseuille flow. The methodology in-
volves investigating BGK and evaluating various physical
moments offered by the MRT collision operator and their
interactions with the complex rheological behavior of non-
Newtonian fluids in different flow conditions.

B. The lattice Boltzmann structure

In the hydrodynamic regime, the lattice Boltzmann tech-
nique provides a solution for the Boltzmann transport
equation. It can be obtained using a finite-order spectral tech-
nique to discretize the Boltzmann equation. Consequently,
the features of the resulting system of connected hyperbolic
equations are integrated. The result is the formulation of the
widely recognized lattice Boltzmann equation:

fi(�x + eiδt, t + δt ) − fi(�x, t ) = �i, (1)
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where fi defines the density distribution function with dis-
crete velocity ei along the ith direction in the population
space of the particles. Here, t represents the time, x represents
the spatial coordinate, and �t is the time step. Also, � is the
collision operator, signifies viscous and nonlinear effects, and
defines how molecule collisions lead to the rebalancing of the
distribution function. For this paper, we restrict ourselves to
2D LBM with nine discrete velocity directions (D2Q9). For
the employed D2Q9 LBM, the discrete particle velocity ei and
weighting factors related to the quadrature denoted by wi are
documented in Ref. [43].

One principal approach to mimic this is the linearization of
small thermodynamic equilibrium perturbations, known as the
single-relaxation-time BGK collision operator. This operator
represents the collision term as a linear relaxation toward
Maxwellian equilibrium as follows:

�i = −ω
[

fi(�x, t ) − f eq
i (�x, t )

]
, (2)

where ω is the relaxation frequency coefficient. In the Gram-
Schmidt MRT collision operator, single relaxation time is
replaced by a relaxation time matrix S that relaxes each mo-
ment with matrix M(m = M f ) separately. Accordingly, the
collision operator for MRT-LBM is as follows:

�i = −M−1S
[
mi(�x, t ) − meq

i (�x, t )
]
, (3)

In Eq (3), the postcollision step is expressed on the right-
hand side after being transformed into moment space by the
orthogonal matrix M. Using the Gram-Schmidt technique and
the D2Q9 lattice model, the matrix M is adopted as docu-
mented in Ref. [44]. Here, S is the matrix of relaxation rates
and takes on the diagonal form in the Gram-Schmidt basis:

S ≡ diag(0, ωe, ωε, 0, ωq, 0, ωq, ωv, ωv ). (4)

Zero relaxation rates are shown above for the conserved mo-
ments of density and momentum. Here, ων and ωe are related
to shear and bulk viscosities given by μ = ρc2

s ( 1
ωv

− 1
2 ) and

μb = ρc2
s ( 1

ωe
− 1

2 ) − μ

3 , respectively, and ωε and ωq are ad-
justable parameters.

Here, f eq
i is the equilibrium distribution function and rep-

resents the local equilibrium state of the fluid at each lattice
node. It evolves the distribution function in time to simulate
fluid flow. It is derived from the discrete Boltzmann equation
and approximates the statistical behavior of particles in the
fluid:

f eq
i (�x, t ) = ρwi

[
1 + eiαuα

cs
2

+
(
eiαeiβ−cs

2δαβ

)
uαuβ

2cs
4

]
. (5)

The equilibrium moment in the MRT approach meq = M f eq is
calculated based on the equilibrium distribution function f eq.

A Gauss-Hermite quadrature is used to reconstruct macro-
scopic moments from the Hermite polynomial expansion of
fi on a discrete lattice. The momentum ρu = ∑

i fiei and
density ρ = ∑

i
fi, which make up the first two moments of

the velocity distribution functions, are conserved moments,
and the lattice speed of sound is likewise connected to the
quadrature by cs = c �x

�t .

1. Rate of strain and non-Newtonian effective viscosity

Generally, the kinematic viscosity ν is defined as follows
in the BGK-LBM framework:

ν =
(

1

ω
− 0.5

)
c2

s . (6)

This relationship can be utilized to calculate the kinematic vis-
cosity of MRT model using the last two relaxation moments of
ων from the relaxation matrix in Eq. (4). Accordingly, the final
expression of the strain rate tensor in the LBM framework for
both BGK and MRT collision operators can be obtained as
follows [16]:

Sαβ = − 0.5

ρc2
s δt

∑
i

eiαeiβ�i (7)

To determine the strain rate tensor using each collision
operator, it is necessary to replace �i with the corresponding
collision operators from either the BGK or MRT model, as
specified in Eqs. (2) and (3). The assessment of shear rate in
these methodologies proves to be highly effective, as it elim-
inates the need to calculate velocity derivatives. Furthermore,
the localized calculation of the shear rate ensures better align-
ment with the LBM framework. This is especially important
when using the numerical solution in a parallel computing
environment. Extensive demonstrations have confirmed that
this approach, incorporating non-Newtonian effects within the
LBM, achieves second-order accuracy [10,37].

We may substitute the ω(x, t ) = 1
τ (x,t ) in Eq. (7) to ob-

tain the shear-dependent viscosity of the fluids. Initially, we
establish a guess for the relaxation time [τ (x, 0) = 1]. Subse-
quently, we utilize the relaxation times obtained from the prior
iteration within Eq. (7) to compute the strain rate tensor.

In a power-law fluid, the shear stress component is given
by the constitutive equation of τxy = K γ̇ n, where K is the flow
consistency index, γ̇ is the shear rate, and n is the dimension-
less power-law index. The apparent viscosity of the power-law
fluid as a function of the shear rate is accordingly given by the
following expression:

ν = K|γ̇ |n−1. (8)

In Eq. (8), when n < 1, the assumption that the power-
law behavior persists down to zero shear leads to an infinite
viscosity at the limit of zero shear rate (γ̇ → 0). However,
this assumption neglects molecular and structural effects that
limit the increase in viscosity as the shear rate tends to zero. To
accurately describe the behavior of shear-thinning fluids, we
introduce a cutoff limit of γ̇0 = 10−8 for zero shear viscosity.

The shear rate γ̇ is defined using the expression of the
second invariant of strain rate tensor as follows:

γ̇ =
√√√√2

∑
α,β

SαβSαβ. (9)

Consequently, by the combination of Eqs. (6), (8), and (9), the
local relaxation frequency can be obtained to calculate local
shear-dependent kinematic viscosity in the LBM framework.
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2. Flow driving conditions: Body force and pressure

To apply the constant body force term, we utilize the Guo
forcing scheme for a constant body force to enhance the accu-
racy in recovering the Navier-Stokes equations [45]. The Guo
forcing scheme calculates the force population during colli-
sions and adjusts the equilibrium and macroscopic velocity
fields accordingly. It is well established that the LBM with
the Guo forcing scheme can accurately represent the Navier-
Stokes equations for Newtonian fluid flows [46]. This scheme
involves incorporating an additional term into the right-hand
side of the collision operator [Eq. (2)] as follows:

Fi = wi

(
1 − 1

2τ

)[
ei − u

c2
s

+ ei (ei.u)

c4
s

]
.F. (10)

The actual fluid velocity based on the Gou scheme is de-
fined as follows:

ureal = u + �tF

2ρ
, (11)

where F is the magnitude of the applied force in the horizontal
or vertical direction. In the MRT model, one can use a similar
form of the force term. Then the relaxed moments using the
MRT collision operator [Eq. (3)] become

�i = −M−1S
[
mi(�x, t ) − meq

i (�x, t )
] +

(
1 − Sδt

2

)
MF.

(12)

The forcing term is initially converted to momentum space
using the matrix M. Its influence is then integrated into the
corresponding moment by adding it to the collision operator.
Following relaxation, the moments are transformed back into
population space using f = M−1m.

Also, to enforce pressure boundary conditions within our
computational framework, we employed the boundary treat-
ments devised by Zou and He [47]. This approach, which
applies Dirichlet boundary conditions at both the inlet and
outlet, was uniformly adopted for both MRT and BGK mod-
els in a same way. The Zou and He boundary condition
method effectively applies pressure boundary conditions in
LBM simulations by specifying macroscopic quantities such
as pressure directly at the inlet and outlet. This is achieved
by relating pressure to density using the equation of state
p = ρc2

s , allowing for the adjustment of density at the bound-
aries to match the desired pressure levels. At these points,
the unknown distribution functions, those streaming from out-
side the computational domain, are recalculated based on the
known internal distributions and the specified macroscopic
conditions. This recalibration ensures the conservation of
mass and momentum at the boundary.

III. RESULTS AND DISCUSSIONS

A. Steady-state power-law Hagen-Poiseuille flow in aligned
channel

We first investigate a 2D aligned channel flow using the
BGK and MRT collision operators and a halfway bounce-back
wall boundary condition. Numerical experiments are based
on two distinct scenarios. One scenario is flow driven by
a constant body force applied perpendicular to the walls of

TABLE I. Force magnitudes across power-law indexes for
aligned channel flow at Re = 10.

n 0.6 0.7 0.8 0.9 1.0

Fx 2.3 × 10−4 1 × 10−4 2 × 10−4 6 × 10−5 1.4 × 10−5

the channel, while a pressure drop drives the other scenario.
Following a grid convergence assessment, detailed later in this
paper, the channel width H has been chosen to be 40 l.u.,
and the channel length is selected to be 120 l.u. The channel
accommodates non-Newtonian power-law fluids with various
power-law indexes. The Reynolds number for power-law fluid
flow is defined as

Re = u2−n
maxHn

K
, (13)

where umax represents the maximum velocity attained by the
flow at a position H/2. In all simulations, the Reynolds num-
ber is fixed at a value of Re = 10.

At the point of steady state, the analytical solutions for
power-law Hagen-Poiseuille flow driven by uniform body
force can be described as follows:

ux(y) = n

n + 1

(
Fx

k

)1/n
[∣∣∣∣H

2

∣∣∣∣
(n+1)/2

−
∣∣∣∣H

2
− y

∣∣∣∣
(n+1)/2

]
.

(14)

Simulations were conducted using a flow consistency index
of k = 0.05 and several power-law index values, includ-
ing n = 0.25, 0.5, 0.75, 1.25, 1.5, and 1.75. These values
range from highly shear-thinning behavior to highly shear
thickening. The Newtonian assumption of n = 1 was also
used to assess the accuracy of the solver.

Table I lists the magnitude of forcing values corresponding
to various non-Newtonian fluids, all chosen to maintain a
constant Reynolds number (Re = 10). Also, Table II presents
the pressure drop values to maintain this constant Reynolds
number. The following convergence criterion is used to deter-
mine the steady-state condition in both cases:∑

i, j

[ux(t, y) − ux(t − δt, y)] < 10−8. (15)

In the channel, the x axis represents orientation parallel to
the walls, while the y axis represents orientation perpendicular
to the walls. The analytical solution, denoted in Eq. (14),
was evaluated along with its first derivative concerning the
y positions in the vertical direction of the channel. A com-
parison was then made between these analytical results and
steady-state velocity and shear-rate profiles. The errors were
identified by employing the L2 norm of the x-velocity compo-
nent parallel to the walls:

El2 =

√√√√√∑
i, j

(
uAnalytical

x − uNumerical
x

)2

(
uAnalytical

x
)2 . (16)

Figure 1 indicates the velocity profiles obtained through
analytical solutions and numerical simulations using the MRT
collision operator. Results suggest that the simulated data
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TABLE II. Pressure drop across power-law indexes for aligned channel flow at Re = 10.

n 0.6 0.7 0.8 0.9 1.0

pinlet − poutlet 2.66 × 10−2 1.193 × 10−2 4.83 × 10−3 1.6 × 10−3 3.83 × 10−4

align excellently with the analytical data, thereby validating
the accuracy of the numerical approach by capturing the
shear-thinning and thickening behavior of the fluids.

In addition to the comparisons presented for the velocity
profiles, Fig. 2 shows excellent agreement between the first
derivative of the analytical solution of the velocity profile for
power-law fluids and the shear rate obtained from Eq. (9). This
further validates the accuracy and reliability of the numerical
approach in capturing the nonlinear behavior of the stress-
strain rate of the non-Newtonian fluids.

Additionally, various height node numbers (Ny) are em-
ployed to scale and evaluate the resolution of the channel
grid. The values of Ny are defined by Ny = H/δy, where δy
represents the spacing between the nodes. The specific values
used for Ny in this paper are 21, 31, 41, and 51, while δy = 1.
L2 errors acquired from all simulations are presented in Fig. 3
to demonstrate the accuracy of the solver further. Figure 3(a)
shows that the numerical model is almost second-order ac-
curate in space for all values of n for velocity. Figure 3(b)
also confirms the model is close to second-order accuracy for
estimating the shear rate in space.

1. The influence of the collision operator and non-Newtonian
rheology on numerical stability

Herein, we examine the stability of collision operators
for pressure-driven non-Newtonian fluid flows in the aligned
channel with Ny = 21 l.u. and length of 63 l.u. These models
include the BGK model, the Gram-Schmidt MRT model with
ωe = ωq,ε = 1 and ωe �= ωq,ε �= 1 relaxation parameters. The
goal is to determine the maximum nondimensional velocity
that could be attained for different nondimensional viscosities
and flow consistency indexes. The findings from Newtonian
simulations are presented in Fig. 4. The figure demonstrates
that using the Gram-Schmidt collision operator expands the
stability domain, even without independent control over bulk
viscosity and tunable relaxation rates. To determine the re-
laxation parameters, we conducted a series of simulations

FIG. 1. Comparison between analytical and multiple relaxation
time (MRT) velocity profiles of power-law fluid flows with different
indices (n) ranging from 0.25 to 1.75 at Re = 10.

across a series of relaxation parameters. Our selection criteria
focused on the parameters that showed the greatest stability
in both Newtonian and non-Newtonian cases. With unequal
relaxation rates ωe = 1

0.3 and ωq,ε = 1
0.5 , instabilities stem-

ming from normal modes are further minimized, leading to
an expanded stability domain by independently manipulating
the bulk viscosity. With low nondimensional viscosities, this
extended domain allows for nondimensional velocities as high
as 0.4. This demonstrates the justification for using the MRT
collision operator.

For Newtonian fluids, having a constant relaxation time
while 1

ω
> 0.5 ensures a positive viscosity value [see Eq. (6)]

throughout the simulation domain, regardless of the colli-
sion operator used. When dealing with non-Newtonian fluids,
introducing the power-law index adds complexity and re-
quires the local adjustment of the relaxation time based on
the viscosity of the fluid as a function of shear rate. As the
power-law index deviates from unity, the fluid exhibits either
shear-thinning or thickening behavior, leading to relaxation
time changes. These variations contribute to the gradient of
relaxation time and the disparity in fluid particles reaching
equilibrium, which can lead to numerical instability. This
instability can be observed as unphysical oscillations or a
complete breakdown of the simulation. Hence, it is crucial
to thoroughly investigate the numerical stability of the non-
Newtonian solver using both simple and advanced collision
operators to ensure accurate and reliable simulations.

Figure 5 provides a numerical stability analysis over a
wide range of flow consistency index. In our experiment, we
investigated the behavior of various fluids by adjusting their
flow properties. We started by setting the power-law indices
n of these fluids within a range from 0.3 to 1.7. We began
our measurements with a flow consistency index k of 0.01 for
each specific power-law index then gradually increased this
index to a maximum of 0.2. We made these adjustments in
small increments of 0.01. As we increased the flow consis-
tency index for each fluid, we also slowly raised the pressure

FIG. 2. Comparison between Analytical and multiple relaxation
time (MRT) shear-rate profiles of power-law fluid flows with differ-
ent indices (n) ranging from 0.25 to 1.75 at Re = 10.
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FIG. 3. Scaling behavior of the L2 norm of the global error for the two-dimensional (2D) steady power-law Hagen-Poiseuille flow with
different flow indices and Reynolds number (Re = 10). The dashed line indicates second-order convergence in space.

gradient. This stepwise increase in pressure was continued
until the point where our simulation could no longer main-
tain stability. The maximum velocity that could be achieved
without the simulation breaking down was recorded for each
combination of flow consistency index and power-law index,
providing information into the limits of stable flow under
varying conditions. To visually represent the results, Fig. 5
presents contour plots that illustrate the impact of varying both
the flow consistency index and the pressure gradient on fluid
velocity. Approximately 55 000 simulations were systemati-
cally performed to generate the detailed data showcased in the
plots presented.

The dark blue region signifies the areas where we have
reached the peak velocity of umax = 0.413, representing the
upper limit of our current simulation capabilities. Conversely,
the red regions show zones of instability, where the velocities
achieved fall lower than this maximum. In Fig. 5(a), it be-
comes evident that numerical instabilities arise at very low
and very high power-law indices, making it challenging to
increase the velocity within the domain without encountering
issues. Additionally, the flow consistency index (K) plays a
significant role in stability. When selecting low K values, the

FIG. 4. Stability domains using a D2Q9 stencil Bhatnagar-
Gross-Krook (BGK; black circles), multiple relaxation time (MRT)
with ωe = ωq,ε (blue squares), and MRT with ωe �= ωq,ε (red
triangles).

local relaxation time values approach 0.5, which results in
instability. Therefore, to maintain a stable numerical solution
using the BGK collision operator, the power-law index should
be within the range of 0.48 to 1.66. Furthermore, it is advis-
able to maintain the flow consistency index within the range
of 0.6 to 2 for computational feasibility and stability.

On the other hand, Fig. 5(b) presents the results when
incorporating the MRT collision operator without indepen-
dent control of bulk viscosity and collision frequencies ωe =
ωq,ε = 1. Notably, the stability of non-Newtonian simulations
is significantly enhanced by using this operator. Solutions ap-
proach numerical instability only when the power-law indexes
are very low and the flow consistency is high. However, it
is essential to note that the maximum achievable velocity in
some regions may not reach the maximum value. To overcome
this limitation, adjusting the relaxation time of bulk viscosity
and other freely adjustable relaxation parameters indepen-
dently proves to be effective.

For the specific relaxation rates selected (ωe = 1
0.3 and

tunable relaxation parameter of ωq,ε = 1
1.7 ), the results are

shown in Fig. 5(c). It becomes evident that the instability
regions are limited to very low power-law indices and high
flow consistency indices. Therefore, it is appropriate to imple-
ment the MRT collision operator with the tuning of relaxation
parameters to ensure a stable numerical solution for non-
Newtonian flows. Regrettably, the existing literature does not
provide guidelines or systematic relations for selecting suit-
able relaxation values for various fluids. Later in this paper,
we will address this gap by discussing the selection based on
the physical characteristics of non-Newtonian LBM.

2. Optimal consistency index for bounce-back resting walls

Lattice Boltzmann link-wise boundary conditions are sub-
ject to distinct closure rules that differ from those applied to
the bulk. Consequently, expecting the macroscopic bulk be-
havior to remain consistent at the boundaries is unreasonable.
According to earlier studies, the bounce-back scheme in a
unidirectional Newtonian Poiseuille flow, confined between
two infinite flat plates, can result in minor hidden errors such
as slip velocity [22]. Through Chapman-Enskog analysis, it
has been established that the dynamic viscosity (μ) of the
simulated fluid is intrinsically linked to the relaxation time.
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FIG. 5. Stability domains of the highest reachable velocity of the non-Newtonian solver are illustrated in blue. (a) Bhatnagar-Gross-Krook
(BGK) collision operator, (b) multiple relaxation time (MRT) with ωe = ωq,ε, and (c) MRT with ωe �= ωq,ε.

This underscores that any alteration in the relaxation time
within the BGK model will directly influence the viscosity of
the simulated fluid. As a result, an explicit and inherent depen-
dency exists between the relaxation time and viscosity when
the BGK model is employed. In the simulation of Newtonian
fluid dynamics using the BGK collision operator combined
with the bounce-back scheme, it has been found that, for
choosing relaxation time, only when the relation (τ− δt

2 )
2 =

3
16 is satisfied can the exact parabolic solution of the Hagen-
Poiseuille flow be achieved. This optimal value is derived
from a detailed mathematical process of the Chapman-Enskog
expansion [48]. In this context, setting the relaxation time τ

according to the formula aligns the behavior of the simulated
fluid using LBM with the Navier-Stokes equations. In the case
of non-Newtonian power-law fluids, the relaxation time is no
longer constant and is instead dependent on the shear rate
and flow consistency index, which complicates the mathe-
matical expression of Chapman-Enskog analysis for obtaining
the optimal relaxation time. When the fluid is Newtonian,
kinematic viscosity corresponds to a flow consistency index
of K . Thus, regarding the optimal relaxation formula, the
optimal flow consistency index for Newtonian fluids can be
obtained as K ≈ 0.1443. Herein, we conducted systematic
numerical experiments using a Poiseuille flow setup designed

for force-driven flows. We varied the power-law indices of the
fluids between n = 0.6 and 1.4. For each, starting with a flow
consistency index of 0.01, we incrementally increased it up to
1, using steps of 10−4. The outcomes of these experiments are
illustrated in Fig. 6(a), which presents the results for relative
error values of velocity profiles for shear-thinning fluids. It
can be observed that the optimal consistency index for these
fluids is lower than that for Newtonian fluids, indicating a
backward shift with the decrease in the power-law index.
On the other hand, Fig. 6(b) shows the relative error values
for shear-thickening fluids. Here, an increase in the optimal
flow consistency index can be seen as the power-law index is
increasing.

In the numerical experiments, it was observed that increas-
ing the flow consistency index for shear-thinning fluids led to
elevated relaxation times and viscosities in low-shear regions.
Accordingly, higher k values resulted in overrelaxation, which
is associated with numerical errors in BGK-LBM, particularly
when the power-law index was decreased. Consequently, it
is essential to keep K below the Newtonian limit to mini-
mize such errors while accommodating varying power-law
indices. Conversely, in the case of shear-thickening fluids,
lowering the flow consistency index reduced relaxation times
and viscosities in low-shear regions, approaching the stability
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FIG. 6. Systematic study of flow consistency index (K ) on minimal error value of unidirectional flow for (a) shear-thinning and (b) shear-
thickening fluids along with a Newtonian assumption.

limit of the LBM (τ = 0.5), which caused underrelaxation. To
maintain simulation stability and avoid small relaxation time
values, it is evident that selecting higher k values relative to
the Newtonian limit is necessary.

In Newtonian fluids, by choosing optimal relaxation time,
the BGK-LBM simulation results align perfectly with the
parabolic solution of the Hagen-Poiseuille flow, limited only
by machine precision. This level of precision is not attainable
with non-Newtonian fluids due to their more complex flow
and LBM characteristics. However, we can achieve the lowest
possible error rates in our simulations by accurately determin-
ing the optimal flow consistency index for different types of
non-Newtonian fluids.

Through detailed analysis of the minimum error values
associated with each power-law index and its corresponding
flow consistency index, it is possible to derive an expression
representing the optimal flow consistency index as a func-
tion of the power-law index. This relationship is graphically
depicted in Fig. 7. Observations reveal that the flow con-
sistency and power-law indexes are interconnected through

FIG. 7. The behavior of optimal flow consistency index (K ) as a
funtion of power-law index.

a nonlinear relationship. By applying a power fitting to the
data, this relationship can be formulated in a mathematical
expression presented as Eq. (17). Utilizing this formula to
simulate non-Newtonian power-law fluid flows can help mini-
mize errors in selecting the ideal flow consistency index when
using the BGK collision operator and bounce-back boundary
conditions:

K (n) = KNewtonian(n)4.1, (17)

where KNewtonian =
√

3
4 is the optimal flow consistency index

for Newtonian assumption. Figure 8 showcases a series of
numerical experiments investigating velocity profile errors
for a diverse range of non-Newtonian fluid flows using an
MRT collision operator with ωγ = 1. These flows have vary-
ing power-law indices and flow consistency indices. In this
context, there is no optimal relaxation time to prevent slip
velocity, and the MRT approach effectively addresses the vis-
cosity dependence of the bounce back. The results indicate

FIG. 8. Comparison of non-Newtonian MRT-LB, solver for ve-
locity profile errors for various flow consistency and power-law
indexes (range = 0.6 � n � 1.3).
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FIG. 9. Schematic of linear interpolated bounce back in an in-
clined channel.

that the error values increase with higher flow consistency
indices, and this increase is particularly pronounced in the
case of shear-thinning fluids. Consequently, the crucial aspect
to consider using the MRT approach is maintaining the flow
consistency index within the stability region to prevent the
growth of errors.

B. Steady-state power-law Hagen-Poisseuile flow
in inclined channel

To investigate the properties of the non-Newtonian LBM
and WSS considering stair-shaped walls, we first conduct
numerical experiments in a 2D inclined channel setup driven
by constant body force and then pressure-driven titled channel

flows, respectively. This setup involves parallel walls inclined
at an angle θ relative to the lattice axis. To simulate the
behavior of non-Newtonian fluids accurately, we utilize the
LBM with IBB boundary treatment and employ both BGK
and MRT collision operators. In the IBB approach, a boundary
link typically intersects the physical wall at a specific distance
since the wall is not situated precisely halfway between lattice
nodes and cannot reach another lattice node directly. Conse-
quently, the origin of the population is selected to ensure the
exact reaching of a lattice node by the corresponding fraction.
This necessitates the use of interpolation to determine the
postcollision value of fi, as depicted in Fig. 9. A parameter
q is used to describe the fraction of an intersected connection
inside the fluid zone as

q = |rboundary − rfluid|
|rsolid − rfluid| . (18)

Figure 9 depicts the boundary, fluid, and solid node ar-
rangement of an inclined channel. In this representation,
boundary nodes, denoted by square symbols, are located
within the fluid region; fluid nodes are represented by circle
symbols; and solid nodes are denoted by triangle symbols.
The solid line represents the physical wall. By employing
these definitions, one can calculate the distance fraction q.
Using linear interpolations based on distance fractions, we
can construct a bounce-back population that was previously
unknown from the known postcollision populations. The gen-
eral algorithm for implementing this linear IBB is as follows
[18]:

fī(xb, t + �t ) =
{

2q f ∗
i (xboundary, t ) + (1 − 2q) f ∗

i (xfluid, t ), q � 1
2 ,

1
2q f ∗

i (xboundary, t ) + 2q−1
2q f ∗̄

i
(xsolid, t ), q > 1

2 .
(19)

In the LBM framework, WSS measurements are typically
derived from the location and orientation of the boundary.
These measurements can be locally calculated using the dis-
tribution functions and the Einstein summation convention:

τWSS = σαβ n̂β − (σβγ n̂β n̂γ )n̂α, (20)

where viscous stress σαβ is proportional to strain rate S:

σαβ = 2μSαβ. (21)

As a standard practice for WSS measurements, the magni-
tude of the WSS vector is often focused on disregarding the
subtracted normal component in Eq. (20) that contributes to
the wall pressure. However, this approach is based on the fact
that, due to mass conservation, the fluid velocity should have
no component perpendicular to the wall at any point along the
wall. Therefore, it is expected that the relationship nαuα = 0
holds precisely at every wall position. It is important to note
that this conservation may not be maintained in the IBB due to
mass imbalance caused by interpolations.. Furthermore, when
considering curved walls, it is observed that certain situations
arise where a section of the wall is parallel to discrete lattice
velocity directions. In such cases, the errors resulting from

the projection of normal vectors tend to be smaller than other
angles and directions [25]. The inaccuracies introduced by the
stair-step approximation and wall roughness are eliminated
when the wall is parallel to the lattice directions. On the other
hand, when dealing with directions that are not parallel to lat-
tice Boltzmann directions, the calculations of normal vectors
introduce errors, indicating a dependence on the orientation
of the walls. Accordingly, instead of directly calculating WSS
on the wall, we focus on determining the magnitude of local
shear stresses and their distribution on the fluid nodes closest
to the solid wall:

τWSS = μ(x)γ̇ (x), (22)

where μ(x) and γ̇ (x) are local dynamic viscosity and shear
rate on fluid nodes adjacent to solid boundaries.

1. Force-driven power-law fluid flow in tilted channels

First, we apply a force within this framework to drive the
flow along the inclined channel with periodic inlet and outlet
boundary conditions. By varying the inclination ratio θ , we
investigated the impact of channel inclination on the flow
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FIG. 10. Shear stress distribution comparison of Newtonian fluid
flow (n = 1) at the nearest node to the physical boundary us-
ing Bhatnagar-Gross-Krook (BGK) collision operator, θ = 0.1, and
Re = 10 with analytical solution.

behavior and the resulting distribution of WSS in complex
rheology of non-Newtonian fluids. To ensure a consistent
comparison, we employed laminar flow conditions and main-
tained a constant value of Re = 10 across all experimental
conditions. For the inclined channel configuration, we se-
lected a channel width of N = 30, and the channel length
was set to be three times longer than the width. To ensure
a consistent number of fluid nodes (Nf ≈ 3000) we adjusted
the domain size for all inclinations and flow conditions. This
approach allowed us to ensure consistent resolutions for all
inclinations and flow conditions.

Figure 10 compares the Newtonian fluid WSS distributions
obtained from the BGK collision operator with the halfway
bounce-back and IBB techniques. The analysis focuses on the
closest fluid nodes to the wall along 20 nodes in the x direc-
tion, with a specific consideration of θ = 0.1 and Re = 10.
Evidently, the halfway bounce-back and staircase approxima-
tions deviate from the analytical solution. This discrepancy
arises due to the neglect of wall smoothness in the staircase
model, resulting in high- and low-shear regions due to the
wall roughness and flow over the steps. Conversely, the IBB
approach restores wall smoothness effectively and yields a
more accurate distribution of WSS along the inclined channel.

We explore advanced collision operators to restore non-
Newtonian shear-dependent viscosity, considering the unique
characteristics of the BGK and MRT operators. In our numer-
ical experiments, we observed that using the MRT method
when dealing with Newtonian fluid flows did not result in
significant improvement beyond achieving numerical accu-
racy. However, when simulating non-Newtonian fluid flows,
we observed a variation in the local relaxation time, corre-
sponding to the kinematic viscosity and making a significant
difference. Section III B discussed that the MRT collision
operator demonstrates better stability than the BGK collision
operator across a wide range of flow consistency indices. This
enhanced stability is particularly evident in shear-thinning
fluids, where the kinematic viscosity is higher in low-shear re-
gions, increasing the local relaxation time. Consequently, the

FIG. 11. Comparison of local collision frequencies in three
shear-thinning fluids: Bhatnagar-Gross-Krook (BGK) vs multiple
relaxation time (MRT) methods.

MRT method is expected to exhibit higher numerical stability
than the BGK collision operator in these regions of low shear.

Figure 11 illustrates the local collision frequency incor-
porated into the BGK and MRT collision operators for three
different shear-thinning fluids under the same flow conditions
along the vertical direction of the channel y. This figure shows
that both operators behave similarly in regions of high-shear
rates when recovering collision frequency. However, they dis-
play differences in low-shear-rate regions. As the power-law
index approaches the Newtonian limit, the deviations dimin-
ish, and the differences between MRT and BGK become
more noticeable in highly shear-thinning fluids and low-shear
regions.

Herein, we conduct numerical experiments to assess the
viscosity dependence on mass conservation in non-Newtonian
simulations. Figure 12 illustrates a series of simulations
in an inclined channel with θ = 0.25, periodic inlet and

FIG. 12. Mass imbalance in an inclined periodic channel with
Newtonian force-driven flow (n = 1, θ = 0.25, Re = 10) with dif-
ferent kineamtic viscosities.
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FIG. 13. Temporal evolution of mass imbalance for power-law
fluids with n = 0.5, 0.75, and 1. A comparison using Bhatnagar-
Gross-Krook (BGK), multiple relaxation time (MRT), and tuned
MRT collision operators. Simulations were conducted at Re = 10,
θ = 0.25, and driven by a constant body force.

outlets, two distinct shear-thinning fluids, and a Newtonian
fluid (n = 0.5, 0.75, and 1). We employed both BGK and
MRT collision operators with different relaxation parameters
(ωv = ωγ and ων �= ωγ ). From Fig. 12, it can be observed
that, as the kinematic viscosity increases in Newtonian sim-
ulations, the fluid flow experiences a more significant mass
loss over time.

In periodic systems with force-driven flow, highly shear-
thinning fluids experience a more significant mass imbalance
due to their higher viscosity near the boundaries (Fig. 13).
Therefore, it becomes crucial to consider special treatments
to recover lost or gained mass in such simulations. We also
examined the mass conservation of this scenario using the
MRT collision operator, considering both tuned and untuned
relaxation parameters. By independently adjusting the free
relaxation parameters, separate from the local kinematic vis-
cosity, it is possible to modify the distribution functions
during the collision process. This, in turn, can have an impact
on mass imbalance. By selecting τb = 0.3, which represents
the stability limit, we can improve the mass balance com-
pared with τb = 1. This effect is more pronounced in highly
shear-thinning fluids and becomes insignificant for fluids with
higher power-law indexes. Consequently, when there is a vari-
ation in viscosity in non-Newtonian fluid flows, it is evident
that the interpolation of bounce-back wall boundaries can
introduce a source of error.

Figure 14 demonstrates the evaluation of a single shear-
thinning fluid (n = 0.75) under the same flow conditions
(Re = 10) but with different inclinations. The mass imbal-
ance of a shear-thinning fluid is highly dependent on the
inclinations of the channels and the distance ratios (q) of
the corresponding channel inclinations. Accordingly, the local
mass imbalance of a periodic system is expected to be highly
affected by the variation of numbers and length of stairs of
the defined tilted channel. In other words, it is expected to be
affected by the degree of misalignment with the lattice and the
channel length. In all conditions, except when θ = 0.5, there

FIG. 14. Temporal evolution of mass imbalance for a power-law
fluid with n = 0.75 using Bhatnagar-Gross-Krook (BGK) collision
operator. Simulations were conducted at Re = 10 and driven by a
constant body force.

is a mass imbalance resulting in a mass loss during 20 000
iterations. This could significantly impact the velocity profiles
and WSS distributions of a non-Newtonian fluid flow solver.

Figures 15(a) and 15(b) display contoured plots showcas-
ing the velocity profile errors for the MRT and BGK collision
operators, respectively. These errors are analyzed concerning
two parameters: the power-law index (n) and the inclination
angle (θ ) channel. Width, length, and Re = 10 are fixed
in all simulations. In regions of low shear, the BGK and
MRT collision operators show contrasting gradients in local
relaxation time, which leads to differences in achieving the
desired power-law viscosity and results in variations in ve-
locity profiles. The error differences between the MRT and
BGK methods decrease as the power-law index approaches
Newtonian fluid. With the Newtonian assumption, no signifi-
cant disparities are observed, and the MRT collision operator
shows more accuracy than the BGK collision operator for
simulating shear-thinning fluids.

When θ = 0 or 1, the walls are parallel to the lattice
discrete velocity directions, with minimal errors. In the New-
tonian limit, the error rate in the velocity profile is a function
of the inclination angle and increases as the angle θ increases.
However, it can be observed that, by decreasing the power-
law index, the error in velocity profiles fluctuates for both
BGK and MRT collisions with variations in θ . In cases with
more complex wall boundary conditions, mass conservation
depends on the inclination of the wall and the power-law
index, as discussed earlier. Generally, it was observed that
the non-Newtonian LBM produces lower velocities than the
analytical solution.

Consequently, a mass imbalance, such as losing or gaining
mass, can increase or decrease the velocity of the fluid flow.
By decreasing the power-law index and enhancing the shear-
thinning effects, the variation of channel inclination affects
mass conservation. In the case of θ = 0.5, when additional
mass is added to the system, the velocity increases and the
velocity profiles become closer to the analytical solution, re-
sulting in a better match, while in other conditions, losing
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FIG. 15. Conture plots of velocity profile errors as a function of channel inclination (θ ) and power-law index (n) using (a) multiple
relaxation time (MRT) and (b) Bhatnagar-Gross-Krook (BGK) collision operators.

mass leads to a reduction in velocity in the system and an
increase in error.

We observed that the source of error in BGK and MRT
collision operators generally could be from the low-shear-rate
regions and higher-shear regions like WSS, which can be
affected by these numerical characteristics.

Here, we analyze the WSS for these collision operators.
Figures 16(a) and 16(b) demonstrate the WSS distribution
errors as a function of the power-law index and channel
inclinations θ for MRT and BGK collisions. Like velocity
profile errors, WSS errors have no significant differences in
BGK and MRT collision operators for Newtonian simulations.
However, by introducing non-Newtonian effects and increas-
ing the shear-thinning effects, MRT performs more accurately.
In Fig. 16, the WSS distribution simulations in highly shear-
thinning fluids show fewer errors than the analytical solution
under the same flow conditions.

In the previous simulations, we maintained constant
Reynolds numbers. Next, we applied a fixed value of body
force (F = 10−5) to all fluids. In this context, when observing
Fig. 17, it becomes evident that the error rate of velocity
of the fluid with K = 0.05 for highly shear-thinning fluids

is significantly higher. Consequently, the WSS distributions
encounter higher errors in highly shear-thinning fluids. How-
ever, it is apparent that both the MRT and BGK collision
models behave similarly as they approach the Newtonian fluid
limit. Nevertheless, MRT outperforms BGK in accuracy when
dealing with shear-thinning fluids.

The reason behind the higher errors observed in highly
shear-thinning fluids when using the BGK collision operator
is as follows: In such fluids, the fluid velocity is very low,
causing the solution to converge to the convergence crite-
rion rapidly. Due to this swift convergence, the solver has
insufficient time for mass imbalance throughout the system.
Consequently, this very low velocity can increase velocity
error oscillations and a higher error rate.

2. Pressure-driven power-law fluids flow in tilted channels

In this section, we aim to explore pressure-driven flows
with different non-Newtonian fluid flows. By comparing the
results obtained from pressure-driven flows to those from
force-driven flows, we can identify the distinctive effects of
pressure boundaries and gain insights into the role of pressure

FIG. 16. Conture plots of wall shear stress (WSS) distribution errors as a function of channel inclination (θ ) and power-law index (n) using
(a) multiple relaxation time (MRT) and (b) Bhatnagar-Gross-Krook (BGK) collision operators. Simulations conducted in constant Reynolds
number (Re = 10).
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FIG. 17. Conture plots of wall shear stress (WSS) distributions as a function of channel inclination (θ ) and power-law index (n) using
(a) multiple relaxation time (MRT) and (b) Bhatnagar-Gross-Krook (BGK) collision operators. Simulations conducted in constant body force
(F = 10−5).

drop in these flows and other independent components of
relaxation moment, such as bulk viscosity.

The results in Fig. 18 depict the shear rate of Newtonian
and a non-Newtonian fluid (n = 0.5) for pressure-driven flow
in an aligned channel with the same geometry as discussed
earlier and Re = 10. For implementing pressure boundary
conditions in a tilted channel, consider using a directional
approach to the geometry of the channel. Start by aligning
the inlet boundary nodes precisely along a line perpendicular
to the actual boundary, reflecting the specific inclination angle
of the channel. The pressure of each node is then determined
based on its distance from the actual inlet boundary. This setup
ensures that the pressure gradient is consistently applied in
the direction parallel to the tilt of the channel, and the flow
naturally conforms to the angular disposition of the channel.
There are no significant differences between MRT and BGK
collision operators in the Newtonian limit. By decreasing the

FIG. 18. Comparison of shear-rate profiles of Newtonian and a
non-Newtonian fluid (n = 0.5) for pressure-driven flow in an aligned
channel with Re = 10 using Bhatnagar-Gross-Krook (BGK), multi-
ple relaxation time (MRT), and tuned MRT collisions.

power-law index and introducing shear-thinning effects, devi-
ations between these two collision operators can be observed.
In this case (n = 0.5), when the bulk viscosity (τb) is set to 1,
no significant differences can be observed compared with sim-
ulations using the BGK collision operator. However, adjusting
the bulk viscosity in this case to a value of τb = 0.00925
corrects the deviation of the shear-rate profile in high-shear
regions.

Therefore, we conducted a series of numerical experiments
to determine the optimal relaxation times for bulk viscosity.
For each shear-thinning fluid, we conducted systematic sim-
ulations based on analytical solution values to investigate the
control of bulk viscosity to mitigate compressibility effects
within the framework of the non-Newtonian LBM. For this,
we systematically repeated each simulation based on the error
values and the bisection method to minimize the error until the
desired error of the velocity profile εu < 10−6 was reached.
Upon establishing a baseline error, the relaxation time was
adjusted by halving, followed by a resimulation to evaluate the
impact of this adjustment on the error magnitude. This process
was repeated, and if the error was reduced, the relaxation
time was further halved; if not, adjustments were made in
the opposite direction based on the previous relaxation value.
This iterative refinement continued until the error in the ve-
locity profile was reduced below the threshold of εu < 10−6,
ensuring each step progressively enhanced the accuracy of the
fluid dynamics simulation. This bisection approach efficiently
converged to the optimal relaxation time. It provided a clear
framework for systematically minimizing simulation errors,
which is crucial for accurately capturing the complex behavior
of non-Newtonian shear-thinning fluids. Our findings revealed
that the relaxation of bulk viscosity in the MRT collision
operator follows the curve depicted in Fig. 19. This leads
to enhanced accuracy while ensuring stability in simulating
the flow of non-Newtonian power-law fluids. In highly shear-
thinning fluids (n < 0.6), the viscosity decreases rapidly as
the shear rate increases. Setting a small relaxation time for
bulk viscosity is suitable in such cases. A shorter relaxation
time allows the fluid to quickly adjust to changes in shear
rate, enhancing the ability of the simulation to capture rapid
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FIG. 19. Gaussian regression of the optimal bulk viscosity relax-
ation time τb as a funtion of power-law index.

TABLE III. Constant parameters used in Eq. (23) to define the
best-fitting curve for τb value vs n.

Fitted value Confidence bound

a 1.654 1.572–1.736
b 0.8909 0.8673–0.9129
c 0.1716 0.1456–0.1978

variations in viscosity and accurately depict shear-thinning
behavior. Conversely, for fluids with a power-law index n ∼
1, the viscosity exhibits relatively less sensitivity to the shear
rate, resembling that of a Newtonian fluid. In this scenario,
setting the relaxation time for bulk viscosity too small may
lead to inaccuracies. To address this, a longer relaxation time
enables the fluid to retain its viscosity for extended durations,
effectively mitigating viscosity fluctuations caused by the dis-
crete nature of the LBM. As a result, this approach enhances
the accuracy of the simulation when dealing with behavior
that is close to Newtonian.

To further evaluate and systematically analyze the results
across different Reynolds numbers, we conducted Gaussian
regression on the tested relaxation data for Re = 10, as de-
picted in Fig. 19. We used Gaussian regression since the
relaxation time seems to perform a Gaussian evolution with
increasing the power-law index. This regression helped us
validate and refine our approach, providing insights into the
impact of relaxation times on various fluid flow conditions.

The general Gauss regression obtains the following relax-
ation for the bulk viscosity relaxation time as a function of the
power-law index:

τb(n) = ae[(b−n)/c]2

. (23)

The variables a, b, and c are represented in Table III.
The application of the fitted bulk viscosity relaxation in

various flow conditions is presented in Fig. 20. This figure
shows the WSS distribution error values and how incorpo-
rating Eq. (23) improves the accuracy. The results indicate
that errors in WSS become more significant as the power-law

FIG. 20. Comparison of wall shear stress (WSS) errors for (a) Re = 10, (b) Re = 25, and (c) Re = 50 using Bhatnagar-Gross-Krook
(BGK), multiple relaxation time (MRT), and tuned MRT collision operators.
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FIG. 21. Analysis of analytical wall shear stress (WSS) distribu-
tions along 20 nodes for a highly shear-thinning pressure-driven flow
at n = 0.5, Re = 10, and θ = 0.1 using the multiple relaxation time
(MRT) collision operator with variation of τb.

index decreases. However, by utilizing Eq. (23), errors caused
by rapid variations in viscosity can be effectively minimized.
To assess the suitability of the fitted equation across various
flow conditions, we tested three distinct Reynolds numbers
(Re = 10, 25, and 50). Figure 20 demonstrates the signifi-
cant influence of choosing the correct relaxation time for bulk
viscosity on the flow of non-Newtonian fluids at all Reynolds
numbers investigated. This impact is particularly pronounced
in highly shear-thinning fluids. As the power-law index in-
creases, the effect diminishes until no significant differences
are observed in Newtonian fluid flows (n = 1). When the
Reynolds number and flow velocity are increased, the relative
errors in the distribution of WSS also increase. Additionally,
as the power-law index decreases and shear-thinning effects
become more pronounced, the errors in WSS for both BGK
and MRT collision operators rise. However, applying Eq. (22)
to the MRT collision for bulk viscosity tuning shows that these
error values can be minimized.

Figure 21 compares the analytical WSS distributions
for a highly shear-thinning pressure-driven flow at n = 0.5,

Re = 10, and θ = 0.1 using the MRT collision operator over
20 nodes adjacent to the physical wall. Using Eq. (23), we
observe that it effectively manipulates the WSS distribu-
tions, matching them closer to the analytical solution. When
choosing a value twice the amount obtained using the fitted
equation, the WSS distributions significantly deviate from the
analytical solution. However, it is noteworthy that the accu-
racy varies at different points. This variation is attributed to
the distance of the fluid node, which is considered the closest
to the physical wall. As anticipated, at x = 50, we expect to
see higher errors, as it is the closest point to the physical wall.

Table IV presents the calculated WSS distribution error
values at 10 nodes near the inclined physical wall for two
fluids with power-law indices, n = 0.5 and 1 at Re = 10 and
θ = 0.1. One notable observation is that the highest error oc-
curs in the WSS calculations, specifically at the physical wall,
where the off-grid distance between the fluid node and the
inclined wall is zero. However, this error can be significantly
reduced by appropriately modifying the relaxation and bulk
viscosity relaxation times.

A significant trend from the table is that the error rate de-
creases as the distance between the fluid node and the physical
wall increases. This emphasizes the significance of measuring
WSS distributions at locations far from the physical wall to
obtain precise simulation results. By doing so, we can improve
the reliability of WSS predictions, especially for fluid flows
with highly non-Newtonian behavior with low values of n.

From this perspective, we present the errors in the distribu-
tion of WSS for different flows of shear-thinning power-law
fluids in an inclined channel with varying inclinations and
Re = 10, as demonstrated in Fig. 22. The error surface plots
reveal that, in general, the MRT collision operator [Fig. 22(b)]
yields more accurate WSS distributions than the BGK method
[Fig. 22(a)].

Figure 22(c) illustrates the errors in the distribution of
WSS after modifying the relaxation time of bulk viscosity
using Eq. (23). Remarkably, this modification results in higher
accuracy when simulating WSS distributions at all inclina-
tions, significantly reducing error rates. Findings suggest that
the MRT collision operator outperforms BGK in simulating
WSS distributions. By appropriately adjusting the relaxation
time for bulk viscosity, we can achieve even greater accuracy,

TABLE IV. Comparison of the calculated analytical WSS distribution with MRT and tuned MRT collision at 10 nodes near the inclined
physical wall for two different fluids with power-law indices, n = 0.5 and 1 at Re = 10 and θ = 0.1.

n = 0.5 n = 1.0

Off-grid distance MRT MRT with Eq (23) Theoretical WSS MRT Tuned MRT with Eq. (23) Theoretical WSS

0 0.7655 × 10−2 0.8224 × 10−2 0.8382 × 10−2 0.2488 × 10−4 0.2482 × 10−4 0.2514 × 10−4

0.8955 0.7342 × 10−2 0.7923 × 10−2 0.7897 × 10−2 0.2400 × 10−4 0.2391 × 10−4 0.2369 × 10−4

0.7960 0.7402 × 10−2 0.7984 × 10−2 0.7951 × 10−2 0.2419 × 10−4 0.2412 × 10−4 0.2385 × 10−4

0.6965 0.7445 × 10−2 0.8027 × 10−2 0.8005 × 10−2 0.2429 × 10−4 0.2421 × 10−4 0.2401 × 10−4

0.5970 0.7489 × 10−2 0.8077 × 10−2 0.8059 × 10−2 0.2440 × 10−4 0.2432 × 10−4 0.2417 × 10−4

0.4975 0.7530 × 10−2 0.8112 × 10−2 0.8113 × 10−2 0.2451 × 10−4 0.2443 × 10−4 0.2433 × 10−4

0.3980 0.7558 × 10−2 0.8141 × 10−2 0.8166 × 10−2 0.2462 × 10−4 0.2454 × 10−4 0.2450 × 10−4

0.2985 0.7577 × 10−2 0.8158 × 10−2 0.8220 × 10−2 0.2472 × 10−4 0.2464 × 10−4 0.2466 × 10−4

0.1990 0.7602 × 10−2 0.8184 × 10−2 0.8274 × 10−2 0.2480 × 10−4 0.2477 × 10−4 0.2482 × 10−4

0.0995 0.7637 × 10−2 0.8206 × 10−2 0.8328 × 10−2 0.2485 × 10−4 0.2476 × 10−4 0.2498 × 10−4
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FIG. 22. Wall shear stress (WSS) distribution errors for various shear-thinning power-law fluid flows in an inclined channel with varying
inclinations and Re = 10 using (a) Bhatnagar-Gross-Krook (BGK), (b) multiple relaxation time (MRT), and (c) tuned MRT collisions.

particularly in inclined channels with shear-thinning power-
law fluids at Re = 10.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have conducted a comprehensive analysis
of the applicability of the LBM to simulate non-Newtonian
fluids, particularly the accuracy of WSS. We systematically
examine the use of BGK and MRT collision operators for
non-Newtonian power-law fluids in the vicinity of off-grid ge-
ometries. Our focus has been to identify the numerical errors
resulting from how rheological properties of non-Newtonian
fluids are simulated in LBM, how different boundary con-
ditions are implemented, the effect of interpolated curved
geometries, and the choice of collision operators in the LBM
context. We examined that employment of the IBB method
is more crucial for conducting LBM simulations of WSS and
non-Newtonian fluids, as these fluids exhibit higher sensitivity

to boundary conditions owing to their complex rheological
properties.

Due to a limited number of cases with known analyti-
cal solutions, we focused on the non-Newtonian power-law
model in a Hagen-Poiseuille flow between two plates. We
have examined channel flows under two separate conditions,
one driven by a constant body force and the other by pres-
sure differences. This strategy revealed significant difference
in accuracy in how WSS was estimated in the BGK and
MRT scenarios. The main reason for the difference is that the
LBM displays a form of pseudocompressibility when pressure
boundary conditions are implemented; these compressibility
effects become very important to handle for power-law fluids.

It is important to acknowledge that various non-Newtonian
models exist which can more accurately simulate shear-
viscosity profiles and capture the complex behaviors of
different fluids. Incorporating these models could potentially
yield more realistic results. The selection of a specific non-
Newtonian model influences the outcomes and accuracy of
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simulations. Therefore, the findings presented in this paper
could serve as a reference for adjusting simulation parameters
when employing alternative non-Newtonian models, thereby
enhancing the realism and precision of the simulations.

Based on our findings the MRT method for power-law
fluids improves numerical accuracy in the simulation of WSS
distributions, especially in off-grid geometries compared with
the standard BGK collision operator. Through systematic in-
vestigation, we have identified that MRT, with adequately
tuned relaxation times, not only enhances numerical stability
and accuracy but also ensures better mass conservation and
reduces compressibility effects inherent in the LBM method.
Results conclusively demonstrate that MRT collision opera-
tors are superior to BGK in handling non-Newtonian fluids,
offering a more accurate representation of WSS distributions
and improving overall simulation stability. In this paper, we
also reveal that non-Newtonian flows are more susceptible to
mass imbalance caused by the interpolations of the physical
walls and viscosity-dependent discrepancies at bounce-back
walls than Newtonian assumption, which the MRT approach
can effectively address. This means decoupling each moment

and relaxing toward equilibrium at its own rate can accurately
represent the physical processes occurring in the fluid. This
is beneficial for non-Newtonian fluids, where the relation-
ship between stress and strain rate is nonlinear and can vary
spatially within the flow. Applying MRT collision operator
is particularly crucial in pressure-driven flows where bulk
viscosity plays a significant role, an aspect often neglected in
Newtonian simulations but critical for accurately adapting to
rapid changes in local effective viscosity in non-Newtonian
fluids. Hence, the findings underscore the necessity of reeval-
uating the suitability of BGK operators for non-Newtonian
simulations and advocate for broader adoption of MRT op-
erators to enhance the fidelity of LBM simulations involving
non-Newtonian fluids and off-grid boundaries.

The data that support the findings in this paper are available
from the corresponding author upon reasonable request.
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