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Algorithm for solving a pump-probe model for an arbitrary number of energy levels
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We describe a generalized algorithm for evaluating the steady-state solution of the density matrix equation
of motion, for the pump-probe scheme, when two fields oscillating at different frequencies couple the same set
of atomic transitions involving an arbitrary number of energy levels, to an arbitrary order of the harmonics of
the pump-probe frequency difference. We developed a numerical approach and a symbolic approach for this
algorithm. We have verified that both approaches yield the same result for all cases studied, but require different
computation time. The results are further validated by comparing them with the analytical solution of a two-level
system to first order. We have also used both models to produce results up to the third order in the pump-probe
frequency difference, for two-level systems, and up to first order for three- and four-level systems. In addition,
we have used this model to determine accurately, the gain profile for a self-pumped Raman laser, for a system
involving 16 Zeeman sublevels in the D1 manifold of 87Rb atoms. We have also used this model to determine
the behavior of a single-pumped superluminal laser. In many situations involving the applications of multiple
laser fields to atoms with many energy levels, one often makes the approximation that each field couples only
one transition, because of the difficulty encountered in accounting for the effect of another field coupling the
same transition but with a large detuning. The use of the algorithm presented here would eliminate the need for
making such approximations, thus improving the accuracy of numerical calculations for such schemes.

DOI: 10.1103/PhysRevE.110.015304

I. INTRODUCTION

In the semiclassical model for atom-laser interactions,
the atoms are treated quantum mechanically while the light
fields are treated classically. In the simplest case, only one
monochromatic field is used to excite a single optical transi-
tion. Under this condition, the rotating wave approximation
(RWA) and the rotating wave transformation (RWT) can
be applied to derive a time-independent Hamiltonian, which
significantly simplifies the procedure of solving the den-
sity matrix equation of motion. However, in cases where
more than a single frequency drives the same transition, the
RWT cannot fully eliminate the time dependent terms in the
Hamiltonian. Thus, in such cases the Hamiltonian contains
time-oscillating terms [1–7]. The quasi-steady-state solution
of the density matrix driven by such a Hamiltonian includes
essentially an infinite number of harmonics of the frequency
difference between the two driving fields [8,9]. In the general
case, the equations are solved by keeping harmonic terms
up to a value that is sufficiently large so that adding one
more term produces insignificant changes in the solutions.
However, this approach becomes exceedingly complex when
many levels are involved.

Consider, for example, the case using 87Rb atoms where
one laser frequency is tuned close to resonance with the

*These authors contributed equally to this work.

transition between the 5S1/2, F = 1 state and the 5P1/2, F = 1
excited state, and another laser frequency is tuned close to
resonance with the transition between the 5S1/2, F = 2 state
and the same excited state. Due to the presence of the Zeeman
sublevels within each of these hyperfine states, each field
will cause coupling along both transitions, for any combina-
tion of polarizations of these fields. In such a situation, it is
customary to make the simplifying assumption that each of
these frequencies act only along the transition that is close to
resonance. However, this approximation limits the precision
of the model, especially when the Rabi frequencies are not
very small compared to the ground-state hyperfine splitting.
Furthermore, this approximation breaks down when the de-
tuning of the field becomes comparable to the ground-state
hyperfine splitting. In such scenarios, it is necessary to ac-
count for the fact that each transition is being excited by
fields at two different frequencies. The resulting analysis can
become prohibitively difficult when a large number of energy
levels (e.g., the Zeeman sublevels in the example mentioned
above) are involved. As a result, it is customary for scientists
to continue to make the above-mentioned simplifying assump-
tion. It should be noted that while we have illustrated the issue
using the case of a system involving three hyperfine states, it
is relevant in virtually all systems subjected to excitation by
more than one laser frequency.

In this paper, we present an algorithm that can be used
to carry out the proper analysis in such scenarios with-
out using the above-mentioned approximation, for a system
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involving an arbitrary number of energy levels, while keeping
terms up to an arbitrary order of the difference frequency.
We developed numerical and symbolic approaches for this
algorithm. These approaches are built upon the framework
of an approach we had developed earlier [10] for automated
generation of the density matrix equations of motion for a
system with an arbitrary number of energy levels, limited to
conditions where each frequency is assumed to excite only
one transition. We have verified that both the numerical and
the symbolic approaches yield the same result for all cases
studied, but generally require different computation time. The
results are further validated by comparing them with the ana-
lytical solution of a two-level system to first order. We have
also used both models to analyze a multifrequency driven
multilevel system up to the third order in the pump-probe
frequency difference, for two-level systems, and up to first
order for three- and four-level systems. Finally, we have used
this model to determine accurately the gain profile for a
self-pumped Raman laser [11,12], for a system involving 16
Zeeman sublevels in the D1 manifold of 87Rb atoms.

The complexity resulting from the excitation of the same
hyperfine transition using two frequencies is of immediate and
practical relevance in our recent investigation into simplifica-
tion of schemes for realizing a superluminal laser [13]. It has
been shown [14–20] that the output frequency of a superlumi-
nal laser is extremely sensitive to rotation and cavity length
perturbations, which can be employed for precision metrol-
ogy. The realization of a superluminal laser requires the gain
spectrum to have a narrow dip at the center of a broad gain
profile. Over the years, to produce such a gain profile, various
approaches have been developed and investigated by different
groups [9,21–29]. Most recently, we have identified a very
simple approach for realizing a superluminal ring laser using
a single isotope of Rb and a single pump laser, by producing
electromagnetically induced transparency in the self-pumped
Raman gain scheme. In this approach, which is summarized in
Fig. 1 of Ref. [13], the Raman pump produces the ground state
population inversion for Raman gain. In addition, it produces
a dip in the gain profile via Autler-Townes splitting of the tran-
sition that is resonant with the Raman pump. In Ref [13], we
described experimental realization of the superluminal laser
gain profiles in both D1 and D2 manifolds. We also presented
a theoretical model for describing this process. However, this
model was an approximate one, relying heavily on several
fitting parameters. In order to develop a proper model, it
is necessary to address the complexity due to the fact that,
under this scheme, the same transition is coupled by both the
Raman pump field and the Raman probe field, which are at
different frequencies. Furthermore, a proper model must take
into account all hyperfine levels as well as Zeeman sublevels.
The four-level case presented in this paper shows how to apply
these algorithms to predict accurately the gain profile for such
a single-pumped superluminal laser.

Another important application of the technique developed
in this paper would be to determine accurately the process of
radiation trapping in a magneto-optic trap (MOT). Recalling
briefly, this is a process whereby an atom experiences an
attraction to or repulsion from a neighboring atom, depending
on whether it amplifies or absorbs light emitted by the neigh-
bor. In a MOT, every atom is irradiated by the fluorescence

emitted by all the neighboring atoms. The fluorescence
spectrum of each atom can be calculated with relative ease by
applying the quantum regression theorem [30–33], even when
taking into account the multilevel structure of the atoms, since
the excitation field is monochromatic. However, accurate de-
termination of the absorption-or-gain spectrum of the atoms is
difficult because of the need to take into account the multilevel
structure, especially when the fluorescence produced by the
neighboring atoms is strong enough to require keeping
track of many orders of the pump-probe beat frequency. The
method described in this paper can be applied to determine the
absorption-or-gain spectrum of trapped atoms very accurately,
thereby determining the nature of the radiation trapping force
with high precision. This information in turn can possibly be
used to optimize density of atoms in a MOT, as well as tailor
the three-dimensional distribution of atoms.

The rest of the paper is organized as follows. In Sec. II,
we describe the numerical approach for solving the steady
state density matrix using a two-level system as an example.
In Sec. III, the symbolic approach is discussed. In Sec. IV,
we show the results for the two-level system generated by the
two approaches with comparison to the analytic solution. In
Sec. V, we show the results for the three-level Lambda system.
In Sec. VI, we show the results for the four-level system,
which describes the basic behavior of the gain profile in a
single-pumped superluminal laser. In Sec. VII we generate
the gain profile for a self-pumped Raman laser, for a system
involving 16 Zeeman sublevels. Discussions and conclusions
are presented in Sec. VIII. In the Appendix, we describe the
generalization of the numerical approach for a system with an
arbitrary number of energy levels and keeping arbitrary orders
of time oscillating terms.

II. NUMERICAL APPROACH

For illustrating the algorithm under the simplest possible
condition, we consider first a two-level system that is identical
to the one presented in Ref. [8], which is driven by a strong
pump and a weak probe. It also allows for optical pumping
from the ground to the excited state that is sufficiently strong
to produce population inversion between these states. The
schematic of the energy levels and optical fields is shown in
Fig. 1. We start with the Liouville equation:

∂ρ̃

∂t
= − i

h̄
[ ˜̃H ρ̃ − ρ̃ ˜̃H

†
] + ρ̃s, (1)

˜̃H = h̄

2

[ −i�op �p + �seiδt

�p + �se−iδt −2� − i�

]
, (2)

ρ̃s =
[
�ρ̃22 0

0 �opρ̃11

]
. (3)

Here, ˜̃H is the Hamiltonian after the RWA) and RWT, ρ̃ is
the density matrix after the RWA and the RWT, ρ̃s represents
the source terms that account for the influx of the atoms
due to decay, �op is the effective incoherent excitation rate
induced by a mechanism such as optical pumping, �p and
�s are the Rabi frequencies of the pump field and the probe
field, respectively, � is the detuning of the pump field with a
respect to the resonance of the |1〉 ↔ |2〉 transition, δ is the
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FIG. 1. Schematic of the energy levels and the optical fields in a
two-level system driven by two different frequencies.

frequency difference between the probe field and the pump
field, and � is the atomic decay from level |2〉. It should be
noted that in this formulation the Hamiltonian includes the
decay terms; as such, it is nonHermitian. Due to the presence
of two fields with different frequencies applied on a single
transition, the RWT cannot eliminate the time varying terms
in the Hamiltonian completely, as can be seen in Eq. (2). As
a result, the density matrix cannot have a fully steady-state
solution. For most practical situations, what is of interest is
the pseudo-steady-state solution, under which each element
of the density matrix will be a sum of many terms, including
a stationary term and terms oscillating at all the harmonics
(positive and negative) of δ. In other words, each element of
the density matrix will be periodic in time, with a period given
by the inverse of the frequency difference (δ) between the
pump and the probe. To start with, we only consider the con-
stant terms and the first order (positive and negative) terms.
This approximation is adequate to describe conditions where
the probe is infinitesimally weak. In what follows, we will
denote this as the weak-probe case. Later on, we will consider

the more general case where harmonics up to an arbitrary
order are taken into account. Under this approximation, we
can write

ρ̃ = ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt , (4)

ρ̃s = ρ̃0
s + ρ̃1

s eiδt + ρ̃−1
s e−iδt . (5)

(Before proceeding, we want to point out that in this paper
superscripts on variables do not represent exponents.) The
source matrices can be expressed as

ρ̃0
s =

[
�ρ̃0

22 0

0 �opρ̃
0
11

]
, ρ̃1

s =
[
�ρ̃1

22 0

0 �opρ̃
1
11

]
,

ρ̃−1
s =

[
�ρ̃−1

22 0

0 �opρ̃
−1
11

]
. (6)

The Liouville equation in pseudosteady state can be ex-
pressed as

∂ρ̃

∂t
= 0 + iδρ̃1eiδt − iδρ̃−1e−iδt = − i

h̄
[ ˜̃H ρ̃ − ρ̃ ˜̃H

†
] + ρ̃s.

(7)

We will assume that the system is closed, so that the fol-
lowing constraints must be satisfied:

ρ̃0
11 + ρ̃0

22 = 1, ρ̃1
11 + ρ̃1

22 = 0, ρ̃−1
11 + ρ̃−1

22 = 0. (8)

Similar to the N-level algorithm presented in Ref. [10],
we need to convert the Liouville equation to a set of linear
equations. For a two-level system, the number of linear equa-
tions for the weak-probe case is 12. For an arbitrary number
of levels N, the corresponding number of linear equations
is 3 × N2. We now describe the algorithmic steps used to
evaluate the coefficients in a 12 × 12 matrix M, which is time
independent, satisfying the following equation:

MA = B, (9)

where B is the 12 × 1 null vector, and A is the vectorized
density matrix with all the components for each density matrix
element. The order of the elements can be chosen arbitrarily.
We choose to use the following ordering:

A ≡ [
ρ̃0

11, ρ̃
1
11, ρ̃

−1
11 , ρ̃0

12, ρ̃
1
12, ρ̃

−1
12 , ρ̃0

21, ρ̃
1
21, ρ̃

−1
21 , ρ̃0

22, ρ̃
1
22, ρ̃

−1
22

]T
. (10)

In principle, this ordering can be arbitrary. However, when the process of generalizing the algorithm to an arbitrary number
of energy levels for an arbitrary number of orders, it is necessary to use a specific rule for creating the order. Here, we have used
the rule explained below: using the example of a two-level system:

The general form of the density matrix for the two-level system is

ρ̃ =
[(

ρ̃0
11 + ρ̃1

11eiδt + ρ̃−1
11 e−iδt + · · ·) (

ρ̃0
12 + ρ̃1

12eiδt + ρ̃−1
12 e−iδt + · · ·)(

ρ̃0
21 + ρ̃1

21eiδt + ρ̃−1
21 e−iδt + · · ·) (

ρ̃0
22 + ρ̃1

22eiδt + ρ̃−1
22 e−iδt + · · ·)

]
. (11)

For each element, we have multiple harmonics, up to the order we need to consider, denoted as K. We arrange them from
lower order to higher order, and for the same order, the negative harmonic follows the positive harmonic. We start with the
first row and first column in the density matrix, and the coefficients multiplying the time oscillating factors in the order
expressed in Eq. (11) form the first (2K + 1) elements in the A vector. Then we move across the columns in the first row
and fill the coefficients in the A vector. After the first row is finished, we consider the second row and follow the same process
until the entire density matrix is vectorized. For N energy levels with keeping up to K order of harmonics, the A vector would be
in the form of

A ≡ [
ρ̃0

11, ρ̃
1
11, ρ̃

−1
11 , ρ̃2

11, ρ̃
−2
11 , . . . , ρ̃K

11, ρ̃
−K
11 , ρ̃0

12, ρ̃
1
12, ρ̃

−1
12 , . . . ., ρ̃K

NN , ρ̃−K
NN

]T
. (12)

015304-3



ZHOU, STERNFELD, SCHEUER, AND SHAHRIAR PHYSICAL REVIEW E 110, 015304 (2024)

It should be noted that the determinant of the matrix M in
Eq. (9) is zero, which is due to the fact that the 12 equations
are not linearly independent, resulting from the closed-system
constraints expressed in Eq. (8). These constraints can be
used to eliminate three of the 12 equations, leading to a new
equation of the form:

M ′A′ = B′, (13)

where A′ is a 9 × 1 column vector containing only nine of the
elements of the vector A, and B′ is a nonzero vector. Inversion
of this equation, along with the constraints in Eq. (8), would
give us all the elements of the vector A. It should also be
noted that the time-independence of Eq. (9) results from the
fact that the time oscillating factors can be canceled out after
rearranging the set of 12 equations derived from Eq. (7). The
details of this process are described next.

First, we need to separate the terms in Eq. (7) that are
multiplied by e±iδt . For simplicity in notations, we introduce
the following definitions:

˜̃H = H0 + H1eiδt + H−1e−iδt , (14)

H0 ≡ h̄

2

[−i�op �p

�p −� − i�

]
, (15)

H1 ≡ h̄

2

[
0 �s

0 0

]
, (16)

H−1 ≡ h̄

2

[
0 0

�s 0

]
. (17)

Using these notations, the first term on the right-hand side
of Eq. (7), which will be called the pseudocommutator in the
rest of the paper, can be expressed as

˜̃H ρ̃ − ρ̃ ˜̃H
†

= (H0 + H1eiδt + H−1e−iδt )(ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt )

− (ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt )(H0 + H1eiδt + H−1e−iδt )
†
.

(18)

Noting that (H1)† = H−1, we can write

(H0 + H1eiδt + H−1e−iδt )
† = (H0)

† + H1eiδt + H−1e−iδt .

(19)

The pseudocommutator of Eq. (18) can then be written as

˜̃H ρ̃ − ρ̃ ˜̃H
†

= (H0 + H1eiδt + H−1e−iδt )(ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt )

− (ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt )[(H0)
† + H1eiδt + H−1e−iδt ].

(20)

In evaluating this pseudocommutator, we will ignore
higher-order terms (such as those varying as e±i2δt ). We group
the remaining terms into the zeroth order, positive first order
and negative first order as follows:

˜̃H ρ̃ − ρ̃ ˜̃H
† ≈ U 0 + U 1eiδt + U −1e−iδt , (21)

where

U 0 = [H0ρ̃0 − ρ̃0(H0)
†
] + (H−1ρ̃1 − ρ̃1H−1)

+ (H1ρ̃−1 − ρ̃−1H1), (22)

U 1 = (H1ρ̃0 − ρ̃0H1) + [H0ρ̃1 − ρ̃1(H0)
†
], (23)

U −1 = (H−1ρ̃0 − ρ̃0H−1) + [H0ρ̃−1 − ρ̃−1(H0)
†
]. (24)

Equation (7) can now be rewritten as

0 + iδρ̃1eiδt − iδρ̃−1e−iδt = − i

h̄
(U 0 + U 1eiδt + U −1e−iδt )

+ (
ρ̃0

s + ρ̃1
s eiδt + ρ̃−1

s e−iδt
)
.

(25)

As can be seen, we can group the terms that are multiplied
by e±iδt in three equations:

G0 ≡ − i

h̄
U 0 + ρ̃0

s = 0, (26)

G1 ≡ − i

h̄
U 1 + ρ̃1

s − iδρ̃1 = 0, (27)

G−1 ≡ − i

h̄
U −1 + ρ̃−1

s + iδρ̃−1 = 0. (28)

Each of Eq. (26) to Eq. (28) contains four linear equations.
These can now be expressed as a set of 12 time-independent
linear equations, in the form of Eq. (9). In what follows,
we will denote these as equation Ek , with k ranging from 1
through 12. Based on the ordering of the elements of A vector
shown earlier, the ordering for these linear equations would
be as follows:

G0
11 = 0 ⇔ E1; G0

12 = 0 ⇔ E4; G0
21 = 0 ⇔ E7;

G0
22 = 0 ⇔ E10 (29)

G1
11 = 0 ⇔ E2; G1

12 = 0 ⇔ E5; G1
21 = 0 ⇔ E8;

G1
22 = 0 ⇔ E11 (30)

G−1
11 = 0 ⇔ E3; G−1

12 = 0 ⇔ E6; G−1
21 = 0 ⇔ E9;

G−1
22 = 0 ⇔ E12. (31)

Next, we use a particular process, also used in Ref. [10], to
determine the elements of the M matrix. To illustrate the logic
underlying this process, consider a generic situation where
we have an equation of the form V = ax + by + cz where the
value of V is a constant, and x, y and z are variables, and we
want to determine the coefficients a, b, and c. It then follows
that a = V if we set the values of x to unity and the values of
y and z to zeroes, and so on. To use this process for finding the
coefficients in M matrix, we proceed as follows. For finding
Mi j , we set the jth element in the A vector to unity, and
the other elements to null values (it should be noted that the
resulting A vector does not correspond to a physically valid
form of the density matrix; rather, this formulation is used
as an algorithm step for extracting the coefficients in the M
matrix). The value of Mi j is then given by the left-hand side
(LHS) of equation Ei.
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To illustrate this process, it is convenient to define first the
following matrices:

Q0 ≡ H0

[
1 0
0 0

]
−

[
1 0
0 0

]
[H0]

†
(32)

Q1 ≡ H1

[
1 0
0 0

]
−

[
1 0
0 0

]
H1 (33)

Q−1 ≡ H−1

[
1 0
0 0

]
−

[
1 0
0 0

]
H−1. (34)

Let us consider the first linear equations (i.e., E1) as an
example of applying this process. Explicitly, the LHS of E1,
denoted E1(LHS) as can be expressed as

E1(LHS) = G0
11 = − i

h̄
U 0

11 + ρ̃0
s(11). (35)

We set ρ̃0
11 = 1 (corresponding to setting the first element

of A to unity) and all other elements in A to zero. From
Eq. (3), it then follows that ρ̃0

s(11) = 0. From Eqs. (22) and
(32), we see that U 0

11 = Q0
11. Using these in Eq. (35), we find

that E1(LHS) = (−i/h̄)Q0
11, which in turn means that M11 =

E1(LHS) = (−i/h̄)Q0
11.

Similarly, the value of M21 is given by the LHS of E2,
which can be expressed as

E2(LHS) = G1
11 = − i

h̄
U 1

11 + ρ̃1
s(11) − iδρ̃1

11. (36)

Since ρ̃0
11 = 1 yields ρ̃1

s(11) = 0 and ρ̃1
11 = 0, we have

E2(LHS) = (−i/h̄)Q1
11 from Eqs. (23) and (33). As a result, we

find that M21 = E2(LHS) = (−i/h̄)Q1
11. For evaluating M31, we

calculate G−1
11 with ρ̃0

11 = 1, and we have M31 = (−i/h̄)Q−1
11 .

For the rest of the elements in the first column in the M
matrix, we evaluate the LHS of Ei (i ranging from 4 to 12)
with ρ̃0

11 = 1. This procedure yields the following results:

M41 = E4(LHS) = − i

h̄
Q0

12; M51 = E5(LHS) = − i

h̄
Q1

12;

M61 = E6(LHS) = − i

h̄
Q−1

12 (37)

M71 = E7(LHS) = − i

h̄
Q0

21; M81 = E8(LHS) = − i

h̄
Q1

21;

M91 = E9(LHS) = − i

h̄
Q−1

21 (38)

M10,1 = E10(LHS) = − i

h̄
Q0

22 + �op;

M11,1 = E11(LHS) = − i

h̄
Q1

22;

M12,1 = E12(LHS) = − i

h̄
Q−1

22 . (39)

Evaluation of the rest of the columns of the M matrix can be
carried out by following the same procedure. In this context,
it should be noted that the three matrices defined in Eqs. (32),
(33), and (34) are needed only for determining the elements
of the first three columns of the M matrix. A different set of
three matrices, similar to those defined in Eqs. (32), (33), and
(34), are needed for determining the elements of each of the
three subsequent sets of three columns of the M matrix.

Once all the elements of the M matrix are determined, the
next step makes use of the closed system constraint to remove
the redundant equations within Eq. (9). By using Eq. (8), we

find that the elements in the first three columns of the M ′
matrix are related to the elements of the M matrix as follows:

M ′
i,1 = Mi,1 − Mi,10, (40)

M ′
i,2 = Mi,2 − Mi,11, (41)

M ′
i,3 = Mi,3 − Mi,12, (42)

with i ranging from 1 to 9. The rest of the elements in the M ′
matrix are the same as those with the same indices in the M
matrix. The elements of the B′ vector are found, using Eq. (8),
to be

B′ = − [M1,10, M2,10, M3,10, M4,10, M5,10, M6,10,

× M7,10, M8,10, M9,10]T. (43)

From Eq. (13), it follows that

A′ = (M ′)−1B′. (44)

The A vector can be then calculated from the A′ vector
using Eq. (8). Specifically, the A vector can be written as

A = [A′
1, A′

2, A′
3, A′

4, A′
5, A′

6, A′
7, A′

8, A′
9, (1 − A′

1),

× (−A′
2), (−A′

3)]T. (45)

The extension of this approach to arbitrary number of
energy levels and keeping arbitrary order of time oscillating
terms are described in the Appendix.

III. SYMBOLIC APPROACH

We have also developed another approach for solving the
pump-probe model for an arbitrary number of levels, and to
any order. This approach imitates the analytic solution in a
code based on symbols and a set of MATLAB functions. We
first present the basic concept for the case of a two-level
system, keeping only the first order harmonics, and show how
to generalize it to an arbitrary number of levels and orders
later on in this section.

We start by defining symbols for all the density matrix
elements, ρ̃0,±1

i j . We also define two additional symbols: Y ≡
eiδt and Z ≡ e−iδt . Next, we evaluate the right-hand side of
Eq. (7) by multiplying the matrices and adding the source term
accordingly. We define the matrix R as follows:

− i

h̄
( ˜̃H ρ̃ − ρ̃ ˜̃H

†
) + ρ̃s ≡ R =

[
R11 R12

R21 R22

]
. (46)

For convenience, we vectorize the R matrix in the form
V ≡ (R11, R12, R21, R22)T. The derivatives of the density ma-
trix elements can be written as follows:

˙̃ρi j = iδρ̃1
i je

iδt − iδρ̃−1
i j e−iδt . (47)

We further define the following vectors:

ρP ≡ [
ρ̃1

11, ρ̃
1
12, ρ̃

1
21, ρ̃

1
22

]T
, (48)

ρM ≡ [
ρ̃−1

11 , ρ̃−1
12 , ρ̃−1

21 , ρ̃−1
22

]T
. (49)

We now define the following expressions:

Eqn ≡ Vn − (
iδρP

n Y − iδρM
n Z

)
, (50)

where n = 1, 2, 3, 4. Eq. (7) then corresponds simply to set-
ting each of the expressions in Eq. (50) to zero. We note that
each of these expressions would contain terms proportional to
Y Z , which is time independent, equaling unity. These would
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also contain terms proportional to Y 2 and Z2, which represent
higher order harmonics, and can be ignored. Next, for each
of these expression, we generate three groups: one containing
all terms that are time independent, one containing all terms
proportional to Y , and one containing all terms proportional
to Z . Each of these groups is then set to zero, which follows
from the fact that we are considering the pseudosteady state.

To implement the separation of these groups automat-
ically, we make use of the symbolic MATLAB function
coeffs(Expression,[Symbol 1, Symbol 2, · · · , Symbol n]).
Briefly, this function takes as inputs an expression and n
symbols, and returns two output vectors, which can be best
illustrated using an example, as follows. Assume we have an
expression defined as eq = ax2 + bxy + cx + dy2 + ey + f ,
where x and y are the symbols of interest. The command
[p, q] = coe f f s(eq, [x, y]) returns two vectors: the vector p
would be p = [x2, xy, x, y2, y, 1] and the corresponding vector
g would be q = [a, b, c, d, e, f ].

When provided with Eqn as an input expression, along
with the relevant variables, which are Y and Z, this function
returns the coefficients in Eqn for each variable, i.e., Y, Z, and
any combinations thereof. For each expression, eq, the MAT-
LAB function [g, h] = coe f f s(eq, [Y, Z]) returns two vectors,
g and h. The vector h contains terms [Y 2,Y Z,Y, Z2, Z, 1],
and the corresponding vector g contains terms we denote as
[q, r, s, u, v,w]. Here we ignore the coefficients for Y 2 and Z2.
Since Y · Z = 1, the coefficients of YZ and 1 are grouped in
the same expression. The expression eq can then be separated
into three expressions: eqa = r + w, eqb = s, and eq3 = v.
This process leads to a set of 12 linear expressions, each of
which is equated to zero. Together, these equations correspond
to Eq. (9).

To convert the set of equations to a matrix notation,
one can use another symbolic MATLAB function [M, B] =
equationsToMatrix(alignVector,VariableVector). It takes
as an input a set of m equations organized as a column
vector, and a set of m variables organized as a column vec-
tor. The out M is an mxm matrix, and the output B is an
mx1 column vector. In our case, the value of m is 12, the
EquationVector is [eq1, eq2 · · · , eq12]T , and the VariableVec-
tor is [ρ̃0

11, ρ̃
1
11, ρ̃

−1
11 , ρ̃0

12, · · · , ρ̃−1
22 ]

T
, which is the same as the

column vector A shown earlier in Eq. (10), using the same
rule for ordering. This function returns the coefficient matrix
M and the B vector satisfying Eq. (9). Next, we apply the
constraints for a closed system and repeat the steps described
in Eqs. (40)–(45) for the numerical approach to determine the

pseudosteady state solution for the density matrix equations
of motion.

We next discuss how to generalize the symbolic approach.
Consider first the process of generalization to an arbitrary
number of energy levels, while keeping only the first-order
terms. This simply requires changing the length of the vectors
defined above based on the number of levels, with the same
rule for ordering. To be specific, the length of vectors V,
ρP, and ρM for N energy levels is N2 for keeping only the
first order harmonics. The procedure for separating the linear
equations and solving the density matrix remains the same.
Finally, we have to apply the constraints for a closed system
to determine the pseudosteady state solution for the density
matrix equations of motion. Just as in the case of the two-level
system, the steps needed for this are identical to those used
for the numerical approach for N energy levels, which are
described in Eqs. (A9)–(A17) in the Appendix.

Expanding the derivation to the Kth order requires taking
the coefficients up to Y K and ZK and the relevant combina-
tions of parameters. It needs to be noted that the Hamiltonian
only has the first order harmonics. As a result, the pseudo-
commutator will only have the factors in the form of Y m,
Zm, Y mZ , and Y Zm with 1 < m < K . It can be seen that Y mZ
need to be grouped with Y m−1 and Y Zm need to be grouped
with Zm−1, which leads to the fact that the coefficients of
these terms should be added together when determining the
corresponding equations. Moreover, the length of the A vector
would be (2K + 1)N2.

IV. VALIDATION OF THE ALGORITHMS VIA
COMPARISON WITH ANALYTICAL RESULTS

FOR A TWO-LEVEL SYSTEM

To check the validity of these algorithms, it is instructive
to compare the results produced by both the numerical and
the symbolic approaches with results obtained using explicit
analysis of a two-level system under pump-probe excitations.
The simplest case would be those studied in Refs. [2,3], in
which there is no optical pumping from the ground state to
the excited state. Since our model is more general, taking
into account the possible presence of optical pumping from
the ground to the excited state, we have chosen instead to
compare with the case studied earlier by us in Ref. [8], which
considers the presence of such optical pumping. Specifically,
we consider the susceptibility experienced by the probe field.
For this case, the coefficient of the first-order harmonic can be
expressed analytically as [8]

ρ̃−1
21 = �s/2

� + δ + iη

[
1 − |�p|2(δ − � + iη)(δ + 2iη)/(2� − 2iη)

(δ + iθ )(� + δ + iη)(δ − � + iη) − |�p|2(δ + iη)

]
, (51)

where η ≡ (� + �op)/2 and θ ≡ � + �op. The susceptibility
experienced by the probe field can be expressed as

χ = h̄c0n0

Isat�s

(
�

2

)2

ρ̃−1
21 , (52)

where c0 is the speed of light in vacuum, n0 is the number
density of the atom, and Isat is the saturation intensity.

Figure 2 shows the real and the imaginary parts of the
probe susceptibility, as functions of its detuning, generated
using three approaches (i.e., the numerical algorithm, the
symbolic algorithm, and the analytical expression). Here, each
column shows results generated using the same approach,
and each row corresponds to the same set of parameters. As
can be seen, the results produced using the two algorithmic
approaches (columns one and two) are identical. When these
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FIG. 2. Calculated susceptibility experienced by the probe field using the different approaches. The numerical approach is used for
generating the figures in the left column. The symbolic approach is used for generating the figures in the center column. The analytical
approach is used for generating the figures in the right column. The real and the imaginary part of the susceptibility are the red (dash-dotted)
traces and the blue (solid) traces, respectively. The common parameters are as follows: �p = 2π × 36 × 106sec−1, �s = 2π × 6 × 106sec−1,
Isat = 120 W/m2, n0 = 1018 m−3, and � = 2π × 107 sec−1. The values of the optical pumping and the detuning for each row are the same.
Specifically, the parameters for figures (a), (b), and (c) are �op = 0, � = 0. Similarly, the parameters for figures (d), (e), and (f) are
�op = 0, � = 2�. For (g), (h), and (i), �op = 2�,� = 0. For (j), (k), and (l), �op = 2�, � = 2�.

are compared with the results based on the analytical expres-
sion, the agreement is generally very good, but with some
small differences. This is caused by the fact that in deriving
Eq. (51), we have made the simplifying approximation that
terms resulting from products of �s and the small perturbed
components (namely ρ̃±1) are negligible. On the other hand,
these terms are taken into account in the numerical and the
symbolic approaches.

In principle, one could use either the numerical approach
or the symbolic approach. However, we have found that the
amount of time needed to carry out the computation is signif-
icantly larger for the symbolic approach, even for a two-level
system up to the first order, and the difference in the compu-
tation speed grows with increasing number of energy levels
and orders. As such, in practice, one should use the numerical
approach. On the other hand, it should be noted that while
generalizing to arbitrary numbers of levels and arbitrary or-
ders requires complex steps requiring close attention for the
numerical case, it is much simpler for the symbolic case. As
such, when creating new codes under such scenarios, one
should use both approaches first to make sure they produce
identical results, and then use the numerical codes for inves-
tigating the behavior of the system as a function of various
parameters, as well as for velocity averaging.

We have studied the susceptibility dependence on the probe
detuning, for a Doppler width of 564 MHz (full width at half
maximum), as illustrated in Fig. 3. Figure 4(a) is a reproduc-
tion of Fig. 2(a) with a different horizontal scale, and Fig. 3(b)

shows the results when including velocity averaging for the
same set of parameters.

In the simulation results shown so far, we only considered
the case of a vanishingly weak probe. However, there can be
many situations in which this limit does not hold. For such
cases, one must keep adding effects of higher orders, until
the addition of one more order produces changes in the result
deemed negligible for the application at hand.

Figure 4 shows the simulation results, for the parameters
used in Fig. 2(a), where the maximum order in the pump-
probe frequency difference, used in the simulations, is one
[Fig. 4(a)], two [Fig. 4(b)] and three [Fig. 4(c)]. As can be
seen, minor deviations exist between the cases, especially
around the detuning of ±18 MHz.

V. THREE-LEVEL LAMBDA SYSTEM

We have also studied the case of a three-level Lambda
system where two different frequencies are applied along one
of the two legs, as shown in Fig. 5. This case represents an
idealized version of the scheme for realizing a superlumi-
nal laser using a single pump [13]. Here, the pump couples
two transitions: the transition |2〉 ↔ |3〉 with detuning δp23

and the transition |1〉 ↔ |3〉 with detuning δp13. The two de-
tunings of the Raman pump are related as δp13 ≡ δp23 − �,
where � is the hyperfine ground states separation. For sim-
plicity of notation, we defined δp ≡ δp23. A probe beam is
applied along the |2〉 ↔ |3〉 transition with detuning δs. The
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FIG. 3. (a) A reproduction of Fig. 2(b) on a compressed scale. (b) The results including velocity averaging for the same parameters. The
real and the imaginary part of the susceptibility are the dashed-dotted red traces and the solid blue traces, respectively.

Hamiltonian representing the system under the RWA and the
RWT is presented as

˜̃H ≡ h̄

2

⎡
⎢⎢⎣

−i�g − 2� 0 �p

0 −i�g �p + �seiδt

�p �p + �se−iδt −i� − 2δp

⎤
⎥⎥⎦, (53)

where �g is the collisional decay rate and δ ≡ δs − δp. The
source term can be expressed as

ρ̃source ≡

⎡
⎢⎢⎣

�gρ̃22 + �ρ̃33/2 0 0

0 �gρ̃11 + �ρ̃33/2 0

0 0 0

⎤
⎥⎥⎦. (54)

The A vector can be written in the same form as Eq. (10):

A ≡ [
ρ̃0

11, ρ̃
1
11, ρ̃

−1
11 , ρ̃0

12, ρ̃
1
12, ρ̃

−1
12 , ρ̃0

13, . . . , ρ̃
0
33, ρ̃

1
33, ρ̃

−1
33

]T
.

(55)

Applying the algorithms described above to that sys-
tem yields the results shown in Fig. 6. We observe the
Autler-Towns splitting [34] and the corresponding nega-
tive dispersion slope between the peaks. The results show
the population inversion between level 1 and level 2, as
expected.

In the preceding discussion, we used two and three-level
systems to illustrate the application of these algorithms. How-
ever, as noted earlier, these algorithms work for an arbitrary
number of levels. We next show another example based on a
four-level model.

FIG. 4. A reproduction of Fig. 2 for keeping up to (a) the first-order terms (b) the second-order terms, and (c) the third-order terms. The
real and the imaginary part of the susceptibility are the dashed-dotted red traces and the solid blue traces, respectively.
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FIG. 5. Schematic of the energy levels and the optical fields in
the three-level system.

VI. FOUR-LEVEL SYSTEM AS A MODEL FOR THE
SINGLE-PUMPED SUPERLUMINAL LASER

The four-level model described in Fig. 7 is similar to the
three-level model, but with an additional excited state denoted
as level |4〉. The two excited states, separated by �23, rep-
resent the hyperfine structure of the 5P1/2 manifold. Here,

both the pump (blue arrow) and the probe (red arrow) couple
level |3〉 and level |4〉 to level |2〉. In principle, both the pump
and the probe also couple level |3〉 and level |4〉 to level |1〉.
However, since the splitting between level |1〉 and |2〉 is very
large (∼3 GHz) compared to the Doppler broadening (∼600
MHz) and the probe Rabi frequency, even when the system is
lasing at the probe frequency, it is reasonable to assume that
the coupling of levels |3〉 and level |4〉 to level |1〉 due to the
probe is negligible. As such, this configuration represents the
system used for the single-pumped superluminal laser scheme
described in Ref. [13]. In what follows, we apply the pump-
probe algorithm to this system to generate the gain spectrum
for the probe, under idealized conditions. We will then discuss
how to augment this model to take into account all the Zeeman
sublevels in order to yield more accurate results.

To start with, we assume that the pump Rabi frequencies
for the |1〉 ↔ |3〉, |1〉 ↔ |4〉, |2〉 ↔ |3〉 and |2〉 ↔ |4〉 transi-
tions are identical, and given by �P. Similarly, we assume that
the probe Rabi frequencies for the |2〉 ↔ |3〉 and |2〉 ↔ |4〉
transitions are identical, and given by �S . All the detunings
are defined in the same way as for the three-level system
described above. The four-level Hamiltonian under the RWA
and the RWT can then be written as

˜̃H ≡ h̄

2

⎡
⎢⎢⎢⎢⎣

−i�g − 2� 0 �p �p

0 −i�g �p + �seiδt �p + �seiδt

�p �p + �se−iδt −i� − 2δp 0

�p �p + �se−iδt 0 −i� − 2δp + 2�23

⎤
⎥⎥⎥⎥⎦. (56)

The source term can be expressed as

ρ̃source ≡

⎡
⎢⎢⎢⎣

�gρ̃22 + �ρ̃33/2 + �ρ̃44/2 0 0 0

0 �gρ̃11 + �ρ̃33/2 + �ρ̃44/2 0 0
0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦. (57)

Figure 8 shows the simulation results under the same pa-
rameters as those used for the three-level case. Here, we
observe asymmetry between the peaks in the susceptibility
and the populations due to the coupling to an additional
excited state. To illustrate the symmetric splitting, which
is the case of interest for the single-pumped superluminal
laser [13], one would have to modify the pump detuning
accordingly.

While this approach is expected to be more accurate than
the model employed in Ref. [13], the idealized results shown
in Fig. 8 are only illustrative, and not expected to correspond
to experimentally observed results. This is because a compre-
hensive model has to take into account the Zeeman sublevels
within the hyperfine states, which adds up to a 24-level sys-
tem. Determining experimentally verifiable gain profile and
sensitivity of the resulting superluminal laser would require
accounting for all these Zeeman sublevels, keeping track of
many harmonic terms since the field inside the laser cannot
be treated as weak, velocity averaging, and iterative solution

of the laser equations in a self-consistent manner. Such an
investigation, which is extremely time consuming, even with a
supercomputer, is currently in progress, and the results would
be reported in the near future.

VII. 16-LEVEL SYSTEM FOR THE SELF-PUMPED
RAMAN GAIN

Finally, to demonstrate that these algorithms are capable of
calculating a complex system without applying the approxi-
mations that circumvent the pump-probe issue, we calculate
the self-pumped Raman gain produced in the D1 line in 87Rb.
Here we consider all the Zeeman sublevels in the relevant
energy levels for this system, in total 16 levels, as shown in
Fig. 9. The hyperfine splitting between the states 5S1/2, F = 1
and 5S1/2, F = 2 is ∼6.835 GHz. Each Zeeman sublevel in the
5P1/2 manifold decays to the 5S1/2 manifold, at a rate denoted
as �. The branching ratio for the decay to each Zeeman
sublevel in the 5P1/2 manifold is different and determined by
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FIG. 6. Simulation results of (a) the probe susceptibility as functions of the probe detuning, where the real and the imaginary part of
the susceptibility are the dashed-dotted red traces and the solid blue traces, respectively. And the population on (b) level 1 and (c) level
2. These results are obtained with the following parameters: �s = 0.01�, �p = 5�, δp = 0, � = 6 MHz, �g = 1 MHz, Isat = 120 W/m2,
natom = 3 × 1018 m−3.

the dipole matrix elements. Between each pair of the Zeeman
sublevels, when one is from F = 1 and the other is from
F = 2, in the 5S1/2 manifold, there is a collisional decay rate
of 1 MHz.

The pump field and the probe field are cross-linearly polar-
ized, which determines the signs of the Rabi frequencies of the
two fields and the expression for calculating the susceptibility.
The pump field couples all the allowed Zeeman transitions in
the D1 manifold, specifically the 5S1/2, F = 1 to 5P1/2, F = 1
and 5P1/2, F = 2 transitions, and the 5S1/2, F = 2 to 5P1/2,
F = 1 and 5P1/2, F = 2 transitions. The probe field couples the
5P1/2, F = 1 and 5P1/2, F = 2 transitions. It needs to be noted
that only the σ+ fields are shown in the diagram for clarity.
In the complete system both σ+ fields and σ− fields are con-
sidered. Clearly, the excitation process can be described using
π transitions if a different quantization axis is used, without
affecting the physical process. It is also possible to consider

FIG. 7. Schematic of the energy levels and the optical fields in
the four-level system.

a quantization axis for which the same fields would lead to
π -transitions in addition to σ+ and σ− transitions. However,
for the system considered here, the quantization axis used here
is the most convenient one. Both algorithms are designed to
accommodate all types of transitions (i.e., π , to σ+ and σ−)
and any choice of the quantization axis. The pump field is
tuned near the resonance of the 5S1/2, F = 2 to 5P1/2 transi-
tions. As such, on the 5S1/2, F = 1 to 5P1/2 transitions, the
pump field is detuned below resonance by ∼6.835 GHz. The
Rabi frequency of each Zeeman transition is related to those
of the other Zeeman transitions by the corresponding matrix
element of the dipole moment [35]. The Doppler broadening
is taken into account by averaging the density matrix over
several different velocity groups with the thermal distribution
at 100 °C.

The gain and dispersion spectra experienced by the probe
field, which are determined by adding contributions from all
the probe Zeeman transitions, are shown in Fig. 9. The center
of the x axis corresponds to the two-photon detuning being
zero. The result is generated with the pump field detuned by
30� with respect to the 5S1/2, F = 2 to 5P1/2, F = 2 transition.
The Rabi frequencies of the pump field are evaluated by
multiplying the dipole matrix elements by 10�. As can be
seen, the peak gain experienced by the probe field is above
unity, which can be used for producing self-pumped Raman
lasing.

It should be noted that while the concept of solving the
pump-probe problem by taking into account arbitrary orders
of the beat frequency is generic, and applicable to any system,
the specific algorithm presented here is applicable only when
certain conditions are met. Specifically, these algorithms can
be readily used only when (a) the density matrix is used for
the analysis, (b) the system consists of a discrete number of
energy levels, with well-defined transition strengths among
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FIG. 8. Simulation results of (a) the probe susceptibility as functions of the probe detuning, where the real and the imaginary part of
the susceptibility are the dashed-dotted red traces and the solid blue traces, respectively. And the population on (b) level 1 and (c) level
2. These results are obtained with the following parameters: �s = 0.01�, �p = 5�, δp = 0, � = 6 MHz, �g = 1 MHz, Isat = 120 W/m2,
natom = 3 × 1018 m−3.

the levels, (c) the branching ratios for the decay rates are
consistent with the transition strengths, and (d) the system
remains closed so that the number of quantum entities are
conserved. When any of these conditions is not met, the al-
gorithms must be modified accordingly. The details presented
here for constructing the algorithms need to be considered
carefully when implementing such modifications. For pump-
probe excitations in solids, the mathematical model typically
used, such as those described in Refs. [36] and [37], do not
meet all these conditions. As such, for applications to such
excitations, the algorithms have to be modified significantly.
Developing and presenting the algorithms that would be suit-
able for such excitations is beyond the scope of this paper but
would be carried out in the near future.

The MATLAB codes for implementing both the numerical
and symbolic algorithms are detailed in the Supplemental
Material [38].

VIII. DISCUSSIONS AND CONCLUSIONS

In this paper, we describe a generalized algorithm for eval-
uating the steady-state solution of the density matrix equation
of motion, for situations where two fields oscillating at dif-
ferent frequencies couple the same set of atomic transitions
involving an arbitrary number of energy levels, to an arbitrary
order of the harmonics of the frequency difference between
the pump and the probe. We developed a numerical approach
as well as a symbolic one for implementing this algorithm. We

FIG. 9. (a) Schematic of the relevant energy levels and the optical fields (only σ+ fields are shown) in the self-pumped Raman gain scheme.
(b) The gain spectrum for the probe field calculated using the algorithm presented earlier. The detuning denoted as zero corresponds to the
condition where the difference between frequencies of pump and probe matches the hyperfine splitting of the 5S1/2 manifold.
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have verified that both approaches yield the same results for
all cases studied. However, we have found that the numerical
approach is significantly faster. On the other hand, generaliz-
ing to arbitrary numbers of levels and arbitrary orders requires
complex steps for the numerical case, but is much simpler for
the symbolic case. As such, when creating new codes under
such scenarios, one should use both approaches first to make
sure they produce identical results, and then use the numerical
codes for investigating the behavior of the system as a function
of various parameters. The validity of the codes has been
established by comparing them with the analytical solution
of a two-level system to first order. We have also produced
results up to the third order harmonics for a two-level system,
and to first order for three- and four-level systems. In addition,
we have used this model to accurately determine the gain
profile for a self-pumped Raman laser in the D1 manifold
of 87Rb atoms, taking into account all 16 Zeeman sublevels.
By eliminating the need for making the approximation that
each field couples only one transition, this algorithm can yield
accurate results of numerical calculations for many practical
atomic systems of interest.

Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the
authors upon reasonable request.
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APPENDIX: EXTENSION OF THE NUMERICAL
APPROACH TO AN ARBITRARY NUMBER OF ENERGY
LEVELS AND KEEPING ARBITRARY ORDERS OF TIME

OSCILLATING TERMS

In this appendix, we describe the generalization of the
numerical approach for a system with an arbitrary number
of energy levels, while keeping arbitrary orders of time os-
cillating terms. For the sake of clarity, we follow a two-step
process in this description. In Sec. A1, we describe the process
for applying the numerical approach to an arbitrary number of
energy levels, while keeping only the first-order terms. In Sec.
A2, we present the process for keeping arbitrary orders of time
oscillating terms, for an arbitrary number of energy levels.

1. Extending the numerical approach to an arbitrary number
of energy levels

Here, we describe the process for generalizing the numer-
ical algorithm for an arbitrary number of energy levels. In
order to keep the description simple, we only keep up to the
first-order terms, i.e. the terms that are multiplied by e±iδt .
The more general case which involves an arbitrary number
of energy levels while keeping terms to arbitrary orders is
presented in the next section.

We first write the A vector in the same form as that in
Eq. (10):

A ≡ [
ρ̃0

11, ρ̃
1
11, ρ̃

−1
11 , ρ̃0

12, ρ̃
1
12, ρ̃

−1
12 , ρ̃0

13, . . . , ρ̃
0
NN , ρ̃1

NN , ρ̃−1
NN

]T
.

(A1)

For a system with N energy levels, A is a 3N2 × 1 column
vector. The ordering for the linear equations would follow the
same rule as that for the elements in the A vector.

The process for evaluating the M matrix, with a dimension
of 3N2 × 3N2, remains the same as that for the two-level
system. Specifically, we start with regrouping the linear equa-
tions. The steps described from Eq. (18) to Eq. (28) are valid
for a system with N energy levels except that each of the ma-
trices ( ˜̃H , ρ̃, U, and G) has a dimension of N × N . As a result,
the total number of the linear equations is 3N2. Each of G0,
G1, and G−1 contains N2 equations that are time independent.
We then set one of the elements in the A vector to unity and
the other elements to zeroes to find the corresponding coef-
ficient in the M matrix. The pseudocommutator is evaluated,
along with proper addition of source terms. When setting vth
element in the A vector to be unity and others to null values,
we first need to figure out the row and the column number of
this element in the density matrix. Here we define that the only
nonzero element in the A vector is located at the ith row and
jth column in the density matrix. We then have the relations:
i = 	v/(3N )
 and j = 	[v−3N (i−1)]/3
 (	 
: round toward
positive infinity). Here, we define an N × N matrix, , where
all elements have null values except for the element at the ith
row and jth column, which has a value of unity:

pq =
{

1, p = i and q = j
0, p �= i or q �= j

(A2)

The three unique matrices for the pseudocommutator are

Q0 ≡ H0 − (H0)
†

(A3)

Q1 ≡ H1 − H1 (A4)

Q−1 ≡ H−1 − H−1. (A5)

The linear equation used for determining the uth row and
the vth column element in the M matrix is

Eu(LHS) = Gz
xy = − i

h̄
U z

xy + ρ̃z
s(xy), (A6)

where the subscripts x and y indicate the row and the column
of the matrices, respectively, which can be determined using
x = 	u/(3N )
 and y = 	[u−3N (i−1)]/3
; and z is the super-
script for the uth linear equation which can be determined
using the following rule:

z =
⎧⎨
⎩

0, if u − 3N (x − 1) − 3(y − 1) = 0
1, if u − 3N (x − 1) − 3(y − 1) = 1

−1, if u − 3N (x − 1) − 3(y − 1) = 2
(A7)

The term U z
xy can be evaluated using Eqs. (22)–(24) and

Eqs. (A3)–(A5). Then we can find the value of Muv as

Muv = Eu(LHS)|i j=1. (A8)

All elements of the M matrix can be determined by repeat-
ing this process.
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Once the M matrix is evaluated, we apply the closed system
constraints to remove the redundant equations. Slightly differ-
ent from the two-level system, the closed system constraints
for an N-level system become

N∑
i=1

ρ̃0
ii = 1,

N∑
i=1

ρ̃1
ii = 0,

N∑
i=1

ρ̃−1
ii = 0. (A9)

As a result, Eqs. (40)–(42) need to be modified. For an arbi-
trary number of energy levels, N, the columns in the M ′ matrix
that correspond to ρ̃0

ii, ρ̃1
ii, and ρ̃−1

ii with i = 1, 2, . . . , (N−1),
needs to be modified due to the closed system constraints
while the rest of the columns are unchanged. Specifically, sev-
eral columns have to be modified according to the following
equations:

M ′
j,[3(i−1)(N+1)+1] = Mj,[3(i−1)(N+1)+1] − Mj,3N2−2, (A10)

M ′
j,[3(i−1)(N+1)+2] = Mj,[3(i−1)(N+1)+2] − Mj,3N2−1, (A11)

M ′
j,[3(i−1)(N+1)+3] = Mj,[3(i−1)(N+1)+3] − Mj,3N2 , (A12)

for j = 1, 2, . . . , 3N2 − 3 and i = 1, 2, . . . , N−1.
The B′ vector can be written as

B′ ≡ −[M1,3N2−2, M2,3N2−2, . . . , M3N2−3,3N2−2]T. (A13)

The evaluation of the A′ vector is done in the same way
as in the case of the two-level system via Eq. (44). However,
to determine the A vector, the process is slightly different.
To be more specific, the elements ρ̃0

ii, ρ̃1
ii, and ρ̃−1

ii with i =
1, 2, . . . , (N−1) need to be used to evaluate the last three
elements in the A vector:

A3N2−2,1 = 1 −
N−1∑
i=1

ρ̃0
ii, A3N2−1,1 = −

N−1∑
i=1

ρ̃1
ii,

A3N2,1 = −
N−1∑
i=1

ρ̃−1
ii . (A14)

Equivalently, these terms can be expressed in terms of A′
vector elements as follows:

A3N2−2,1 = 1 −
N−1∑
i=1

A′
3(i−1)(N+1)+1,1, (A15)

A3N2−1,1 = −
N−1∑
i=1

A′
3(i−1)(N+1)+2,1, (A16)

A3N2,1 = −
N−1∑
i=1

A′
3(i−1)(N+1)+3,1. (A17)

2. Extend the numerical approach for keeping arbitrary orders
of time oscillating terms

As can be seen in Eqs. (18)–(24), when keeping terms up
to the first order, the pseudocommutator yields the products
of terms with different superscripts. To eliminate the time
dependent factors, it is necessary to group the terms that are
multiplied by e±iδt . In this case where we ignore the terms
that are multiplied by e±i2δt , it is straightforward to derive
the expression for U 0, U 1, and U −1. However, this process

becomes somewhat more involved when keeping higher-order
terms, as illustrated below.

To generalize the numerical approach for keeping up to Kth
order terms, we start with the definition of the density matrix
and the source matrix:

ρ̃ = ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt + ρ̃2ei2δt + ρ̃−2e−i2δt

+ . . . + ρ̃K eiKδt + ρ̃−K e−iKδt , (A18)

ρ̃s = ρ̃0
s + ρ̃1

s eiδt + ρ̃−1
s e−iδt + ρ̃2

s ei2δt + ρ̃−2
s e−i2δt

+ . . . + ρ̃K
s eiKδt + ρ̃−K

s e−iKδt . (A19)

The Liouville equation in pseudo steady state can be ex-
pressed as

∂ρ̃

∂t
= 0 + iδρ̃1eiδt − iδρ̃−1e−iδt + i2δρ̃2ei2δt − i2δρ̃−1e−i2δt

+ . . . + iKδρ̃K eiKδt − iKδρ̃−K e−iKδt

= − i

h̄
[ ˜̃H ρ̃ − ρ̃ ˜̃H

†
] + ρ̃s. (A20)

It needs to be noted that the Hamiltonian remains the same
as in Eqs. (14)–(17), generalized for an arbitrary number of
energy levels. The pseudocommutator can be written as

˜̃H ρ̃ − ρ̃ ˜̃H
†

= (H0 + H1eiδt + H−1e−iδt )

× (ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt + . . . + ρ̃K eiKδt + ρ̃−K e−iKδt )

− (ρ̃0 + ρ̃1eiδt + ρ̃−1e−iδt + . . . + ρ̃K eiKδt + ρ̃−K e−iKδt )

× (H0 + H1eiδt + H−1e−iδt )
†
. (A21)

We expand and rearrange the right-hand side of Eq. (A21)
and define the following quantities with the approximation
that the terms varying faster than e±iKδt (such as e±i(K+1)δt )
are dropped:

˜̃H ρ̃ − ρ̃ ˜̃H
† ≈U 0 + U 1eiδt + U −1e−iδt + U 2ei2δt

+ U −2e−i2δt + . . . + U K eiKδt + U −K e−iKδt .

(A22)

Here, we have made use of the following matrices:

U 0 = [H0ρ̃0 − ρ̃0(H0)
†
] + (H1ρ̃1 − ρ̃1H1)

+ (H−1ρ̃−1 − ρ̃−1H−1), (A23)

U k = (H1ρ̃k−1 − ρ̃k−1H1) + [H0ρ̃k − ρ̃k (H0)
†
]

+ (H−1ρ̃k+1 − ρ̃k+1H−1), (A24)

U −k = (H−1ρ̃−k+1 − ρ̃−k+1H−1) + [H0ρ̃−k − ρ̃−k (H0)
†
]

+ (H1ρ̃−k−1 − ρ̃−k−1H1), (A25)

U K = (H1ρ̃K−1 − ρ̃K−1H1) + [H0ρ̃K − ρ̃K (H0)
†
], (A26)

U −K = (H−1ρ̃−K+1 − ρ̃−K+1H−1) + [H0ρ̃−K − ρ̃−K (H0)
†
],

(A27)

where k = 1, 2, 3, . . . , K−1.
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In equivalence to Eqs. (26)–(28) we can rewrite Eq. (A21)
in three equations as

G0 ≡ − i

h̄
U 0 + ρ̃0

s = 0, (A28)

Gk ≡ − i

h̄
U k + ρ̃k

s − ikδρ̃k = 0, (A29)

G−k ≡ − i

h̄
U −k + ρ̃−k

s + ikδρ̃−k = 0. (A30)

As mentioned in Sec. II, there are only three unique matri-
ces when evaluating the pseudocommutator while setting the
density matrix element with the same subscripts to unity. For
example, when setting ρ̃0

i j , ρ̃1
i j , ρ̃−1

i j , …, ρ̃K
i j , or ρ̃−K

i j to unity,
we make use of the  matrix as defined in Eq. (A2). The three
unique matrices for the pseudocommutator are in the same
form as Eq. (A3)–(A5) With these three matrices, all of the
values of U can be determined when setting ρ̃0

i j , ρ̃1
i j , ρ̃−1

i j , …,
ρ̃K

i j , or ρ̃−K
i j to unity. By evaluating these three matrices, the

efficiency of the calculation can be improved dramatically,
especially when K is a large number.

To obtain the pseudosteady state solution of the density
matrix, we again construct the A vector from the density
matrix and solve Eq. (9). The ordering for the elements in the
A vector follows the same pattern as that described in Sec. II,
which yields

A ≡ [
ρ̃0

11, ρ̃
1
11, ρ̃

−1
11 , ρ̃2

11, ρ̃
−2
11 , . . . , ρ̃K

11, ρ̃
−K
11 , ρ̃0

12, ρ̃
1
12,

× ρ̃−1
12 , . . . ., ρ̃K

NN , ρ̃−K
NN

]T
. (A31)

The dimension of the A vector is (2K + 1)N2 × 1. The
ordering of the linear equations follows the same pattern. The
process for evaluating the M matrix, which has a dimension
of (2K + 1)N2 × (2K + 1)N2, is the same as that presented
in Sec. II. Specifically, we set an element in the A vector to
unity and the other elements to zeroes.

The rest of the numerical approach remains the same.
Specifically, we apply the closed system constraints and ac-
quire the M ′ matrix and the B′ vector. By solving Eq. (13), we
can determine the A′ vector and recover the A vector, which
represents the pseudosteady state solution for the density ma-
trix for a system with arbitrary number of energy levels while
keeping up to an arbitrary order or time oscillating terms.
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