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Droplet dynamics in homogeneous isotropic turbulence with the immersed
boundary–lattice Boltzmann method
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We develop a numerical method for simulating the dynamics of a droplet immersed in a generic time-
dependent velocity gradient field. This approach is grounded on the hybrid coupling between the lattice
Boltzmann (LB) method, employed for the flow simulation, and the immersed boundary (IB) method, utilized
to couple the droplet with the surrounding fluid. We show how to enrich the numerical scheme with a mesh
regularization technique, allowing droplets to sustain large deformations. The resulting methodology is adapted
to simulate the dynamics of droplets in homogeneous and isotropic turbulence, with the characteristic size of the
droplet being smaller than the characteristic Kolmogorov scale of the outer turbulent flow. We report statistical
results for droplet deformation and orientation collected from an ensemble of turbulent trajectories, as well as
comparisons with theoretical models in the limit of small deformation.
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I. INTRODUCTION

Understanding the dynamics of droplets in turbulence is
fundamentally important [1] and practically relevant for a
broad spectrum of applications including mixing and blend-
ing processes [2–4], petroleum industry [5,6], environmental
remediation [7,8], food industry [9,10], and hemodynamic
engineering [11]. The characterization of droplet features such
as elongation and orientation in such scenarios is challenging:
the flow inside and outside the droplet couple in a nonlinear
way at the droplet interface, and this coupling is further en-
riched by the complexity brought by time-dependent strain
rates exerted by the flow surrounding the droplet. Analytical
approaches are only possible in the limiting case of small de-
formations and/or with limiting assumptions on the properties
of the flow [12–15]. The use of numerical simulations is there-
fore of paramount importance to understand the dynamics of
such droplets [16–23].

The dynamics of droplets in turbulent flows primarily de-
pends on the ratio between the droplet characteristic scale
(e.g., the radius of the droplet at rest, cf. Fig. 1) and the Kol-
mogorov dissipation length η, expressing the scale at which
the energy spectrum of the turbulent flow is cut off [24–26].
Droplets larger than the Kolmogorov length scale are sub-
jected to inertia-dominated hydrodynamic stresses, whereas
viscous stresses dominate for droplets smaller than the Kol-
mogorov scale (sub-Kolmogorov droplets). Here we focus on
the latter regime, where the flow deforming the droplet can be
described by the Stokes equations matched with the turbulent
far field [27,28] (cf. Sec. II). This is a crucial assumption for
having theoretical reference models to compare with, in the
limit of small deformations.
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The dynamics of sub-Kolmogorov droplets has been inves-
tigated with various numerical approaches. The boundary in-
tegral approach was used to capture critical sub-Kolmogorov
droplet size and breakup rates in Ref. [27], while the lat-
tice Boltzmann (LB) method based on the diffuse-interface
multiphase approach was validated for sub-Kolmogorov in-
vestigations and employed to model high deformations in
Ref. [28]; statistical analysis on droplets dynamics was per-
formed in Refs. [28–30] based on phenomenological models
for ellipsoidal droplet dynamics [31]. In this work, we em-
ploy a novel route based on the hybrid coupling between the
immersed boundary (IB) method [32] and the LB method
[33,34]. In contrast with multiphase or multicomponent LB
approaches [35,36], the hybrid IBLB method could have sev-
eral advantages: it inherently preserves the sharp-interface
limit of hydrodynamics without creating spurious currents
[37] and it allows us to easily introduce various interfacial
properties, like the surface viscosity [38,39] or generic con-
stitutive laws [40–44], while having the possibility of using
finer meshes to model them [45]. Furthermore, accurate mod-
eling of the outer flow via linearization of turbulent velocity
gradients can be easily achieved with the IBLB approach
employing elementary LB schemes [46]. Overall, if from
one side the use of the IBLB method for the simulation of
sub-Kolmogorov droplet dynamics in turbulent flows seems
appropriate, the applicability of the method in this context has
never been quantitatively assessed so far. This paper aims to
fill this gap.

The paper is organized as follows: in Sec. II, we review the
continuum equations and control parameters of our system. In
Sec. III, we describe the IBLB method used to simulate the dy-
namics of a single sub-Kolmogorov droplet in homogeneous
isotropic turbulence. Simulation results and comparisons with
theoretical models in the limit of small deformation are pre-
sented in Sec. IV. Conclusions and a summary of our results
will be presented in Sec. V.
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FIG. 1. System and numerical setup description: trajectory and velocity gradients ∇u of a droplet are probed from direct numerical
simulations (DNS) [47] [panel (a)]. The turbulent velocity gradients are then imposed at the boundaries of the numerical domain used to
perform immersed boundary–lattice Boltzmann (IBLB) simulations [panel (b)]. Relevant droplet features are indicated in panel (c) (more
details are given in the text). Evolution in the IBLB simulation is sketched in panels (d)–(f) for three different times t = 0, t = t ′, t = t ′′

corresponding to different turbulent configurations chosen from the represented trajectory in panel (a). Flow streamlines are reported with
colormap following velocity gradient magnitude [cf. panel (a)]. A complete visualization of the evolution of the droplet is shown in the
Supplemental Material [48].

II. PROBLEM STATEMENT

We examine a system where a droplet with rest radius R
and surface tension σ is immersed in homogeneous isotropic
turbulence (cf. Fig. 1). The dynamic viscosity of the carrier
fluid is μ, while χμ is the dynamic viscosity of the droplet
phase, so that χ denotes the system viscosity ratio. In our
analysis, we investigate the deformation of droplets in the
centered frame reference moving along a given trajectory.
In this description, we assume to be in the sub-Kolmogorov
regime, i.e., R/η � 1, with η = (ν3/ε)1/4 being the Kol-
mogorov length scale, ν = μ/ρ the kinematic viscosity of
the turbulent flow with ρ the fluid density, τη = (ν/ε)1/2

the Kolmogorov timescale and ε = ν〈∇u : ∇u〉 the turbulent
dissipation rate [24–26], with 〈. . .〉 indicating the ensemble
mean. For practical applications, sub-Kolmogorov regime is
achieved for droplets smaller than a threshold which can
be found via the relation η ∼ 	/Re3/4, with 	 indicating a
characteristic length scale for the considered system. For the
applications mentioned in Sec. I, the typical tanks used for
mixing processes and water treatments set 	 to meters and
Re ≈ 103, with “small droplets” identified by submillimetric
drops, whereas in most hemodynamical applications, such
as in rotary blood pumps where η ≈ 20 × 10−6 m [49], red
blood cells can mostly be considered sub-Kolmogorov “small
droplets.”

Within the sub-Kolmogorov assumption, the droplet
Reynolds number

Redrop = R2

ντη

=
(

R

η

)2

(1)

is inherently small, indicating the disparity in the inertial
stress 
ρ = ρR2/τ 2

η and viscous stress 
μ = μ/τη, with the
latter dominating the overall hydrodynamic stress. Given this
fact, one can assume that the dynamics is governed by the
Stokes equation for an incompressible flow:

∇ · �′ = ∇ · u′ = 0 inside the droplet, (2a)

∇ · � = ∇ · u = 0 outside the droplet, (2b)

with

�′ = −p′I + χμ(∇u′ + ∇u′†), (3a)

� = −pI + μ(∇u + ∇u†) (3b)

being the inner and outer hydrodynamic stress, with I the
three-dimensional (3D) identity matrix and p′, p the inner and
outer pressures, respectively. Denoting with xc the droplet
center, the far-field flow surrounding the droplet matches a
linear expansion constructed from the turbulent velocity gra-
dients ∇u(t ):

u(x, t ) = (x − xc) · ∇u(t ). (4)
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Denoting with τσ = μR/σ the droplet characteristic time set
by the balance between viscous effects and surface tension,
the overall droplet deformation state is controlled by the cap-
illary number

Ca = τσ

τη

. (5)

For small values of Ca, a small deformation regime is ex-
pected, wherein the timescale for droplet relaxation towards
sphericity is much smaller than the characteristic time of the
turbulent flow, and the droplet tends to retract very soon to
any deformation imposed by the outer flow; on the other hand,
for large values of Ca, the droplet can be exposed for longer
times to the straining effects of the outer flow and nonlinear
effects emerge with larger deformations as well as misalign-
ment with the underlying flow [27]. In our analysis, the state
of the droplet is assessed by looking at both its elongation and
orientation with respect to the straining direction at all times
[cf. Fig. 1, where representative times t = 0, t = t ′, t = t ′′
are reported in Figs. 1(d)–1(f), respectively]. Information on
the deformation is retrieved from the largest eigenvalue λmax

(corresponding to the eigenvector v̂max) of the morphological
tensor S, i.e., the second-order tensor describing the droplet
shape [14,50]:

Sv̂max = λmaxv̂max. (6)

Assuming an ellipsoidal shape, the square root of λmax coin-
cides with the major semi-axis of the droplet (cf. Fig. 1). The
instantaneous droplet orientation is studied via the orientation
parameter β [27]:

β = v̂max · E · v̂max

||E|| , (7)

where E = (∇u + ∇u†)/2 is the symmetric velocity gradient
matrix representing the straining component of the flow, with
||E|| being its Frobenius norm. The orientation parameter β

weights the effects of the instantaneous strain E(t ) on the
major elongation direction attained by the droplet at time t : β

depends on the inclination angle θ between the droplet and the
straining direction of the flow (cf. Fig. 1), it is maximum when
θ = 0 (complete alignment), and minimum when θ = π/2
(complete misalignment). For example, in stationary shear
flow β = 1/

√
2 for a droplet aligned with the strain direction

and β = −1/
√

2 when the droplet elongation is orthogonal to
it.

In Sec. IV, we compare our numerical results with the
linear theory in Ref. [14,51] adapted for turbulent gradients:

∂S(t )

∂t
= − 1

τσ

40(χ + 1)

(2χ + 3)(19χ + 16)
[S(t ) − IR2]

+ 2R2 5

2χ + 3
E(t ). (8)

This equation is found by assuming an expansion of the mor-
phological tensor S in power series of Ca plugged into the
Stokes equations (2) and retaining only the linear contribu-
tions in Ca [52,53]. We use this equation to get predictions for
the droplet deformation and orientation when Ca −→ 0 and
validate the results of IBLB numerical simulations in such a
limit.

FIG. 2. Representation of LB scheme applied for a specific edge
(on the left) and corner (on the right). Numbers refer to the LB dis-
crete velocities ci. Buried links are highlighted in red. Two examples
of vectors n(i) normal to the planes are given on the top, for both the
edge and the corner.

III. NUMERICAL METHOD

A. Immersed boundary–lattice Boltzmann model

Various numerical methods have been developed for sim-
ulating bulk viscous flows with deformable suspensions, such
as boundary element methods [27,54–56], volume-of-fluid
methods [57], and lattice Boltzmann methods [46]. In our
work, we employ the immersed boundary–lattice Boltzmann
(IBLB) method, which has been extensively used in previous
works for investigating viscoelastic capsules [38,39,42,58–
64]. The method combines the IB method, used to couple the
sharp droplet interface with the fluid, with LB method, which
simulates bulk viscous flows. Few works specifically focused
on using such a method for simulating droplet dynamics in
stationary flows [38,39,44,65]: here, we take a step further,
adapting the method for the simulation of droplet dynamics in
a complex turbulent flow.

The LB method is a kinetic approach to simulate hydrody-
namics, evolving probability distribution functions in discrete
directions. In this work, we use the D3Q19 velocity scheme
with a set of 19 discrete velocities ci [34,46], which are indi-
cated in Fig. 2, with c0 related to the resting population. The
LB method recovers both the continuity and Navier-Stokes
equations when fluctuations around the local equilibrium are
small [34,46]. In the following, all quantities are given in
lattice Boltzmann units (LBUs), in which we assume both the
lattice and time spacing to be unitary. In the chosen lattice
scheme, the evolution of probability distribution functions
fi with discrete velocities ci at coordinate x and time t is
regulated by the LB equation:

fi(x + ci, t + 1) − fi(x, t ) = [�i(x, t ) + Si(x, t )], (9)

including the streaming along direction i on the left-hand side
(l.h.s.), the collision term �i and the force source Si on the
right-hand side (r.h.s.). Here, we implemented the standard
Bhatnagar-Gross-Krook (BGK) collision operator [46,66]:

�i(x, t ) = − 1

τf

[
fi(x, t ) − f (eq)

i (x, t )
]
, (10)

stating that distribution functions relax towards equilibrium
f (eq)
i (x, t ) with characteristic time τf . We remark that a
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multiple relaxation time (MRT) algorithm could also be cho-
sen, in that it can improve the IBLB stability [67] and,
generally, makes it possible to discern the effects of bulk
viscosity and compressibility. In our case, these are negligible
and left out with a single relaxation time (SRT) scheme. The
relaxation time is directly linked to the kinematic viscosity of
the system ν [33,34]:

ν = c2
s

(
τf − 1

2

)
, (11)

where cs = 1/
√

3 is the speed of sound. The local equilibrium
dependency on x and t is due to the density ρ = ρ(x, t ) and
velocity field u = u(x, t ) [66]:

f (eq )(x, t ) = wiρ

(
1 + u · ci

c2
s

+ (u · ci )2

2c4
s

− u · u
c2

s

)
, (12)

where wi = w(|ci|2) are suitable weights, such that w0 = 1/3,
w1−6 = 1/18, w7−18 = 1/36. During the relaxation process,
external forces Fext = Fext (x, t ) can be added in the LB equa-
tion via the source term Si(x, t ) according to the Guo scheme
[68]:

Si(x, t ) =
(

1 − 1

2τf

)
wi

c2
s

[(
ci · u

c2
s

+ 1

)
ci − u

]
· Fext. (13)

The populations fi can then be used to retrieve the density and
momentum fields used to compute the equilibrium and source
terms:

ρ(x, t ) =
∑

i

fi(x, t ), (14a)

ρu(x, t ) =
∑

i

ci fi(x, t ) + Fext (x, t )

2
, (14b)

with the half-force correction appearing in the momentum
[46,68].

The interface of the droplet is represented by a finite set
of Lagrangian points forming a 3D triangular mesh with zero
thickness. On each triangle, the stress �drop given by the
surface tension is

�drop = σ I2, (15)

where I2 is the two-dimensional (2D) identity matrix [38,39].
Within the representation in Eq. (15), the tangential forces per
unit area coming from surface tension are equally distributed
across the droplet surface, naturally preserving the isotropic
nature of σ . The resulting net force arising from tangential
forces acting on an infinitesimal surface area points inward
with respect to the surface curvature. In the case of a static
droplet, this causes the inner pressure to increase homoge-
neously in the bulk of the droplet, in compliance with the
Laplace law. Details on the computation of the force ϕi on
the ith Lagrangian point from the stress tensor are given in
Ref. [39].

The two-way coupling between Lagrangian points and
fluid nodes is handled via interpolation according to the IB

method [32,46]:

Fext (x, t ) =
∑

i

ϕi(t )�(ri − x), (16a)

∂ri(t )

∂t
=

∑
x

u(x, t )�(ri − x), (16b)

where the � function is the discretized Dirac delta and ri(t )
represents the coordinates of the ith Lagrangian node. The
� function can be factorized in three interpolation stencils
�(x) = φ(x)φ(y)φ(z) which can be chosen and tweaked for
higher accuracy in the two-way coupling; here we use the
four-point interpolation stencil [32]:

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
8 (3 − 2|x| +

√
1 + 4|x| − 4x2) 0 � |x| < 1

1
8 (5 − 2|x| −

√
−7 + 12|x| − 4x2) 1 � |x| < 2

0 2 � |x|.
(17)

Once the velocity of the Lagrangian points has been computed
[cf. Eq. (16)], the position ri(t ) is updated via an explicit
forward Euler method:

ri(t + 1) = ri(t ) + ∂ri(t )

∂t
. (18)

Concerning the boundary conditions, the flux on the boundary
domain is fixed at each time t by the turbulent gradients ∇u(t )
[cf. Eq. (4)]: the linearization of the velocity fields is centered
within the droplet center of mass (cf. Fig. 1). In particular, we
set

ux = ∂ux

∂x

(
lx − Lx

2

)
+ ∂ux

∂y

(
ly − Ly

2

)
+ ∂ux

∂z

(
lz − Lz

2

)
,

(19a)

uy = ∂uy

∂x

(
lx − Lx

2

)
+ ∂uy

∂y

(
ly − Ly

2

)
+ ∂uy

∂z

(
lz − Lz

2

)
,

(19b)

uz = ∂uz

∂x

(
lx − Lx

2

)
+ ∂uz

∂y

(
ly − Ly

2

)
+ ∂uz

∂z

(
lz − Lz

2

)
,

(19c)

where Lx, Ly, and Lz represent the side lengths of the computa-
tional domain, and li ∈ [0, Li] with i = x, y, z. Each boundary
plane is uniquely determined by fixing one of the three indices
li at a value 0 or Li, while varying the other two l j in the range
[0, Lj] (with j �= i). This is required to impose a matching
of the system with the turbulent far-field, and the velocity
in the bulk domain is then naturally developed via the LB
dynamics. When performing the streaming step in the LB
method [cf. Eq. (9)] on the nodes at the boundary, special
treatment is required for those populations pointing out of
the domain, whereas those in the opposite direction are some-
what undefined as there is no lattice node where they would
come from. To implement boundary conditions for the outer
flow, we adopt the Zou-He velocity boundary conditions [69].
In particular, since the original proposed scheme is for the
D2Q9 scheme, we employ the 3D generalization for generic
flow directions presented in Ref. [70]. The implementation
of such boundary conditions allows us to impose generic
time-dependent flows at the system boundaries regardless of
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their instantaneous straining direction: this is achieved by
supporting a regular bounce back rule with a counter slip in
the reflected populations at the boundary nodes, acting as a
transversal momentum correction. Among all the populations
at the boundary, we distinguish between three different cases:
(a) populations that are neither in the corners nor in the edges,
(b) populations that are in the edges but not in the corner, and
(c) populations that are in the corners. Let us introduce the
tangential vectors t i = ci − (ci · n)n, where n represents the
normal vector to a boundary plane. We indicate with fi popu-
lations corresponding to the ith discrete velocity ci streaming
outside of the domain, and with f−i those that get reflected
inside the domain, whose discrete velocity is −ci. For case
(a), the reflected populations f−i read [70]

f−i = fi − (2 − |t i|)ρ
6

(ci · u) − ρ

3
(t i · u)

+ 1

2

18∑
j=0

f j (t i · c j )(1 − |c j · n|). (20)

As can be seen for those populations pointing perpendicular
with respect to the boundary plane (i.e., t i = 0), we remark
that the factor 2 − |t i| must be included in the second term of
the r.h.s. to retrieve the standard bounce-back rule [46]

f−i = fi − ρ

3
(ci · u). (21)

For case (b), two different planes with normal vectors n(1)

and n(2) must be taken in consideration (cf. Fig. 2), with the
reflected populations that read

f−i = fi − 1

4

18∑
j=0

f j (t i · c j )(1 − |c j · n(1)|)(1 − |c j · n(2)|).

(22)

Among these populations, we define f (1,2) those associated
with the two lattice vectors c(1,2) = ±(n(1) − n(2) ). The latter
constitute the so-called “buried links,” i.e., those lattice vec-
tors along which both fi and f−i points outside the domain
(see red arrows in Fig. 2). For such populations, Eq. (22) does
not hold, and an additional prescription is required [70]:

f (1,2) = 1

22

18∑
i=1

fi

{
1 − (1 − |ci · [n(1) × n(2)]|)

×
(

1 −
∣∣∣∣ci ·

[
n(1) + n(2)

|ci|2
]∣∣∣∣

)}
. (23)

On each edge, there is exactly one population f (1) streaming
along c(1) with the corresponding opposite one f (2) streaming
along c(2). As an example, in Fig. 2, we consider the edge
in y = 0 and z = Lz: the two normals are n(1) = (0, 0,−1)
and n(2) = (0, 1, 0). The buried links are therefore identified
by c(1,2) = ±(0,−1,−1), which correspond to the directions
c11 and c13 (red arrows in Fig. 2). The resting population f0

must be corrected as f0 = 12 f (1,2) [70]. Lastly, we consider
case (c). For each corner, we have three different planes with
normals n(1), n(2), and n(3) which identify six buried links
(cf. Fig. 2) whose corresponding lattice vectors are c(1,...,6).
The buried vectors are such that c(i) · (n(1) + n(2) + n(3) ) = 0.

The corresponding distributions assigned to these six buried
vectors are

f (1,...,6) = 1

18

18∑
i=1

fi

∣∣∣∣ci · n(1) + n(2) + n(3)

|ci|2
∣∣∣∣. (24)

Again, the resting population needs a special consideration,
and it is set to f0 = 12 f (1,...,6) [70].

We remark that other implementations of boundary con-
ditions to accommodate the outer flow would be possible.
For example, in Ref. [28], a diffuse interface LB approach
was used to investigate droplet deformation in turbulent flows,
mainly focusing on deviations from ellipsoidality [31]. The
boundary condition used in Ref. [28] to accommodate the
outer flow comprises the use of ghost boundaries to set the
LB populations at equilibrium, serving as a “thermalization”
of the domain to the outer turbulent field. Preliminary analysis
on statistics of droplet deformation revealed that this kind of
boundary condition does not guarantee a precise reconstruc-
tion of theoretical predictions for small Ca, hence we decided
to implement a Zou-He velocity boundary condition [69].

B. Outer flow and matching between direct numerical
simulation units and lattice Boltzmann units

We consider the dynamics of sub-Kolmogorov droplets
with χ = 1 in an ensemble of turbulent trajectories taken from
the TURB-Lagr open-source database [47]. This database
contains over 3 × 105 particle trajectories obtained for
the case of homogeneous isotropic turbulence via direct
numerical simulations (DNS) of the incompressible Navier-
Stokes equations using a pseudospectral approach [71]. The
Reynolds number calculated based on the Taylor scale is
Re ≈ 130. In what we refer to as direct numerical simulation
units (DNSU), the Kolmogorov length scale is η = 4.2 ×
10−3 DNSU, and the Kolmogorov timescale is τη = 2.3 ×
10−2 DNSU. The kinematic viscosity of the system is ν =
8 × 10−4 DNSU, and the dissipation rate is ε = 1.4 DNSU.
Each trajectory lasts for roughly an eddy turnover time τeddy =
4.5 DNSU ∼ 200τη so that, by subjecting droplets to a lin-
earization of the turbulent field as in Eq. (4), all the relevant
turbulent features are probed along each trajectory. The local
velocity gradients are probed every �t = 2.25 × 10−3 DNSU
for a total of 2 × 103 turbulent realizations for each trajectory.

To match the turbulent outer flow with the IBLB simula-
tion, we need to apply a unit conversion from the quantities
of the DNS to those used in the IBLB simulations. Hereafter,
a generic quantity A is assumed to be in DNSU, whereas the
corresponding quantity in LB units (LBUs) is represented as
ALBU. Therefore, the conversion factor CA in DNSU is such
that A = ALBU CA. We start by fixing the conversion factor
for the length Cx. By fixing a desired value of R/η, and
knowing the Kolmogorov length scale η, the radius of the
droplet is known in DNSU and the conversion factor Cx can
be computed as

Cx = R

RLBU
. (25)

Then, we consider the unit conversion for time, which can
be retrieved from the viscosity. Indeed, since ν = νLBUC2

x /Ct ,

015302-5



TAGLIENTI, GUGLIETTA, AND SBRAGAGLIA PHYSICAL REVIEW E 110, 015302 (2024)

we have

Ct = C2
x

νLBU

ν
. (26)

Within this prescription, at every time frame �t , we read the
velocity gradient in DNSU and convert it in LBU as

(∇u)LBU = Ct∇u. (27)

For each realization of the velocity gradient, we then perform
N IBLB time steps given by

N = �t

Ct
. (28)

Note that, by using Eq. (25) and Eq. (26), we obtain that the
number of IBLB steps needed to match the dynamics of the
outer flow scales with the inverse square of R/η:

N = �t
ν

νLBU

(
RLBU

R

)2

∼
( η

R

)2
. (29)

For a given realization of ∇u(t ), convergence to the Stokes
dynamics given by Eq. (2) is expected when R/η → 0. As
discussed in Sec. IV, a good convergence is already observed
when R/η ≈ 1/2, corresponding to N ≈ 500. We remark that
by increasing the LB relaxation time τf (and consequently
νLBU), the number of steps N required for LB to reproduce
sub-Kolmogorov droplets dynamics can be reduced without
altering the simulation results, albeit attention should be used
to not induce over relaxation [46].

Once the unit conversion between the two systems has been
set, one only needs to compute the surface tension of the drop
σ in LBU. Since we know the value of τη in DNSU, we can
compute τσ in DNSU for a given capillary number by using
its definition given in Eq. (5), and convert it in LBU:

τσ,LBU = τσ

Ct
. (30)

The value of the surface tension in LBU is then computed as

σLBU = μLBURLBU

τσ,LBU
. (31)

Once the parameters R/η, Ca, τf , RLBU and the computational
domain size Lx × Ly × Lz are set, one needs to apply the
following steps:

(1) Consider the turbulent gradient matrix ∇u(t ) at time t .
(2) Apply the conversion in Eq. (27) to initialize the

boundary planes via Eq. (19).
(3) Perform N IBLB steps with the prescriptions in Sec. III

employing the surface tension given in Eq. (31).
(4) Consider the turbulent gradient matrix ∇u(t + �t ) at

time t + �t and re-iterate steps 2–4.
In our IBLB setup, we employed a 3D box with size Lx =

Ly = Lz = 200 LBU for simulating droplets with rest radius
RLBU = 19 LBU possessing a structured mesh composed of
20 480 triangles: these numerical parameters were chosen
after performing LB simulations to test the convergence of
the LB to the hydrodynamic equations [34,46]. Furthermore,
the chosen parameters need to be tailored to minimize con-
finement effects [42,72] and discrete curvature effects [38,42],
and a very refined mesh is required for the latter. The value for
the LB relaxation time is τf = 1.5 LBU.

FIG. 3. Sketch of the mesh regularization employed. Panel
(a) shows the same trajectory for a not-regularized (solid line) and
regularized simulation (dashed line). Panels (b) and (c) represent
the Lagrangian mesh right before the time where the not-regularized
simulation destabilizes. Panel (d) sketches the regularization process
for a specific node and its neighbors (detailed equations are given in
the text).

Numerical simulations are performed with a GPU in-house
code largely employed and benchmarked in previous works
[39,65,73,74]. Simulations ran on Nvidia Ampere “A100”
Graphic Processing Units (GPUs), with a simulation time for
each trajectory lasting roughly 3 hours.

C. Mesh regularization

The IBLB method, while inherently preserving the sharp-
interface limit of hydrodynamics, presents challenges in
tracking the evolution of mesh elements, especially in the
presence of irregular distribution of surface nodes [75,76]. As
shown in Ref. [77], droplets subjected to a prolonged shearing
strain rate can incur an accumulation of mesh nodes and very
loose mesh elements stretched in the major strain direction.
Both issues must be avoided when using the IBLB method
to couple fluid and interface: indeed, an extreme clustering of
the mesh nodes can cause them to overlap, whereas triangles
that get too loose can compromise the two-way coupling with
the inner and outer fluid penetrating the mesh. In Fig. 3(a), we
report the largest normalized eigenvalue λmax/R2 as a function
of the normalized time t/τeddy. The solid red line corresponds
to an IBLB simulation without mesh regularization, while
the dashed blue line represents one that has been regularized
using the algorithm described in this section (details provided
below). In Fig. 3(b), we report the triangular mesh of the drop
without regularization right before the simulation became
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unstable, which shows both loosening and clustering of trian-
gles. In Fig. 3(c), the regularized mesh is reported. Concerning
the algorithms employed to obtain regular meshes, one can
ideally split them into two big families: the first one involves
changes in the mesh topology (e.g., creation and destruction
of nodes and triangles); the second one employees smoothing
techniques, i.e., without any change in the mesh topology, its
vertices are moved in order to obtain a regular mesh. In the
specific context of IBLB simulations of drops, a hybrid ver-
sion has been implemented in Ref. [77]: by using an iterative
algorithm, the mesh nodes are moved until reaching a given
tolerance; then a “flipping algorithm” causing a change in
the connections of the mesh nodes is applied. We note that
topology changes may generate quite delicate issues since the
topology of the drop at rest is essential for the computation
of the nodal forces starting from the stress on each triangle
[cf. Eq. (15)] [38,39,78]. Hence, we preferred not to change
the topology but instead use the extension of the Laplacian
smoothing technique proposed by Ref. [79]. This technique
acts globally on each node with an iterative process: after
having updated all the mesh nodes via the IBLB step [cf.
Eq. (18)], we end up with a set of mesh coordinates {xo}.
Before starting the Laplacian smoothing, we initialize a set of
coordinates {xp} = {xo}. We then apply the following iterative
algorithm:

(1) We initialize the auxiliary set of coordinates {xq} =
{xp}. This set is necessary to perform a simultaneous update
and represents the mesh coordinates at the previous step of
this iterative algorithm.

(2) We update each node in the set {xp},

xi
p = αxi

o + 1 − α

Ni

∑
j∈neigh(i)

x j
q, (32)

with α ∈ [0, 1] being a user-defined parameter regulating the
influence of the starting position of the node [79]. The sum
runs over the Ni neighbors of the ith node. This step represents
the classic Laplacian smoothing [79].

(3) Once all the coordinates xi
p have been updated, one

ends up with some nodes that might have been moved inward
or outward with respect to the coordinates at the previous iter-
ation xi

q [cf. Fig. 3(d)]. This may cause the creation of artificial
valleys and ridges, thus undermining the local curvature of the
droplet and the overall volume conservation [79]. To preserve
curvature regularity, we employ the correction to the classic
Laplacian smoothing introduced in Ref. [79] [cf. Fig. 3(d)].
We therefore correct the coordinates xi

p in the following
way:

xi
p → xi

p −
⎛
⎝γ xi

b − 1 − γ

Ni

∑
j∈neigh(i)

x j
b

⎞
⎠, (33)

where

xi
b = xi

p − [
αxi

o + (1 − α)xi
q

]
. (34)

The parameter γ ∈ [0, 1] is an additional control
parameter.

(4) We finally need a condition to exit the iterative al-
gorithm. For each node xi

p in the set {xp}, we compute the
difference with respect to the set of coordinates at the previous

FIG. 4. Largest normalized eigenvalue λmax/R2 [panel (a)] and
orientation parameter β [panel (b)] for a representative trajectory as
a function of time for Ca = 0.05 and different values of R/η. Time
is made dimensionless with respect to the eddy turnover time τeddy

of the outer turbulent flow. Linear theory results obtained from the
Stokes equations [cf. Eq. (8)] are also reported. Arrows indicate an
increase in R/η, with the upper line corresponding to the maximum
R/η reported in panel (a); hierarchy is reversed in panel (b).

iteration {xq}. We exit the loop if the maxi |xi
p − xi

q| is less
than a certain threshold. Otherwise, we repeat the present
algorithm from step 1.

In our simulations, we find α = 0.1, γ = 0.51 to be a
suitable set of parameters, although other options can be taken
into consideration [80]. Concerning the condition to break
the iterative algorithm, the threshold has been set to 0.01
LBUs.

IV. RESULTS

We start our numerical investigations by verifying the con-
vergence towards the Stokes equations (2) at changing the
relative importance of the droplet radius R with respect to
the Kolmogorov scale η. To this aim, we perform numerical
simulations for a fixed Ca = 0.05 at changing the ratio R/η.
Results for the largest eigenvalue λmax (normalized with R2)
and the orientation parameter β for a representative trajec-
tory are reported in Fig. 4. The value of Ca is chosen small
enough to ensure that the linear theory [cf. Eq. (8)] holds when
R/η → 0, making it possible to have theoretical predictions
to compare with the IBLB numerical simulations. Results for
linear theory are obtained by integrating Eq. (8) with a stan-
dard explicit Runge-Kutta method [81]. By decreasing R/η,
a very good convergence of the IBLB numerical simulations
to the linear theory predictions is observed. In the simulated
time range, λmax is shown to be more sensible to variations in
R/η, with an oscillating behavior emerging when increasing
R/η around unity. These oscillations emerge alongside both
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enhanced and delayed elongations, as well as faster retrac-
tions, indicating an inability to adapt to the linearized Stokes
solutions when R/η � 1. Milder oscillations are shown for
the orientation parameter β, where departure from the linear
theory is less evident at increasing R/η. By further decreasing
R/η the computational cost increases [cf. Eq. (29)] but the
convergence to the linear theory results does not improve
sensibly (see the comparison between the reported case R/η =
0.472 and R/η = 0.15 in Fig. 4).

In Fig. 5, we complement the findings reported in Fig. 4
by comparing results of IBLB numerical simulations and the
predictions of linear theory for R/η = 0.472 at changing Ca.
For growing values of Ca, agreement with the linear theory
valid for Ca � 1 is not achieved, as expected. The value
of λmax obtained from IBLB exceeds the linear theory with
enhanced peaks. Notice that a similar behavior is found when
studying the stationary deformation at finite Ca [56,57,65,82–
84]. Large variations in λmax observed in Figs. 5(c) and 5(e)
are clearly related to the intermittency in the strain rates, and
they become more evident and more persistent in time at
increasing Ca. Good agreement in β is shown between IBLB
numerical simulations and predictions of linear theory up to
Ca = 0.15, with an overall positive value of β, pointing to
the alignment of the droplet with the straining direction of
the outer flow. When Ca is increasing, persistence of large
variations in λmax [Fig. 5(e)] goes together with droplet mis-
alignment with respect to the straining direction of the flow
[85]: for such events, e.g., the one shown at around t/τeddy ≈
0.15 in Fig. 5(f), the value of β is shown to locally reach
negative values, suggesting the inability of the droplet to adapt
with the fast varying strain rates. A 3D visualization of the
IBLB simulation reported in Figs. 5(e) and 5(f) is provided as
Supplemental Material [48].

To delve deeper into the analysis, we performed a sta-
tistical characterization of the probability density function
(PDF) of both λmax and β. To this aim, we considered 1000
independent turbulent trajectories [47] and performed IBLB
numerical simulations for the values of R/η = 0.472 and
Ca = 0.05, 0.15, 0.25. Along the same trajectories, we also
integrated the linear theory derived from the Stokes equa-
tions [cf. Eq. (8)] and extracted the corresponding statistics.
The two statistics are compared in Fig. 6. Data are displayed
on both a linear scale [Figs. 6(a) and 6(c)] and a logarithmic
scale [Figs. 6(b) and 6(d)]. On a linear scale [Fig. 6(a)], the
PDF of λmax/R2 shows a good agreement between IBLB
results and the results of the linear theory for Ca → 0; at
increasing Ca, the IBLB PDF departs from linear theory pre-
dictions. In Fig. 6(b), the tails of the PDF of λmax/R2 are
analyzed, showing that the linear theory underestimates the
tail of the distribution and that this underestimation is more
pronounced at large deformations, i.e., large Ca. More statis-
tics are probably needed for a more quantitative assessment of
the distribution tails. In Fig. 6(c), we report the PDF of β, and
we observe that the IBLB simulation results well converge
to the linear theory predictions when Ca is small. The same
holds for the PDF tails in Fig. 6(d). We notice that within
the framework of linear theory, results for deformation are
more sensitive to a variation in Ca [Figs. 6(a) and 6(b)] in
comparison with the results for orientation [Figs. 6(c) and

FIG. 5. Largest normalized eigenvalue λmax/R2 and orientation
parameter β for a representative trajectory as a function of time
for R/η = 0.472 at changing Ca: Ca = 0.05 [panels (a) and (b)],
Ca = 0.15 [panels (c) and (d)] and Ca = 0.25 [panels (e) and (f)].
Time is made dimensionless with respect to the eddy turnover time
τeddy of the outer turbulent flow. Linear theory results obtained from
the Stokes equations [cf. Eq. (8)] are also reported. For a complete
visualization of the IBLB simulation for the higher Ca reported, see
the Supplemental Material [48].

6(d)]. This is not unexpected if one thinks of the linear theory
stationary results for deformation and orientation in simple
flows [13], where the deformation changes more than the
orientation angle between the droplet and the flow direction.
Overall, Fig. 6 well supports the statement that results from
IBLB simulations match the linear theory predictions in the
limit Ca → 0.
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FIG. 6. Probability density function (PDF) for the largest normalized eigenvalue λmax/R2 and the orientation parameter β, with R/η =
0.472 and Ca = 0.05, 0.15, 0.25. Both linear-linear plots [panels (a) and (c)] and log-log plots [panels (b) and (d)] are reported.

V. CONCLUSIONS

We have investigated the application of the hybrid im-
mersed boundary–lattice Boltzmann (IBLB) method for the
simulation of the dynamics of a droplet subjected to a time-
dependent velocity gradient. We have specialized the method
to simulate the dynamics of a droplet in a turbulent flow, with
the size of the droplet being smaller than the Kolmogorov
scale of the turbulent flow. The proposed methodology hinges
on two essential ingredients: first, the implementation of a
generalized Zou-He scheme (cf. Sec. III A) to accommodate a
generic strain matrix at the boundaries of the IBLB simulation
domain; second, an extended Laplacian smoothing technique
(cf. Sec. III C) to avoid deterioration of the triangular mesh
resulting in numerical instabilities. To verify the correctness
of the method, we compared the results of numerical simula-
tions with the results of the linear theory that can be derived
from the Stokes equations in the limit of small droplet de-
formations (i.e., small capillary numbers Ca). Specifically,
we have shown how the statistics of droplet deformation and
orientation estimated over thousands of eddy turnover times
of the turbulent flow well match the results of the theory in
the limit of small deformations.

Various future perspectives will open up at this stage. In
this paper, we mainly focused on sub-Kolmogorov droplet
dynamics and relatively small values of Ca. The assumption of
sub-Kolmogorov droplet dynamics is crucial to have some ref-
erence theory to compare with, but in principle the LB method
can be pushed towards situations where inertial contributions
appear. Moreover, simulations with larger Ca are possible, but
larger deformations and droplet breakup need to be suitably
accounted for within the numerical simulations [27,29,30] to
allow a detailed characterization of breakup statistics. We also
notice that we focused on the dynamics of simple droplets
with surface tension at the interface. The IBLB method is flex-

ible enough to allow the adaptation of additional interfacial
complexities to model soft suspensions like vesicles or cap-
sules, realistically employed in industrial and medical devices
[62,86–88]. This potentiality could shed light on the dynamics
of such soft suspensions in time-dependent flows. Finally, we
also remark that the deformation of soft suspensions in com-
plex flows has also been investigated with phenomenological
models [31,89–91] based on the idea that the suspended parti-
cle retains an ellipsoidal shape at all times. Earlier studies used
these models also to investigate the dynamics of droplets in
turbulent flows [29,30,92]: while the predictions in the small
deformation limit coincide with the linear theory that we have
used in this paper, deviations are expected to emerge at large
Ca. It could then be of interest to use the IBLB method to
design improved phenomenological models better working at
large Ca, in the same spirit of Ref. [65] for droplets in simple
shear flow.
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