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Improved lattice Boltzmann model for immiscible multicomponent systems
with high viscosity gradients at the interface
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We propose alternative discretization schemes for improving the lattice Boltzmann pseudopotential model
for incompressible multicomponent systems, with the purpose of modeling the flow of immiscible fluids with a
large viscosity ratio. Compared to the original model of Shan-Chen [Phys. Rev. E 47, 1815 (1993)], the present
discretization schemes consider: (i) an explicit force term, (ii) a second-order discretization of the stream term,
(iii) a moments-based model for the kinetic nonequilibrium distributions, and (iv) a high-order discretization of
the spatial derivative terms. To verify the accuracy of the proposed model, the effects of varying the viscosity
ratio as well as both fluid’s viscosities on spurious currents and capillary number are investigated for the problems
dealing with a static bubble, two-component Poiseuille flow, and immiscible fluid-fluid displacement. The
resulting algorithm maintains the simplicity of the pseudopotential model while allowing an easy implementation
for multicomponent systems. The results of the model herein proposed show improved control of the interface
region and interfacial tension, relatively smaller magnitudes of spurious current values with increasing viscosity
ratio, and also a significantly wider stability range with respect to the previously best results in the literature.
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I. INTRODUCTION

Over the years, the lattice Boltzmann method (LBM) has
become a promising alternative tool to simulate the fluid dy-
namics of nonideal mixtures. Originating from the evolution
of the lattice-gas automaton method in the 1980s, the LBM
consists of a discrete form of the Boltzmann equation that
allows for a simple implementation for modeling complex
systems, such as multicomponent and multiphase systems
[1–3], while accounting for the underlying physics.
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In the modeling of immiscible multicomponent problems,
the interface of immiscible fluids is characterized by a tran-
sition layer where the molecules of each fluid are subjected
to two opposite processes. Specifically, the random thermal
motion of the molecules tends to mix the fluids, while the
attractive intermolecular forces of each molecule from its own
component tend to segregate the fluids. The prominence of
attractive forces over random thermal movement leads to seg-
regation, i.e., to an immiscible behavior, with a well-defined
interface with strong density and viscosity gradients.

However, the realistic description of this fluid-fluid inter-
face remains a major challenge for LBM’s multicomponent
modeling [3]. The LBM framework is not able to directly
represent the random thermal movement and the molecule
attractions at the microscopic scale. Lattice Boltzmann mod-
els focus on describing the mixing and segregation processes
of nonideal mixtures in a mesoscopic scale based on dis-
crete forms of kinetic equations. Therefore, modeling of
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immiscible multicomponent systems in LBM fundamentally
relies on force models (color gradient [4,5] and pseudopoten-
tial [1,6]) and pressure models (free-energy [7,8] and interface
tracking [9]). Although each of these models has its own
advantages and drawbacks, all seek to simulate multicompo-
nent systems with high viscosity and density ratio, minimal
spurious currents, reduced dissolution of small bubbles, low
computational cost, and other features that are requested in
the simulation of complex engineering problems [10].

This work proposes an improvement of the Shan and Chen
[1] pseudopotential model, focusing on stability for a large
viscosity ratio at the interface. Although having simplicity
and efficiency as the main characteristics, the pseudopotential
model does not preserve total energy, presenting thermody-
namic inconsistencies related to the failure of the model to
predict a surface tension, according to the Helmholtz free
energy excess theory [3]. Moreover, in the pseudopoten-
tial model: (i) the interface tension is viscosity dependent
[11–13]; (ii) stability is limited to viscosity ratios up to 10;
[14,15]; (iii) segregation and interface tension are governed
by effects of the same order of magnitude as the errors of
the discrete approximation; (iv) models are not able to sim-
ulate fluids with arbitrary equations of state; (v) models are
not able to, independently control the force parameter in the
equation of state and surface tension.

Previous works have been performed to improve the multi-
component pseudopotential model for immiscible fluids with
a focus on representing the viscosity gradient at the interface.
Porter et al. [16] used an explicit force term, a second-order
discretization of the stream term, high-order discretization of
the spatial derivative terms in the force calculation, and a mul-
tirelaxation time (MRT) collision model. Spurious currents
below 10−3 (following the literature, all spurious currents, or
velocities, are herein reported in lattice units) and a viscosity
ratio of 103 were reported without instability issues. Otomo
et al. [11] applied the regularization method conceptualized
by Latt and Chopard [17] and Zhang et al. [18]. By explicitly
defining the force term and using a first-order discretization
of the stream term, Otomo’s model achieves high viscosity
ratios and spurious currents with the same orders of magni-
tude found by Porter et al. [16]. Similarly, the Gharibi and
Ashrafizaadeh [19] model is based on an explicit force term,
high-order discretization of the spatial derivative terms, and
a modified cascaded collision model based on nonorthogo-
nal central moments, obtaining maximum spurious currents
O(10−4) and achieving stable results for viscosity ratios until
104. Considering a review of works that study large viscosity
gradients with other multicomponent LBM models, Ginzburg
[20] proposed a color gradient model with discontinuous colli-
sion components using an MRT collision model that achieves
a viscosity ratio of the order of 104. Liu et al. [21] work
proposes a modified color-gradient model with MRT collision
capable of accurately simulating viscosity ratio of order 104

and maximum spurious currents O(10−6) lattice units.
In this work, an improved multicomponent model is

presented to simulate immiscible fluids. The model is char-
acterized by the integration of several discretization schemes
into the original pseudopotential model. These consist of an
explicit force term that eliminates the viscosity dependency
of the interface tension, a second-order discretization of the

stream term, and a high-order discretization of the spatial
derivatives. Furthermore, the proposal is based on a moments
scheme that represents Stokes hypotheses (Stokesian model)
and a smooth curve to represent the relaxation time of the
mixture. A parametric analysis is conducted to investigate the
numerical stability and the magnitude of spurious currents for
a static bubble, two-component Poiseuille flow, and immisci-
ble displacement problems.

The work sequence is organized as follows. In Secs. II and
III, we review the standard LBM discretization and present the
pseudopotential model originally proposed by Shan and Chen
[1], respectively. In Sec. IV, we present the discretization
schemes applied to the original model and the macroscopic
equations of the modified model. The numerical simulations
and the analysis of the results are presented in Sec. V. Finally,
we conclude with a summary and discussion of the results in
Sec. VI.

II. LATTICE BOLTZMANN METHOD FOR IMMISCIBLE
MULTICOMPONENT SYSTEM

The lattice Boltzmann method for immiscible multicom-
ponent system consists of a specific discretized form of the
Boltzmann equation for nonideal mixtures of r components:

df (p)

dt
= ∂t f (p) + �ξ · ∂�x f (p) + �ge · ∂�ξ f (p) =

r∑
s=1

�(ps),

p = 1, . . . , r. (1)

The term �ge is the acceleration due to external forces and
�(ps) = �

(ps)
rep + �

(ps)
att is the term related to the strong short-

range repulsion (�(ps)
rep ) and the weak long-range attractive

forces (�(ps)
att ) on the particle p of the particles s [22].

The short-range repulsion term is a complex integrodif-
ferential equation that can be simplified using a collision
model and further updated by adding the full Enskog’s volume
correction [3,23,24], which considered the molecules to be
smooth rigid spheres, resulting in

�(ps)
rep = �

(ps)
b=0 + χ (p)∂�x

bρ2kT

1 − bρ
· ∂�ξ f (p)

ρ (p)
, (2)

where T is the temperature, k is the Boltzmann constant, b
is the volume of the molecule, ρ is the fluid density, χ (p) =
ρ (p)/ρ is the p-component mass fraction and �

(ps)
b=0 is a zero

volume collision term represented by the Bhatnagar-Gross-
Krook (BGK) collision model [25]. For modeling immiscible
fluids there is no interest in allowing the diffusion of compo-
nent p into the component s, being possible consider null the
collision effect between different components, i.e., �

(ps)
b=0 = 0

for p �= s and �
(ps)
b=0 = �

(p)
b=0. Replacing the collision term

�
(p)
b=0 by the BGK collision model, Eq. (2) is represented by

�(p)
rep = − f (p) − f (p)

eq (ρ (p), �u)

τ
+ χ (p)∂�x

bρ2kT

1 − bρ
· ∂�ξ f (p)

ρ (p)
, (3)

where feq is the equilibrium distribution function and
τ is the relaxation time given as a function of the
thermodynamic properties of all components, i.e.,
τ (ρ (p), ρ (s), . . . , ρ (r), θ (p), θ (s), . . . , θ (r) ).
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Similar to the short-range term, the long-range attractive
term is represented by another integral responsible for rep-
resenting the nonideal behavior of the r components system.
In order to simplify this complex equation the mean-field ap-
proximation is applied resulting in a force term representation
in the form

�
(ps)
att = �g(ps) · ∂�ξ f (p)

= (−2a(ps)∂�xρ
(p) + κ (ps)∂�x∂

2
�x ρ (p)

) · ∂�ξ f (p), (4)

where �g(ps) is the intermolecular long-range acceleration, a(ps)

and κ (ps) are parameters dependent on the p − s intermolecu-
lar interaction [3].

The discretized form in the velocity space of Eq. (1) with
Eqs. (4) and (3), is represented in the form

∂t f (p)
i + �ei · ∂�x f (p)

i = − f (p)
i − f (p)

eq,i(ρ
(p), �u)

τ

+
(

ρ (p)�ge − χ (p)∂�x
bρ2c2

s

1 − bρ
+

r∑
s=1

ρ (p)�g(ps)

)
· ∂�ei f (p)

i

ρ (p)
,

(5)

where �ei, i = 0, . . . , b, represents the set of dimensionless
lattice vectors and τ is determined by

τ = ν

c2
s

, (6)

where ν is the kinematic viscosity of the mixture of compo-
nents and cs is the speed of sound.

The equilibrium distribution function is given by
the Maxwell-Boltzmann equilibrium distribution. Using a
second-order approximation, the equilibrium distribution
function is written in its discretized form as [26]

f (p)
eq,i(ρ

(p), �u) = ρ (p)wi

(
1 + �ei · �u

c2
s

+ 1

2c4
s
�u�u :

(
�ei�ei − c2

s I
))

,

(7)
where ρ is the density, �u is the velocity vector and wi are
the weight factors. The macroscopic properties are recovered
from the moments of the distribution functions, i.e.,

ρ =
∑

p

ρ (p) =
∑

p

∑
i

f (p)
i , (8)

ρ�u =
∑

p

ρ (p)�u(p) =
∑

p

∑
i

�ei f (p)
i . (9)

In the discretization of the velocity space, a second-order
approximation for nine points was used, obtaining the two-
dimensional set of lattice vectors D2Q9, where

�ei=0 = (0, 0),

�ei=1,2,3,4 =
(

cos
i − 1

2
π, sin

i − 1

2
π

)
,

�ei=5,6,7,8 =
√

2

(
cos

i − 5

2
π + π

4
, sin

i − 5

2
π + π

4

)
. (10)

The D2Q9 lattice weight factors are given by w0 = 4/9,
wi = 1/9 for i = 1, 2, 3, 4; and wi = 1/36 for i = 5, 6, 7, 8;
and the sound speed by cs = 1/

√
3.

Applying the Chapman-Enskog analysis in Eq. (5) and
integration over moments, the macroscopic equations are
recovered:

∂tρ
(p) + ∂�x · (ρ (p)�u) = 0, (11)

∂tρ + ∂�x · (ρ�u) = 0, (12)

∂t (ρ�u) + ∂�x · (ρ�u�u + P − ρν(∂�x �u + (∂�x �u)T )) = ρ�ge, (13)

where Eq. (11) represents the mass balance for the component
p, Eq. (12) represents the mass balance of the mixture and
Eq. (13) the momentum balance for the mixture, P being the
pressure tensor represented by

P = PsI + S, (14)

the scalar pressure is given by

Ps = Pe − 1

2

⎛
⎝∂2

�x (κρ2) −
∑
p,s

κ (ps)∂�xρ
(p) · ∂�xρ

(s)

⎞
⎠,

κ =
∑
p,s

χ (p)χ (s)κ (ps), (15)

the thermodynamic pressure by

Pe = ρc2
s

1 − bρ
− aρ2, a =

∑
p,s

χ (p)χ (s)a(ps), (16)

and the interface Korteweg tensor by

S =
∑
p,s

κ (ps)(∂�xρ
(p)∂�xρ

(s) ). (17)

III. MULTICOMPONENT PSEUDOPOTENTIAL MODEL

The pseudopotential model was conceived to represent
nonideal mixtures based on potential mass forces between the
particles of each component [1]. The pseudo-potential lattice
Boltzmann (LB) equation for r components is described by

f (p)
i (�x + �eiδt , t + δt ) = f (p)

i (�x, t ) + f (p)
eq,i(ρσ , �u(p)

∗ ) − f (p)
i

τ (p)
,

(18)
where δt is time increment coupled to the lattice vectors, being
defined as a unit value (i.e., δt = 1). The shifted velocity �u(p)

∗
in the equilibrium distribution function is given by

�u(p)
∗ =

∑
s

ρ (s) �u(s)

τ (s)∑
s

ρ (s)

τ (s)

+ τ (p)�g(p), (19)

where ρ (p) and ρ (p)�u(p) are recovered from Eqs. (8) and (9),
respectively.
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By representing the pseudopotential LB equation in the
explicit form of the force term

f (p)′
i = f (p)

i + f (p)
eq,i(ρσ , �u′) − f (p)

i

τ (p)
+ δt F

(p)
i , (20)

where f (p)′
i = f (p)

i (�x + �eiδt , t + δt ), the term F (p)
i is repre-

sented by

F (p)
i = wiρ

(p)

(
�ei · �g(p)

c2
s

+
(
�ei�ei − c2

s I
)

2c4
s

: �
(p)
SC

)
, (21)

where �
(p)
SC = (�g(p)�u′ + (�g(p)�u′)T + τ (p)�g(p)�g(p) ) and �u′ is

given by

�u′ =
∑

s
ρ (s) �u(s)

τ (s)∑
s

ρ (s)

τ (s)

. (22)

The acceleration �g(p) produced by the intermolecular forces
between component p and the mixture components p is for-
mulated as

�g(p) = �ge + � (p)

ρ (p)

∑
p

G(pp)
∑

i

wi(�ei )�
(p)(�x + �ei, t )�ei (23)

where � is a virtual mass, p indicates a mixture component
different from p and G(pp) referred as the interaction strength,
is a molecular parameter only dependent on the p − p inter-
molecular interaction. Conceived as a repulsion potential, the
parameter G(pp) is responsible for the segregation process at
the interface. Expanding Eq. (23) in Taylor series to represent
the virtual mass � (p)(�x + �ei, t ) in terms of � (p)(�x, t ) (Einstein

notation will be used in this development), we have

(
g(p)

α − ge
α

) = � (p)

ρ (p)

∑
p

G(pp)
(

E (1)� (p) + E (2)∂α� (p)

+ 1

2
E (3)∂αβ� (p) + 1

6
E (4)∂αβγ � (p) + · · ·

)
,

(24)

where E (n) are tensors of order n represented by

E (n) = E (n)
α1,α2,...,αn

=
d∑
i

wiei,α1 ei,α2 . . . ei,αn . (25)

Taking the isotropy of the discrete velocity-space into
account, odd-order tensors are null (E (2n−1) = 0), and even-
order tensors are given by

E (2n) = c2n
s δ(2n)

α1,α2,...,αn
, (26)

where δ(2n)
α1,α2,...,αn

is the generalized Kronecker delta of or-
der 2n and means the sum of all possible combinations
of Kronecker delta products, i.e, for E (4) as an example
E (4) = c4

s (δαβδγ δ + δαγ δβδ + δαδδβγ ). Truncating the Eq. (52)
in fifth-order terms and substituting the tensors are recovered
the pseudopotential mean-field approximation

(
g(p)

α − ge
α

) = � (p)

ρ (p)

∑
p

G(pp)

(
c2

s ∂α� (p) + c4
s

2
∂αββ� (p)

)
.

(27)

A. Macroscopic balance equations

Applying a Chapman-Enskog analysis to the Eq. (20), the
balance equations of mass and momentum balance are recov-
ered for the components and mixture:

∂tρ
(p) + ∂�x · (ρ (p) �u′) +

(
1 − 1

2τ (p)

)
∂�x · �m(p)

(1) = −1

2
∂�x · (ρ (p)�g(p) ), (28)

∂tρ + ∂�x · (ρ �u′) = −
∑

p

(
∂�x · �m(p)

(1)

) − 1

2
∂�x · (ρ (p)�g(p) ), (29)

∂t (ρ
(p) �u′) + ∂�x · (ρ (p) �u′ �u′) + ρ (p)

ρ
∂�x · PSC − ρ (p)�ge +

(
1 − 1

2τ (p)

)(
∂t �m(p)

(1) + ∂�x ·
(

�m(p)
(1)

�u′ + (
�m(p)

(1)
�u′)(T )

))

−
(

τ (p) − 1

2

)
(∂�x · ρ (p)(∂�x �u′ + (∂�x �u′)T )) = −1

2
∂t (ρ

(p)�g(p) ) − 1

2
∂�x · (

ρ (p)
(
�g(p) �u′ + (�g(p) �u′)T + τ (p)�g(p)�g(p)

))
, (30)

∂t
(
ρ �u′) + ∂�x · (ρ �u′ �u′) + ∂�x · PSC −

∑
p

((
τ (p) − 1

2

)
(∂�x · ρ (p)(∂�x �u′ + (∂�x �u′)T ))

)
− ρ�ge

= −
∑

p

∂t �m(p)
(1) + ∂�x ·

∑
p

(
�m(p)

(1)
�u′ − (

�m(p)
(1)

�u′)(T )
)

− 1

2

∑
p

(∂t (ρ
(p)�g(p) ) + ∂�x · (ρ (p)(�g(p) �u′ + (�g(p) �u′)T + τ (p)�g(p)�g(p) ))), (31)

where ρν = ∑
p(τ (p) − 1

2 )c2
s ρ

(p), ν is kinematic viscosity, and Psc is the pressure tensor of pseudopotential represented by

Psc =
∑

p

(
ρ (p)c2

s I − (�g(p) − �ge)
) = PsI + S, (32)

where the scalar pressure is

Ps = Pe − 1

4

∑
p,p

c4
s G(pp)

(
∂2

�x
(
� (p)� (p)

) − ∂�x�
(p) · ∂�x�

(p)
)
, (33)
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the thermodynamic pressure is

Pe = ρc2
s − 1

2

∑
p,p

c2
s G(pp)� (p)� (p), (34)

and the interface tension or Korteweg tensor is

S =
∑
p,p

1

2
c4

s G(pp)(∂�x�
(p)∂�x�

(p) ), (35)

being a(pp) and κ (pp) a function of G(pp) (i.e., a(pp) = c2
s G(pp)

and κ (pp) = 1
2 c4

s G(pp)). The first-order non-equilibrium term

�m(p)
(1) is given by

�m(p)
(1) = τ (p)

(
ρ (p)

ρ
∂�x · PSC − ∂�x

(
ρ (p)c2

s

) + ρ (p)(�g(p) − �ge)

)
.

(36)
For details of Chapmann-Enskog analysis see Appendix.

The Eq. (28) represents the mass balance of the component
and �m(p)

(1) is interpreted as the diffusion terms in the multi-
component mixture. On the right-hand side of Eq. (28), the
acceleration term is a numerical error due to the use of first-
order space-time discretization. Summing the Eq. (28) over
all components, Eq. (29) represents the balance mass of the
mixture with discretization errors on the right-hand side. The
term �m(p)

(1) when summed by all components does not become
null and the acceleration term is carried from Eq. (28), but
both do not affect the conservation of global mass due to your
isotropic behaviors.

On Eq. (30), the momentum balance is recovered with
discretization errors resulting from the space-time’s first-order
discretization and shifted velocity consideration. For the mo-
mentum balance of the mixture (Eq. 30) the errors (30) are
maintained and the errors of �m(p)

(1) are added.
Both the mass and momentum balance equations are func-

tions of the vector velocity �u′ and of �m(p)
(1) , which are dependent

τ (p) that vary according to the viscosity ratio of the problem.
Assuming τ (p) = τ (p) (i.e., Mν = 1) the errors of �m(p)

(1) on the

right-hand side of Eqs. (29) and (31) become null and �u′ = �u.
Consequently, both terms can be sources of errors that limit
stability for high-viscosity ratios.

B. Modeling comparison

The pseudopotential model can be seen as a simplified
form of the model kinetic model described by Eq. (5), since in
the pseudopotential model:

(1) the volume correction of Enskog is not taken into ac-
count, i.e., b = 0;

(2) the long-range forces �g(ps) are represented by Eq. (23)
disregarding the interactions when p = s;

(3) parameters a(pp) and κ (pp) are a function of G(pp);
(4) the force terms are shifted to the collision term, result-

ing in the force model proposed by Shan and Chen [1];
(5) the collision term is modified for a function of each

component relaxation time (τ (p)).
However, the main difference between the models remains

in the representation of the interactions between particles as
repulsive by Eq. (23), while the forces are considered attrac-
tive by the mean-field approximations in Eq. (5).

IV. IMPROVED PSEUDOPOTENTIAL MODEL

An improved pseudopotential model is formulated in order
to extend the original formulation represented by Eq. (18) for
more representative modeling of the immiscible multicompo-
nent system, as described by Eq. (5). These improvements are
based on the adjustments of discretization and in the use of a
moments-based collision model, both to reduce numerical er-
rors of modeling and discretization observed in the Sec. III A.

A. Relaxation time

The relaxation time τ present in the BGK collision model
is a parameter related to the mean free path and the mean
velocity of the molecules representing the fluids. In the mul-
ticomponent system of r components, the relaxation time
can vary according to the number of molecules of each
component interacting in that position, i.e., τ p,s,...,r (�x, t ) is
a function of the components, position and time. On the
mesoscopic scale, the relaxation time can be approximated
as a function of thermodynamic properties such as the den-
sity and temperature of fluids, it being possible to write
τ (�x, t, ρ, ξ (p), ξ (s), . . . , ξ (r), θ, θ (p), θ (s), . . . , θ (r) ), where θ (p)

is the mass fraction of the component p. Considering an
isothermal system, the present work proposes a smooth func-
tion to represent relaxation time given by

τ =
∑

p

(
τ (p)(χ (p) )

∑
p ρ(p)

ρ(p)

)
, (37)

where the values of τ (p) are determined by the relation with
the kinematic viscosity obtained from the Chapman-Enskog
analysis. Equation (37) creates a high viscosity gradient at the
fluid-fluid interface, wherein regions characterized by a higher
component density p tend to approximate the viscosity as
τ ≈ τ (p) avoiding density dependence.

The smoothed equation τ = ∑
p χ (p)τ (p), as employed by

Otomo et al. [11] and Zhao et al. [27], exhibits a pronounced
dependence on the mixture density. In this context, the local
fluid density constrains the representation of high viscosity
ratios.

B. Explicit force term

The force scheme initially proposed for the pseudopoten-
tial model is represented by the velocity �u(p)

∗ that incorporates
the force per unit of mass �g(p) in the equilibrium distribution
function. According to Yu et al. [28], Huang et al. [12],
Li et al. [29], Porter et al. [16], and Peng et al. [13], this
scheme has shown thermodynamic inconsistencies such as the
dependence of the surface tension on the relaxation time τ . As
demonstrated by Huang et al. [12], the velocity-shifted model
results in the extra τ (p)�g(p)�g(p) term compared to the model of
Luo [30], which is based on a simplification of the distribution
function to the equilibrium distribution function, i.e.,

�g(p) · ∂�ei f (p)
i ≈ �g(p) · ∂�ei f (p)

eq,i. (38)

Employing an expansion in Hermite polynomials to write the
force term simplified by an equilibrium distribution function,
Shan et al. [31] proposed a correction for the force term with
shifted velocity that eliminates the extra term. Therefore, the
present work uses for the representation of the force term an
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expansion to the second order of the Hermite polynomials in
the equilibrium distribution function, resulting in

F (p)
i = wiρ

(p)

(
�ei · �g(p)

c2
s

+
(
�ei�ei − c2

s I
)

2c4
s

: �(p)

)
, (39)

where �(p) = �g(p)�u + (�g(p)�u)T . The force described by
Eq. (39) is equivalent to the force term presented by Luo
[30]. With the extension to a second-order discretization of
the streaming term, this representation of the force term re-
covers the scheme obtained by Guo et al. [32] in the lattice
Boltzmann equation (Eq. 43).

C. Second-order discretization of the streaming term

He et al. [33] investigated a second-order discretization of
the stream term when the kinetic equation includes a force
term. LB schemes based on first-order discretization of the
stream term are only successful because the second-order
errors contribute as a numerical viscosity which is absorbed
into the momentum balance equation. This is not the case
when the kinetic equation includes an intermolecular force as
is the case for multicomponent systems.

The lattice Boltzmann equation of the pseudopotential
model [Eq. (18)] represented by a first-order discretization of
the streaming term is extended for the second-order. In the
discretization of the Eq. (1), the streaming term (space-time)
is initially represented by an expansion in Taylor series of
the forward term to a first-order forward difference of the
Dt f (p)

i = ∂t f (p)
i + �ξ · ∂�x f (p)

i term, algebraically written in the
simplified form by

f (p)
i (�x + �eiδt , t + δt ) = f (p)

i (�x, t ) + δDt f (p)
i

+ δ2

2
D2

t f (p)
i + · · ·

= f (p)
i (�x, t ) +

∞∑
j=1

δ j

j!
D j

t f (p)
i . (40)

From this point, the truncation order on the right-hand side
of Eq. (40) represents the discretization order of the time-
space. For a second-order truncation,
Eq. (40) reduces to

f (p)
i (�x + �eiδt , t + δt ) = f (p)

i (�x, t ) + δDt f (p)
i

+ δ2

2
D2

t f (p)
i + O(δ3), (41)

replacing the derivative term of Dt f (p)
i = �

(p)
i + F (p)

i and ap-
plying the first-order forward difference in the term Dt�

(p)
i ,

we have

f (p)
i (�x + �eiδt , t + δt )

= f (p)
i (�x, t ) + δ

2

[
�

(p)
i (�x + �eiδt , t + δt ) + �

(p)
i (�x, t )

]
+ δ

2

[
F (p)

i (�x + �eiδt , t + δt ) + F (p)
i (�x, t )

]
. (42)

Since f (p)
i (�x + �eiδt , t + δt ) is an unknown value and de-

pends on �
(p)
i (�x + �eiδt , t + δt ) which is another unknown

value in time t . In this way, the implicit numerical scheme
is achieved considering f̂ (p)

i = f (p)
i − δt

2 (�(p)
i + F (p)

i ), obtain-
ing the final form of LB equation in the second-order:

f̂ (p)′
i = f̂ (p)

i + f (p)
eq,i − f̂ (p)

i

τ̂
+

(
1 − 1

2τ̂

)
F (p)

i δt , (43)

where τ̂ = τ
δt

+ 1
2 .

Using the implicit scheme that redefines the distribution
function in the LBE, the macroscopic properties are rewritten
as a function of f̂ (p)

i by

ρ =
∑

p

ρ (p) =
∑

p

∑
i

f̂ (p)
i , (44)

ρ�u =
∑

p

ρ (p)�u(p) =
∑

p

(∑
i

�ei f̂ (p)
i + δt

2
�g(p)ρ (p)

)
. (45)

D. Moments-based scheme

We follow the work of Asinari [34] on MRT models for
homogeneous mixtures, based on the expansion of the colli-
sion operator in Hermite polynomials and taking into account
the shear and bulk viscosities and species diffusion. The col-
lision repulsion term is then represented by the relaxation of
nonequilibrium moments, Eq. (43) being now described by

f̂ (p)′
i = f̂ (p)

i + M−1SM

[
f (p)
eq,i + f̂ (p)

i + F (p)
i δt

2

]
+ F (p)

i δt ,

(46)
where M is the matrix of moments based on Hermite polyno-
mials, given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

− 1
3

2
3 − 1

3
2
3 − 1

3
2
3

2
3

2
3

2
3

− 1
3 − 1

3
2
3 − 1

3
2
3

2
3

2
3

2
3

2
3

0 0 0 0 0 1 −1 1 −1

0 − 1
3 0 1

3 0 2
3 − 2

3 − 2
3

2
3

0 0 − 1
3 0 1

3
2
3

2
3 − 2

3 − 2
3

1
9 − 2

9 − 2
9 − 2

9 − 2
9

4
9

4
9

4
9

4
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)
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for the D2Q9. The relaxation matrix S should have the form

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 1
τ̂1

0 0 0 0 0 0 0

0 0 1
τ̂2

0 0 0 0 0 0

0 0 0 1
2τ̂3

+ 1
2τ̂4

1
2τ̂3

− 1
2τ̂4

0 0 0 0

0 0 0 1
2τ̂3

− 1
2τ̂4

1
2τ̂3

+ 1
2τ̂4

0 0 0 0

0 0 0 0 0 1
τ̂5

0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (48)

to correctly recover the species-diffusion and Navier-Stokes
equations (Asinari [34]).

In the present work the relaxation times τ̂1 and τ̂2 related to
the diffusion processes [described in pseudopotential models
by the term (36)] are made equal to 1 seeking to minimize
diffusion, τ3 = 1, relax the symmetric part of the viscous
stress tensor to equilibrium and τ̂4 = τ̂5 = τ̂ are related to
kinematic viscosity.

Rewriting the Eq. (46) in a way suitable for efficient numer-
ical implementation, we have the moments-based LB scheme
in the form

f̂ (p)′
i = f (p)

eq,i +
(

1 − 1

τ̂

)
f̂ (p)
neq,i +

(
1 − 1

2τ̂

)
F (p)

i δ, (49)

where

f̂ (p)
neq,i = wi

((
�ei�ei − c2

s I
)

2c4
s

: �̂
(p)
neq

)
− δt

2
F (p)

i , (50)

where �̂
(p)
neq is a corrected second-order tensor obtained by

�̂
(p)
neq =

∑
i

(
f̂ (p)
i − f (p)

i,eq + δt

2
F (p)

i

)(
�ei�ei − �ei · �eiI

d

)
, (51)

where d is the lattice dimension.

E. Force model

In Eq. (23), a Taylor series expansion is used for represent-
ing the pseudopotential � (p)(�x + �eih, t ) in terms of � (p)(�x, t ).
In this subsection Einstein’s notation will be employed. The
expanded result is

(
g(p)

α − ge
α

) = � (p)

ρ (p)

∑
p

G(pp)

(
E (1)� (p) + E (2)∂α� (p)

+ 1

2
E (3)∂αβ� (p) + 1

6
E (4)∂αβγ � (p) + · · ·

)
,

(52)

where E (n) are tensors of order n represented by

E (n) = E (n)
α1,α2,...,αn

=
d∑
i

wi�ei,α1 �ei,α2 . . . �ei,αn . (53)

Taking the isotropy of the discrete velocity space into ac-
count, odd-order tensors are null (E (2n−1) = 0) and even-order

tensors are given by

E (2n) = c2n
s δ(2n)

α1,α2,...,αn
, (54)

where δ(2n)
α1,α2,...,αn

is the generalized Kronecker delta of or-
der 2n and it means the sum of all possible combinations
of Kronecker delta products, i.e, for E (4) as an example
E (4) = c4

s (δαβδγ δ + δαγ δβδ + δαδδβγ ). Truncating the Eq. (52)
in fifth-order terms and replacing tensors, we have

(
g(p)

α − ge
α

) = � (p)

ρ (p)

∑
p

G(pp)

(
c2

s ∂α� (p) + c4
s

2
∂αββ� (p)

)
.

(55)
Simplified and filtered the derivative terms of order greater

than the fourth order, the Eq. (55) consists of a similar form
of the Eq. (4) disregarding the interaction between when p =
s. To better represent Eq. (4) the G(pp) coefficient is divided
into two terms, with the term a(pp) controlling the separation
of components and κ (pp) the surface tension between them.
Consequently, Eq. (55) is rewritten in the form

(
g(p)

α − ge
α

) = � (p)

ρ (p)

∑
p

(a(pp)∂α� (p) + κ (pp)∂αββ� (p) ). (56)

F. High-order discretization of the spatial derivatives

Discretizing the derivative terms present in the force
model, we use the lattice stencil scheme presented by Mattila
et al. [35]:

∂�x�
(p) = 1

2c2
s

∑
i

wi�
(p)(�x + �eih)

[
(D + 4) − e2

i

c2
s

]
�ei, (57)

∂�x∂
2
�x � (p) = 1

c4
s

∑
i

wi�
(p)(�x + �eih)

[
e2

i

c2
s

− (D + 2)

]
�ei. (58)

In the discretization of the derivative terms two lattice stencils
are used as a comparison, the D2Q9 described in Sec. II and
the D2V141. The values of �ei e wi, for lattice stencil D2V141
are presented in Table I and cs = 1.194856755.

Notice that when a(pp) = c2
s G(pp) and κ (pp) = 1

2 c4
s G(pp), the

Eqs. (56)–(58) recover the force model originally proposed
Shan and Chen [1].

In cases where vectors �ei point to a solid node or a po-
sition outside the domain, especially for nodes near walls or
boundaries of the domain, a specific approach is required for
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TABLE I. Values of D2V141 lattice stencil vector groups and
weights; p is the velocity vector count, obtained by permuting the
vector x− and y− components.

�ei p wi

(0,0) 1 1.1508949125706189 × 10−1

(±1, 0) 4 7.5595334899625166 × 10−2

(±1, ±1) 4 5.7734363121950370 × 10−2

(±2, 0) 4 2.9033095241565582 × 10−2

(±2, ±1) 8 1.8074672747613353 × 10−2

(±2, ±2) 4 7.4435479269746455 × 10−3

(±3, 0) 4 4.2549928887228462 × 10−3

(±3, ±1) 8 3.7759145451527918 × 10−3

(±3, ±2) 8 9.5510661516062627 × 10−4

(±4, 0) 4 4.9926973701248283 × 10−4

(±4, ±1) 8 2.1766901272228135 × 10−4

(±3, ±3) 4 2.7427360033189315 × 10−4

(±4, ±2) 8 1.3852638332696371 × 10−4

(±5, 0) 4 1.2905073342509215 × 10−5

(±4, ±3) 8 5.9323648903820310 × 10−6

(±5, ±1) 8 1.6161185887309810 × 10−5

(±5, ±2) 8 2.4159493337948245 × 10−6

(±4, ±4) 4 3.3101853527875648 × 10−6

(±5, ±3) 8 1.3086410701892049 × 10−6

(±6, 0) 4 1.1118416570950374 × 10−7

(±6, ±1) 8 4.6121305137932601 × 10−7

(±6, ±3) 8 3.6530518727364592 × 10−8

(±7, 0) 4 8.3273853753395782 × 10−9

(±7, ±2) 8 2.3109247814347261 × 10−9

the calculation of derivative terms. We employ a symmetric
reflection, denoted by �ei = −�ei in the Eqs. (57) and (58). As

a result, this reflection leads to a null contribution from that
symmetric direction.

G. Lattice Boltzmann and macroscopic equations

Defined the discretization schemes that were applied to the
original pseudopotential model proposed Shan and Chen [1],
the present model is characterized by the lattice Boltzmann
equation:

f̂ (p)′
i = f (p)

eq,i +
(

1 − 1

τ̂

)
f̂ (p)
neq,i +

(
1 − 1

2τ̂

)
F (p)

i δt , (59)

where f̂ (p)′
i = f̂ (p)

i (�x + �eiδt , t + δt ). In Eq. (59), we propose
the utilization of an alternative smoothed equation for the term
τ̂ , which represents the relaxation time of the mixture

τ̂ =
∑

p

τ (p)(χ (p) )

∑
p ρ(p)

ρ(p) . (60)

The characteristic force per unit of mass (Eq. 23) which
describes the pseudopotential is replaced by

�g(p) = �ge + � (p)

ρ (p)

∑
p

(
a(pp)∂�x�

(p) + κ (pp)∂�x∂
2
�x � (p)

)
, (61)

where the parameter G(pp) is substituted by the parameters
a(pp) and κ (pp) related to the control of the fluids immiscibility
and interfacial forces, respectively, and both are considered
equal for all fluids involved, i.e, a(pp) = a(pp) and κ (pp) =
κ (pp).

Applying the Chapman-Enskog analysis in Eq. (59) to re-
trieve the macroscopic equations, the present model retrieves
the equations of mass conservation and momentum balance in
the form

∂tρ
(p) + ∂�x · ρ (p)�u + ∂�x · (

Dm �m(p)
(1)

) = 0, (62)

∂tρ + ∂�x · ρ�u = 0, (63)

∂t (ρ
(p)�u) + ∂�x ·

(
ρ (p)�u�u − ρ (p)ν

(
∂�x �u + (∂�x �u)T − 2

D
(∂�x · �u)I

))
+ χ (p)∂�x · P = −∂�x · (

Dm�(p)
m

) + ρ (p)�ge, (64)

∂t (ρ�u) + ∂�x · (ρ�u�u + P − ρν(∂�x �u + (∂�x �u)T )) = ρ�ge, (65)

where P is the pressure tensor, �neq is the viscous stress ten-
sor, Dm = 1 − 1/(2τ̂m) = 1/2 (i.e., τ̂m = 1) is the parameter
that controls the intensity of the mixing process, �(p)

m is the
traceless tensor of inertia diffusivity given by

�m =
(

�u �m(p)
(1) + (

�u �m(p)
(1)

)T − 2�u · �m(p)
(1)

D
I

)
, (66)

and �m(p)
(1) is given by

�m(p)
(1) = τ̂m

(
χ (p)∂�x · P − ∂�x

(
c2

s ρ
(p)

) + ρ (p)
(
g(p)

α − ge
α

))
= τ̂m(χ (p)∂�x · P − ∂�x · P(p) ). (67)

For details of the Chapman-Enskog analysis see the
Appendix.

The pressure tensor in the present model is represented by

P = PsI + S, (68)

where the scalar pressure is

Ps = Pe − 1

2

∑
p,p

κ (pp)
(
∂2

�x (� (p)� (p) ) − ∂�x�
(p) · ∂�x�

(p)
)
,

(69)
the thermodynamic pressure is

Pe = ρc2
s − 1

2

∑
p,p

a(pp)� (p)� (p), (70)

015303-8



IMPROVED LATTICE BOLTZMANN MODEL FOR … PHYSICAL REVIEW E 110, 015303 (2024)

and the interface tension or Korteweg tensor is

S =
∑
p,p

κ (pp)(∂�x�
(p)∂�x�

(p) ). (71)

In the current model, the virtual mass denoted as � (p) is
assumed to be equal to ρ (p). As a result, the interaction be-
tween components algebraically consists of a simplified form
of the Eq. (4) where the interactions into the same component
(p − p) are not considered. In contrast, the Eq. (4) represents
a model of attractive forces between the components with
repulsive forces represented by the full Enskog’s volume cor-
rection [Eq. (2)], while the original pseudopotential model
and the present model [Eqs. (23) and (61)] describe repulsive
forces between components. This representation of the system
just by the repulsion between the components is inconsistent
with the description of the molecular interaction behaviors,
however, it proves to be an interesting tool in multicomponent
models for representing complex engineering problems.

Comparing the mass and momentum balance equations,
Eqs. (28)–(31) and (62)–(65), it can be seen that errors re-
sulting from the force and mass diffusion terms have been
eliminated. The force term errors were directly addressed
by expliciting the force term and implementing the second-
order discretization of the streaming term. Additionally, the
diffusion term errors were corrected by reinterpreting the re-
laxation time [described by Eq. (60)].

V. RESULTS AND DISCUSSION

To examine the feasibility resulting from the discretization
schemes applied, the two-dimensional cases of static bub-
ble, two-components Poiseuille flow, and fluid displacement
are simulated and compared with other works. The static bub-
ble case is simulated using the lattices D2Q9 and D2V141 in the
discretization of spatial derivative terms (defined in Sec. IV F)
to compare their influences on the present model. The other
cases are simulated using the D2V141 in the discretization of
spatial derivative terms.

A. Static bubble

Aiming to verify the surface tension, spurious current, and
its viscosity dependencies, simulations of the static bubble
problem are performed using different viscosities and viscos-
ity ratios. The problem geometry consists of a circular bubble
of ratio rb (fluid 2) located at the center of a square domain
with length H = 100 l.u (lattice units) containing another
suspension (fluid 1). Periodic conditions are applied on all
boundaries (see Fig. 1). The problem considerations are those
of steady regime, constant temperature, and null gravitational
force, being both fluids incompressible and Newtonian. The
flow steady-state regime is assumed when the L2 error defined
by

L2 =
√∑

�x[(ux(�x,t ) − ux(�x,t−1))2 + (uy(�x,t ) − uy(�x,t−1))2]∑
i, j[(ux(�x,t−1))2 + (uy(�x,t−1))2]

,

(72)
reaches a value less than 10−10.

Fluid 1

Fluid 2

FIG. 1. Schematic representation of the static bubble problem.
Fluid 2 represents the bubble, fluid 1 is the suspension fluid, H is the
domain height, and rb is the bubble ratio.

Analyzing the model dependencies in relation to the fluid
viscosity parameter, the behaviors of stability, spurious cur-
rents, and surface tension are observed for variations of the
viscosity ratio, defined by

Mν = ν1

ν2
. (73)

Before any specific analysis, an immiscibility test is re-
quired. We measure the influence of the aσσ coefficient to
estimate the miscibility and immiscibility ranges. In this test,
densities of fluid 2 (ρ2) and fluid 1 (ρ2) are monitored at
the center of the volume with rb = 40l.u, also Mν is varied
by setting ρ1 = ρ2 = 1, κσσ = 0, and ν1 = 0.78125. In the
results obtained for the range of aσσ shown in Fig. 2, values
of aσσ � 0.7 represent the diffusion of one fluid over the
other, the interval 0.7 < aσσ � 1.0 indicates a transition range
of the fluid interaction, and with a certain tolerance, values
1.0 � aσσ represents immiscibility range. Additionally, the
behavior of the components remains independent of variations
in Mν within the transition region and immiscibility range,
while varying aσσ .

Comparing lattice stencils, less stability was observed in
the variation of aσσ for D2Q9, with numerical instability for

FIG. 2. Immiscibility test range varying the viscosity ratio: the
lines in the red and black color are the results obtained for the lattices
D2Q9 and D2V141, respectively.
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FIG. 3. Comparison of the density profile of the D2Q9 stencil
(red) with that of the D2V141 (black): (a) density profiles along x
and y = H/2; (b) zoom image of the interface transition.

aσσ > 1.3 and aσσ > 2.0 for D2Q9 and D2V141, respectively.
For the same values of aσσ , the D2V141 stencil presented
density values higher than the D2Q9. Such values refer to the
transition interface between the components that tend to create
a lower density region [Fig. 3(b)] that consequently increases
the maximum density values of each component. Figure 3
illustrates this behavior in the interface transition by plotting
the density values obtained in x for y = H/2 and aσσ = 1.2.

Once the immiscibility range is defined, the analysis of
interfacial tension between immiscible fluids 1 and 2 relies
on the Laplace equation, with rb varying as a function of �p:

�p = p2 − p1 = γ

rb
. (74)

The physical representation of interfacial tension (γ ) is ver-
ified by the present model varying Mν , aσσ , and κσσ . The
results shown in Fig. 4 demonstrate an approximately linear
relationship between �p and 1/rb, as well as a relative inde-
pendence of γ from Mν and a proportionate increase in γ with
increasing values of aσσ and κσσ . Consequently, the proposed
force model with aσσ and κσσ allows improved control of the
parameters that affect the interface region and interfacial ten-
sion for the lattice D2V141. For the lattice D2Q9, the variation
of κσσ with respect to aσσ has no effect on the interfacial

FIG. 4. Interfacial tension: Laplace equation verification for dif-
ferent values of Mν , aσσ and κσσ .

tension. In addition, as highlighted in Fig. 4, viscosity ratio
values was simulated in the range of Mν = 1012, 100, and
10−12 for ν1 = 3.86 × 1011, 3.86 × 10−1, and 3.86 × 10−13,
respectively.

Investigating the influence of spurious currents on the
model, we perform a specific formulation of the static bubble
problem, as used in the works of Otomo et al. [11], Porter
et al. [16], Gharibi and Ashrafizaadeh [19], to analyze the
maximum magnitude of spurious currents, |u|max, in relation
to viscosity and viscosity ratio. In the formulation, we con-
sider H = 62, rb = 24, and choose the parameter values of
the force model at the onset of the immiscibility range, which
corresponds to aσσ = 1.0 and the respective value of κσσ

following the proportion of Gσσ . The results obtained for both
test types can be seen in Figs. 5(a) and 5(b).

Figure 5(a) shows results for the test of varying ν1 for
fixed Mν = 1; the model currently proposed demonstrates that
|u|max decreases as viscosity increases until reaching approxi-
mately constant values of mid-O(10−4) and of upper-O(10−5)
lattice units for the D2Q9 and D2V141 formulation stencils,
respectively.

On the other hand, maintaining constant ν1 = 0.0067 while
varying Mν , as shown in Fig. 5(b), one can observe a decrease
of |u|max with increasing viscosity ratio until reaching approx-
imately constant values of upper-O(10−4) and upper-O(10−5)
lattice units for the D2Q9 and D2V141 formulation stencils,
respectively. Compared to the models presented in the works
of Porter et al. [16], Otomo et al. [11], and Gharibi and
Ashrafizaadeh [19], the model herein proposed demonstrates
a significantly wider stability range and relatively smaller val-
ues of |u|max, for both cases of extreme individual ν1 and Mν

values, reaching magnitudes of about upper-O(10−5) lattice
units values. It is important to note that in their studies, Porter
et al. [16] and Gharibi and Ashrafizaadeh [19] utilized the
tenth-order isotropy scheme proposed by Sbragaglia et al. [36]
for discretizing derivative terms.
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FIG. 5. Spurious currents analysis: |u|max magnitude values as a
function of (a) ν1 for Mν = 1 and (b) viscosity ratio Mν for ν1 =
0.0067.

Regarding the numerical stability of the problem as a
function of the viscosity ratio, no limit value for which the
simulation becomes unstable occurred, which makes it possi-
ble to simulate the viscosity ratio tending to zero and infinity.
However, the computational time required to achieve the
steady regime tends to increase with the values of the viscosity
ratio tending to the extremes. On the other hand, in terms of
the force model discretization, the D2V141 stencil presents
greater stability in the variation aσσ , better control of the
interfacial tension, besides the already mentioned relatively
lower values of spurious currents.

B. Two-components Poiseuille flow

To evaluate the improvements in the proposed model for a
dynamic problem, numerical results are compared with the
analytical solution for the two-components Poiseuille flow.
Details of the analytical solution can be seen in Porter et al.
[16]. The problem geometry is a channel of length L = 7 l.u
and high 2H = 300 l.u with two fluid components. Fluid 1
flows in the central region of the channel (height 2a), while
fluid 2 flows bounded by the channel walls, as illustrated
in Fig. 6. The boundary conditions are nonslip on the walls
applied by the mass conservative Method II presented in the
work of Bazarin et al. [37] and periodicity at the inlet and
outlet of the channel. The flow is promoted by a pressure gra-
dient inserted as an external force. The problem’s assumptions
include a constant temperature, negligible gravitational force,
and the assumption that both fluids are incompressible and
Newtonian. Simulations are performed up to the steady-state
regime where, according to Eq. (72), the error reaches 10−10.

Considering ρ1 = ρ2 = 1, a = 75, aσσ = 1.2 and κσσ = 0,
Fig. 7 depicts a comparison between the numerical and ana-
lytical results of the velocity profile for (a) Mν = 10−1, (b)
Mν = 101, (c) Mν = 10−6 and (d) Mν = 106. The velocity

Fluid 1

Fluid 2

FIG. 6. Schematic representation of the two-components
Poiseuille flow problem.

profiles are normalized by the analytical maximum veloc-
ity. κσσ is set to 0 to reduce the interface spacing between
components. In the simulated cases, the fluid 1 viscos-
ity for Mν > 1 and Mν < 1 is fixed at ν1 = 909.42 and
ν1 = 0.018188, respectively.

Varying the height a to aσσ = 1.2 and κσσ = 0.0, the
numerical and analytical relative permeability results (krσ )
in function of the fluid 2 saturation (S2 = 1 − a/H) are il-
lustrated in Figs. 8(a) for Mν > 0 and 8(b) for Mν < 0.
The analytical solution for the relative permeability can be
seen in Porter et al. [16]. The results are presented for
a/H = 0.9, 0.75, 0.5, 0.33, 0.2 and viscosity ratio varying in
10−5 � Mν � 105. A quantitative comparison of the results is
shown in Fig. 8 can be seen in Table II.

FIG. 7. Comparison between numerical (dots) and analytical
(lines) velocity profiles: (a) 10−1, (b) 101, (c) 10−6, (d) 106. In
each case, the velocities plotted are normalized by the maximum
analytical velocity umax
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FIG. 8. Comparison between numerical and analytical results of
relative permeability (kr p) for (a) Mν > 100 and (b) Mν < 100.

The errors between the numerical and analytical relative
permeability can be seen in Table II. The root-mean-squared
error and maximum relative percent error are calculated and
compared to the values presented by Porter et al. [16]. The
results demonstrate a tendency to increase errors with the
increase of Mν to Mν > 100 and the decrease of Mν to Mν

< 100. However, all errors observed are in the order of 100,
similar to the errors obtained by Porter et al. [16].

TABLE II. Relative permeability errors after comparison with
Porter et al. [16].

RMSE MRPE%

kr1 kr2 kr1 kr2

Mν P.W. [16] P.W. [16] P.W. [16] P.W. [16]

10−5 0.015 – 0.011 – 10.679 – 10.97 –
10−4 0.014 – 0.002 – 9.224 – 10.34 –
10−3 0.005 – 0.005 – 6.459 – 9.44 –
10−2 0.002 0.002 0.003 0.017 4.779 6.6 8.965 5.4
10−1 0.004 0.010 0.004 0.013 1.903 3.7 3.448 5.1
101 0.166 0.086 0.007 0.008 2.482 4.4 5.512 3.9
102 1.161 1.73 0.009 0.012 4.693 6.6 3.443 4.8
103 30.45 – 0.017 – 7.863 – 5.277 –
104 125.2 – 0.022 – 8.301 – 5.324 –
105 2753.2 – 0.043 – 9.234 – 9.854 –

Similarly to the static bubble problem, there is no insta-
bility limiting the range of viscosity ratio. However, for a
fixed mesh (h) and time step (δt ), the numerical precision de-
creases as the viscosity ratio values tend to the extremes, being
necessary to refine the mesh and the time step to maintain
accuracy.

C. Fluid-fluid displacement

The last case analyzed is the transient problem of fluid-
fluid displacement in a channel, where patterns of fingering
formation can be analyzed according to the parameters of
viscosity ratio and capillary number. The problem is char-
acterized by one fluid that is injected displacing another
fluid initially present in the channel of length L and height
H . Figure 9 illustrates the initial conditions and boundary
conditions of the problem. Initially, fluid 2 fills a rectan-
gular region of L2 × H at the inlet of the channel, while
fluid 1 fills the remaining region of L1 × H , with both flu-
ids having null initial velocity. At the inlet and outlet of
the channel, boundary conditions for the developed velocity
(parabolic profile) are applied, and nonslip conditions are
applied to the upper and lower walls. All boundaries are im-
plemented using the mass conservative Method II presented
in the work Bazarin et al. [37]. The problem is assumed
to be at a constant temperature with negligible gravitational
force, and both fluids are considered to be incompressible and
Newtonian.

In the simulations, the values of H , L1, and L2 are 100,
10, and 590 l.u, respectively. The force model parameters
are aσσ = 1.2 and κσσ = 0.85 corresponding to γ = 0.255.
Figure 10 shows results for different values of viscosity ra-
tio, simulated by varying the capillary number, which is
defined as

Ca = Umaxν1

γ
, (75)

where Umax is maximum velocity of parabolic profile. The fin-
gering patterns, obtained for Mν = 104 and ν1 = 1.25 × 10−4

at different values of Ca, show the contours corresponding to
the Atwood number (ρ1 − ρ2)/(ρ1 + ρ2) at the point where
the finger reaches a length of 550 l.u..

To analyze the patterns presented in Fig. 10, the measure-
ments of finger length in the simulated cases are compared
with the Halpern and Gaver III [38] correlation:

a f

H
= 1 − 4.17

(
1 − e−1.69Ca0.5025)

. (76)

where the finger width (a f ), normalized by the channel height
(H), is predicted as a function of the flow capillary number
(Ca). Figure 11 illustrates the agreement between Eq. (76) and
the numerical results for varying values of Mν , specifically
101, 102, 103, and 104. The constant error bar of ±4 l.u. serves
to characterize the interface length.

While instabilities associated with Mν are absent in the
previous scenarios, they become noticeable in the context
of fluid displacement when Mν � 105. Moreover, within this
same range of Mν , there is an observable trend of increased
occurrence of spurious currents, which impacts the formation
of fingering patterns. Notably, in comparison to the model
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FIG. 9. Problem of fluid-fluid displacement: Geometry, initial, and boundary conditions.

proposed by Otomo et al. [11], this study extends the range
of Mν from 102 to 104.

VI. CONCLUSIONS

In the present work, a multicomponent model focusing on
the viscosity gradient at the fluid interface was studied. The
model was developed as an improved pseudo-potential model
based on the application of different models and discretiza-
tion schemes, which control moments present in the problem
formulation and minimize spurious terms resulting from the
discretization process.

Specifically in the analysis of the results, excellent ap-
plicability of the model was observed for problems with
high viscosity ratios. In the static bubble problem, a correct

FIG. 10. Fingering patterns obtained for Mν = 104, ν1 = 1.25 ×
10−4 and (a) Ca = 0.6, (b) Ca = 1.1, (c) Ca = 1.6, and (d) Ca =
2.1.

representation and fine control of the interface region were
observed with the proposed force model. In the analysis of
the maximum magnitude of spurious currents were observed
values in the range of upper-O(10−2) and upper-O(10−5) lat-
tice units.

For the dynamic two-components Poiseuille flow problem,
a correct representation of the viscous coupling was observed
by the proposed smooth viscosity equation at the interface,
as well as good accuracy in comparison with the analytical
results. In both problems, static bubble and two-components
Poiseuille flow, instabilities were not observed for viscosity
ratios tending to both extremes (zero and infinite). Finally,
for the transient fluid-fluid displacement problem a correct
representation of the finger patterns and excellent proximity
to the Halpern and Gaver III [38] correlation was observed.
However, in contrast to the previous problems instability was
observed for viscosity ratios greater than 104.

In comparison with other works focused on the representa-
tion of the viscosity gradient for the pseudo-potential model,
specifically Porter et al. [16], Otomo et al. [11], and Gharibi
and Ashrafizaadeh [19], the present model demonstrates sta-
bility ranges for extremely higher viscosity ratios and similar

FIG. 11. Normalized finger width (af /H ) as a function of the
capillary number (Ca): comparison with Eq. (76) for different vis-
cosity ratios.
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control of other parameters such as interfacial tension and
spurious currents.

Nevertheless, some drawbacks of the present model must
be addressed or minimized to improve and extend the
applicability for other complex problems in immiscible mul-
ticomponent systems. The main drawbacks are the relatively
high values of spurious currents and the inability of the force
model to represent interactions of immiscible fluids with dif-
ferent densities. In this sense, a more direct LB representation
of Eq. (1), as briefly presented by Eq. (5), proves to be a
promising path for the improvement of the present model.
However, the current model holds potential for representing
multicomponent fluid flow through complex geometries. An
example is fluid displacement through porous media. Explor-
ing this application will be the next step in our research.

APPENDIX: SCALE ANALYSIS OF THE LB EQUATION

The scale analysis of the LB equation to retrieve the macro-
scopic equations is performed using a Chapman-Enskog
analysis, based on an asymptotic expansion of the distribution
function f in terms of the Knudsen number ε = �/L, � being
used to represent the mean free path and L a macroscopic
characteristic length.

Before the expansion process, a scale analysis of the
Boltzmann equation is performed to quantify the order of
magnitude of the several terms in the Boltzmann equation.
Considering τ to be the molecular collision time scale, �

the macroscopic time scale, ξ = √
kT0/m = �/τ the mean

molecular speed (where k is the Boltzmann constant, T0 a
reference temperature and m the molecular mass), we have
the dimensionless quantities:

t = t∗

�
, �x = �x∗

L
, �ξ = �ξ ∗

ξ
, �ge = �g∗

e�

ξ̄
,

f (p) = f ∗
p ξ̄D

ρ0
, �(p) = �∗

pξ̄
D

ρ0τ
, (A1)

where ()∗ indicates the dimensional quantities and �(p) =∑r
s=1 �ps. Therefore, the continuous Boltzmann equation be-

comes

χ

ε
(∂t f (p) + �ξ · ∂�x f (p) + �ge · ∂�ξ f (p) ) = �(p)

ε
, (A2)

χ = τ/� being the ratio between the scales of time.
In Eq. (A2) the collision term is dominant when � 	 L
and τ 	 � [39]. Consequently, the ratio χ/ε is O(1) and
ξ = �/τ ≈ L/�.

1. Chapman-Enskog analysis: Pseudopotential

Expanding the term f̂ (p)
i (�x + �eiδt , t + δt ) in Eq. (20) in

Taylor series, we obtain

∞∑
j=1

χ j

ε

1

j!
D j

t f̂ (p)
i = −1

ε

f̂ (p)
i − f̂ (p)

eq,i

τ (p)
+ F (p)

i , (A3)

in the nondimensional scale. Expanding asymptotically the
distribution function f and the time derivative ∂t ,

f̂ (p)
i =

∞∑
k=0

εk f̂ (k)
i,p = f̂ (0)

i,p + ε f̂ (1)
i,p + ε2 f̂ (2)

i,p + · · · ,

∂t =
∞∑

k=0

∂
(k)
t = ∂

(0)
t + ε∂

(1)
t + ε2∂

(2)
t + · · · , (A4)

where εk represents the order of the Knudsen number. Replac-
ing the expanded terms in Eq. (A3) and separating the terms
by order of the Knudsen number up to O(ε), we have

O(ε−1) : f̂ (0)
i,p = f̂ (p)

i,eq(ρ (p), �u′),

O(ε0) : D(0)
t f̂ (0)

i,p = − f̂ (1)
i,p

τ (p)
+ F (p)

i ,

O(ε) : ∂
(1)
t f̂ (0)

i,p + D(0)
t f̂ (1)

i,p + 1

2
D(0)2

t f̂ (0)
i,p = − f̂ (2)

i,p

τ (p)
, (A5)

or

O(ε) : ∂
(1)
t f̂ (0)

i,p + D(0)
t

((
1 − 1

2τ (p)

)
f̂ (1)
i,p

)

+ D(0)
t

(
F (p)

i

2

)
= − f̂ (2)

i,p

τ (p)
. (A6)

The mass conservation equation for the p component is
retrieved at order ε0 as

∂
(0)
t ρ (p) + ∂�x · (ρ (p) �u′) = 0, (A7)

and for the mixture

∂
(0)
t ρ + ∂�x · (ρ �u′) = 0. (A8)

The momentum balance equation for the p component

∂
(0)
t (ρ (p) �u′) + ∂�x · (

ρ (p)c2
s + ρ (p) �u′ �u′) = − �m(p)

(1)

τ (p)
+ ρ (p)�g(p),

(A9)
and for the mixture

∂
(0)
t (ρ �u′) + ∂�x · (PSC + ρ �u′ �u′) = ρ�ge, (A10)

where PSC is the pressure tensor given by Eq. (32). The
first-order moment of nonequilibrium �m((p))

(1) in Eq. (36) is
determined by Eqs. (A9) and (A10).

Extending for order ε1, we have the mass conservation
equation for the p-component at this order

∂
(1)
t ρ (p) +

(
1 − 1

2τ (p)

)
∂�x · �m(p)

(1) + 1

2
∂�x · (ρ (p)�g(p) ) = 0,

(A11)
and for the mixture

∂
(1)
t ρ +

∑
p

∂�x · �m(p)
(1) +

∑
p

(
1

2
∂�x · ρ (p)�g(p)

)
= 0. (A12)
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The momentum balance equation for the p component

∂
(1)
t ρ (p) �u′ +

(
1 − 1

2τ (p)

)
∂

(0)
t �m(p)

(1) +
(

1 − 1

2τ (p)

)
∂�x · ( �u′ �m(p)

(1) + ( �u′ �m(p)
(1)

)T − τ (p)ρ (p)
(
∂�x �u′ + (

∂�x �u′)T ))
+ 1

2
∂

(0)
t (ρ (p)�g(p) ) + 1

2
∂�x · ρ (p)(�g(p) �u′ + (�g(p) �u′)T + τ (p)�g(p)�g(p) ) = 0, (A13)

and the momentum balance equation for the mixture

∂
(1)
t ρ �u′ +

∑
p

(
∂

(0)
t �m(p)

(1)

) +
∑

p

∂�x · ( �u′ �m(p)
(1) + ( �u′ �m(p)

(1)

)T ) −
∑

p

((
τ (p) − 1

2

)
∂�x · ρ (p)

(
∂�x �u′ + (

∂�x �u′)T ))

+ 1

2
∂

(0)
t

∑
p

(ρ (p)�g(p) ) +
∑

p

(
1

2
∂�x · ρ (p)

(
�g(p) �u′ + (

�g(p) �u′)T + τ (p)�g(p)�g(p)
)) = 0, (A14)

where the second-order moments of f̂ (1)
i,p are obtained from

Eq. (A6).
Summing Eqs. (A7)–(A14), we recover the balance equa-

tions, Eqs. (28)–(31).

2. Present Model

Expanding f̂ (p)
i (�x + �eiδt , t + δt ) in a Taylor series, in

Eq. (46)

∞∑
j=1

χ j

ε

1

j!
D j

t f̂ (p)
i = M−1SM

[
f̂ (p)
eq,i − f̂ (p)

i

ε
− F (p)

i

2

]
+ F (p)

i ,

(A15)

where M and S are given by the Eqs. (47) and (48),
respectively.

On the other hand, the asymptotic expansion [Eq. (A4)]
results in the following hierarchy of scales:

O(ε−1) : f̂ (0)
i,p = f̂ (p)

i,eq(ρ (p), �u),

O(ε0) : D(0)
t f̂ (0)

i,p = − f̂ (1)
i,p,S − 1

2 F (p)
i,S + F (p)

i ,

O(ε) : ∂
(1)
t f̂ (0)

i,p + D(0)
t f̂ (1)

i,p + 1
2 D(0)2

t f̂ (0)
i,p = − f̂ (2)

i,p,S, (A16)

or

O(ε) : ∂
(1)
t f̂ (0)

i,p + D(0)
t

(
f̂ (1)
i,p − f̂ (1)

i,p,S

2

)
+ D(0)

t

(
F (p)

i

2
− F (p)

i,S

4

)

= − f̂ (2)
i,p,S, (A17)

where f̂ (1)
i,Sp

and F (p)
i,S are given by

f̂ (1)
i,p,S = M−1SM f̂ (1)

i,p

= ωi

[
�eim

(p)
(1)

τ̂mc2
s

+ �
(p)
(1) :

(
�ei�ei − c2

s I
)

2τ̂νc2
s

− 1

2
F (p)

i,S

]
, (A18)

F (p)
i,S = M−1SMF (p)

i

= ωiρ
(p)

[
�ei · �g(p)

τ̂mc2
s

+ (�u�g(p) + (�u�g(p) )T ) :
(
�ei�ei − c2

s I
)

2τ̂νc2
s

]
,

(A19)

where τ̂ν = τ̂4 = τ̂5 and τ̂m = τ̂1 = τ̂2.
The mass conservation equation is retrieved at order ε(0)

as,

∂
(0)
t ρ (p) + ∂�x · (ρ (p)�u) = 0, (A20)

and for the mixture

∂
(0)
t ρ + ∂�x · (ρ�u) = 0. (A21)

The momentum balance equation for the p component is
retrieved at order ε(0) as

∂
(0)
t

(
ρ (p)�u

) + ∂�x · (
ρ (p)c2

s + ρ (p)�u�u
) = − �m(p)

(1)

τ̂m
+ ρ (p)�g(p),

(A22)
and for the mixture

∂
(0)
t (ρ�u) + ∂�x · (P + ρ�u�u) = ρ�ge, (A23)

where P is the pressure tensor given by Eq. (68),
∑

i f̂ 1(p)
i �ei =

�m(p)
i − 1

2

∑
i F (p)

i �ei, and
∑

i f̂ 1(p)
i �ei�ei = �

(p)
(1) − 1

2

∑
i F (p)

i �ei�ei.

The first-order moment of non-equilibrium �m((p))
(1) is deter-

mined by the Eqs. (A22) and (A23), being described by
Eq. (67).

Extending the order to ε(1), we have the mass conservation
equation for the p component

∂
(1)
t ρ (p) + ∂�x ·

((
1 − 1

2τ̂m

)
�m(p)

(1)

)
= 0, (A24)

and for the mixture

∂
(1)
t ρ = 0, (A25)

the momentum balance equation for the p component

∂
(1)
t ρ (p)�u + ∂

(0)
t �m(p)

(1)

+ ∂�x ·
((

τ̂ − 1

2

)
c2

s ρ
(p)

(
∂�x �u + (∂�x �u)T − 2

D
(∂�x · �u)I

))

− ∂�x ·
((

1 − 1

2τ̂

)(
�u �m(p)

(1) + (
�u �m(p)

(1)

)T − 2�u · �m(p)
(1)

D
I

))

= 0, (A26)

and the momentum balance for the mixture

∂
(1)
t ρ�u + ∂�x ·

((
τ̂ − 1

2

)
c2

s ρ

(
∂�x �u + (∂�x �u)T − 2

D
(∂�x · �u)I

))

= 0, (A27)

where the second-order moments of f 1(p)
i are obtained from

Eq. (A6).
Summing Eqs. (A20)–(A27), we recover the balance equa-

tions, Eqs. (62)–(65).
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