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Efficient point-based simulation of four-way coupled particles in turbulence at high number density
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In many natural and industrial applications, turbulent flows encompass some form of dispersed particles.
Although this type of multiphase turbulent flow is omnipresent, its numerical modeling has proven to be
a remarkably challenging problem. Models that fully resolve the particle phase are computationally very
expensive, strongly limiting the number of particles that can be considered in practice. This warrants the need for
efficient reduced order modeling of the complex system of particles in turbulence that can handle high number
densities of particles. Here we present an efficient method for point-based simulation of particles in turbulence
that are four-way coupled. In contrast with traditional one-way coupled simulations, where only the effect of
the fluid phase on the particle phase is modeled, this method additionally captures the back-reaction of the
particle phase on the fluid phase, as well as the interactions between particles themselves. We focus on the most
challenging case of very light particles or bubbles, which show strong clustering in the high-vorticity regions of
the fluid. This strong clustering poses numerical difficulties which are systematically treated in our work. Our
method is valid in the limit of small particles with respect to the Kolmogorov scales of the flow and is able to
handle very large number densities of particles. This methods paves the way for comprehensive studies of the
collective effect of small particles in fluid turbulence for a multitude of applications.
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I. INTRODUCTION

Understanding the behavior of particles in turbulent flows
is paramount in many fields, including engineering, meteorol-
ogy, oceanography, and astrophysics. The delicate interplay
between particle dynamics and the background turbulence
encompasses a rich phenomenology [1–5]. To accurately de-
scribe this complex system, in general, one needs to consider
the reciprocal interactions between fluid and particles, as well
as the mutual interactions between particles. From the compu-
tational point of view, modeling this complete interplay turns
out to be challenging and often computationally prohibitive.

Therefore, most numerical studies historically have fo-
cused on the so-called one-way coupling paradigm, where
only the effect of turbulence on the particle dynamics is mod-
eled but not vice versa. This is a reasonable approximation
for small particles in the very dilute limit and was shown
to recover much of the. phenomenology observed in experi-
ments, such as preferential concentration, particle dispersion,
and clustering [6–9]. In some cases, however, one may be par-
ticularly interested in the back-reaction that the particle phase
has on the underlying fluid phase. This requires a so-called
two-way coupled simulation, where also this back-reaction is
explicitly modeled. The most accurate way to model this back-
reaction is by fully resolving the geometry of the particles and
enforcing the no-slip condition at the particle-fluid interface,
e.g., via approaches such as the immersed boundary method

*Contact author: f.toschi@tue.nl

[10–14]. Though possibly being very accurate, this method
is also computationally very expensive and, in practice, this
limits the number of particles that can be considered to around
O(10–1000) [14]. To study the collective effect of a large
number of small particles dispersed in the turbulent flow, this
is insufficient, warranting the need for more computationally
efficient reduced order modeling.

In this work, we therefore consider instead a point-particle-
based model which includes the back-reaction force on the
fluid and that can easily be extended to millions of particles
[15–17]. To accurately handle substantial volume fractions of
particles and/or to handle cases of strong particle clustering,
however, we need to go one step further and model also the
interactions between particles, bringing us in the realm of the
so-called four-way coupled simulations.

We perform direct numerical simulations (DNS) of the
fluid phase with spatio-temporal velocity field u(x, t ) using
a standard pseudospectral method that solves the incompress-
ible Navier-Stokes equations,

Du
Dt

= −∇p + ν�u + f + f p, (1)

∇ · u = 0, (2)

with Du/Dt ≡ ∂u/∂t + u · ∇u denoting the material deriva-
tive. Here p is the local pressure, ν denotes the kinematic
viscosity of the fluid and f is the forcing of the fluid, which we
choose to be f̂ (k) = εû(k)/

∑
k f �|k|<k f +1 |û(k)|2, acting on

the low wave numbers k f � |k| < k f + 1, ensuring a constant
energy injection rate ε [18]. The feedback force of the particle
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phase on the fluid phase is captured in f p, which is derived in
Sec. II A. For time integration, we use a second-order Adam-
Bashfort scheme, while the viscous term is integrated exactly
using integrating factors. We resolve the turbulence well down
to the Kolmogorov scale η by ensuring that for the highest
resolved wave number we have kmaxη ≈ 3, such that the grid
spacing coincides with the Kolmogorov scale. For details on
the Eulerian scheme, see Appendix A.

To describe the particle phase, we resort to the Maxey-
Riley equations of motion for dispersed particles [19]. This
point-based model requires that the particle has a sufficiently
small size to see a smooth velocity field, which in practice
amounts to an O(1) multiple of the Kolmogorov scale η. We
consider the limit where we can neglect gravity and for sim-
plicity we also disregard the Basset history force that corrects
for the unsteady boundary layer around the particle [19,20].
We then retain only the Stokes drag term and the combined
pressure gradient and added mass term, yielding

dV
dt

= β
Du(X , t )

Dt
− 1

τp
(V − u(X , t )), (3)

dX
dt

= V + (collisions). (4)

Here V and X denote the velocity and position of the particle,
respectively. Furthermore, the density ratio between the par-
ticle and the fluid is parameterized by β = 3/(1 + 2ρp/ρ f )
with ρp and ρ f the density of the particle and fluid phase,
respectively. Finally, τp denotes the particle response time,
which for spheres is given by τp = D2/(12βν) with D the
particle diameter. The latter is typically nondimensionalized
with respect to the Kolmogorov timescale of the fluid τη,
yielding the Stokes number St = τp/τη. The fluid velocity
and its material derivative is evaluated at the particle position
using spline interpolation [21]. Note that in the integration of
the particle position, we also take into account the particle-
particle collisions, which is treated in Sec. III A, completing
our four-way coupling method.

Arguably among the most striking phenomena of the
behavior of particles in turbulence is the preferential concen-
tration of particles that are heavier or lighter than the fluid,
observed at moderate St ∼ O(1). While heavy particles (0 �
β < 1) tend to preferentially concentrate in high-straining re-
gions, light particles (1 < β � 3) show the opposite behavior,
strongly concentrating in high-vorticity regions of the turbu-
lent flow [9]. While the method presented here is valid for
small particles with any density ratio and/or St, we focus
on bubbles β = 3 at moderate St = 1 [22], which show the
strongest clustering due to their preferential concentration in
the vortex filaments of the turbulent flow [2,23]. Understand-
ing the dynamics of bubbles in turbulence is relevant for
many industrial and natural processes and it is widely studied
experimentally and numerically [24–28]. As we shall show,
the strong clustering poses additional difficulties to the four-
way coupling scheme and thus acts as a worst-case-scenario
benchmark to our method.

Section II treats the implementation of the particle-fluid
interaction, while Sec. III details the scheme for the particle-
particle interaction. Finally, Sec. IV covers an example
the modulation of the turbulent energy spectrum under the

influence of four-way coupled bubbles and conclusions are
drown in Sec. V.

II. PARTICLE-FLUID INTERACTION

A. Momentum conservation: δ coupling

The fluid phase is resolved on an Eulerian grid using a
pseudospectral method as laid out in Appendix A. To account
for the back-reaction of the particle on the fluid, we need to
consider the particle as a source of momentum. The particle
phase then poses an additional term in the Navier-Stokes
equations that follows from the conservation of momentum
between the particle and fluid phase. The open question that
remains is how the total momentum that is transferred from
the particle to the fluid is distributed in space. In general, this
depends on the size and shape of the particle and requires
resolving the full particle as is done, e.g., in the immersed
boundary method. In the limit where the particle is small with
respect to the Kolmogorov length of the underlying turbulent
flow, however, the spatial distribution of the back-coupling
force conveniently reduces to a δ distribution [15,29]. This
can be treated efficiently in the DNS.

To derive the expression for the two-way coupling, we start
from the integral conservation of momentum in the fluid phase
with volume V f with one submerged particle with volume Vp

and surface Sp [30]∫
V f

ρ f
Du
Dt

dV =
∫
V f

ρ f [−∇p + ν�u + f ]dV +
∫

Sp

σ · ndS,

(5)
with n the surface normal of the particle and σ the fluid
stress. Then, for the particle phase, we can write momentum
conservation as

ρpVp
dV
dt

= −
∫

Sp

σ · ndS. (6)

When evaluated for the particle, this results in the Maxey-
Riley equations of motion Eq. (3). For the fluid phase,
however, in general, substituting Eqs. (6) into (5) and extend-
ing the integral over the full domain V = Vp + V f gives∫

V
ρ f

Du
Dt

dV =
∫
V

ρ f [−∇p + ν�u + f ]dV

+
∫
V

[
ρ f

Du
Dt

− ρp
dV
dt

]
Vpδ(x − X (t ))dV .

(7)

The total two-way coupling force is then given by a sum
over all particles i [30,31]

f p =
Np∑
i

[
Du
Dt

− ρp

ρ f

dV i

dt

]
Vpδ(x − X i(t )). (8)

Note that the two-way coupling term not only reflects the
momentum exchange (second term in the brackets) but also
has an added mass term (first term in the brackets).

The two-way coupling force Eq. (8) can be computed by
evaluating the Lagrangian particle acceleration and the Eu-
lerian material derivative, interpolated at the position of the
particle. To evaluate the δ function, practically, it is smoothed
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FIG. 1. (a) Energy spectra of the one-phase turbulent flow and the two-way coupled bubbly turbulent flow with uniform volume fraction
of bubbles αc = 0.1. (b) The two-way coupled energy spectrum compensated by the one-way energy spectrum reveals that the two-way
coupling enhances the energy spectrum in the forcing and inertial range, while it attenuates the spectrum in the dissipative range. It furthermore
shows that the two-way coupled system is in close agreement with a one-way system where the energy injection rate ε and viscosity ν are
enhanced by a factor 1/(1 − αc ), consistent with the theoretical prediction Eq. (11). The resolution is N3 = 1283 and the number of particles
is Np = 2 097 152 (= 1283). The shaded regions denote statistical error bars.

by extrapolating to the eight nearest grid cells around the
particle center using linear volume-weighting, summing to
1/Vc with Vc the volume of one Eulerian computational cell
[15–17]. This ensures that the δ function integrates to unity.
By summing over all particles, we can then obtain f p eval-
uated on the full Eulerian grid, after taking into account the
communication at the boundaries of the computational pro-
cesses. As a final step, f p is projected onto its divergence-free
part to retain incompressibility. Semantically, this entails a
redefinition of the pressure that compensates the divergent
part.

An important issue for two-way coupled point-based mod-
els that should be pointed out is the problem of self-induction
[15,29,32]. The Maxey-Riley equations Eq. (3) are defined
with respect to the flow field that is perturbed by all other
particles except for the particle under consideration itself.
However, in practice, it is impossible to disentangle the con-
tributions from the different disturbance fields created by
each particle, so we have to make the approximation that the
self-induction is negligible. In Appendix B, we justify this
assumption by following the test that is laid out in Ref. [30]
by comparing the diffusion of particles that are back-coupled
to the fluid and particles that are not back-coupled simultane-
ously in the same simulation.

B. Two-way coupling validation: Homogeneous
distribution of bubbles

As a point of validation, we can consider a homogeneous
distribution of bubbles. For bubbles ρp/ρ f = 0, so that only
the added mass term in Eq. (8) remains. Note that in this
case, the particle equation of motion vanishes from the back-
reaction f p and only the spatial distribution of the bubbles
becomes important. Indeed, in a continuum description, we
obtain

f p = α(x, t )
Du
Dt

, (9)

with α(x, t ) ≡ ∑Np

i Vpδ(x − X i(t )) the local volume fraction
of bubbles. This yields

Du
Dt

= −∇p + ν�u + f + α(x, t )
Du
Dt

. (10)

We can then analytically compute the effect of the two-way
forcing on the underlying fluid if we enforce a homogeneous
distribution of particles α(x, t ) = αc. Then Eq. (10) reduces
to

Du
Dt

= − 1

1 − αc
∇p + 1

1 − αc
ν�u + 1

1 − αc
f . (11)

That is, solving the two-way coupled system should become
equivalent to solving a one-phase system, where both the
viscosity ν as well as the energy injection rate ε are enhanced
by a factor 1/(1 − αc). The prefactor to the pressure gradient
can be absorbed in a redefinition of the effective pressure and
thus has no dynamical influence.

This correspondence is confirmed numerically as laid out
in Fig. 1 by considering the turbulent kinetic energy spec-
trum, validating the implementation of our two-way coupling
algorithm for the case where we enforce a homogeneous
distribution of immobilized bubbles. Only in the highest
wave-number range, some quantitative differences between
the two-way coupled system and the enhanced one-way cou-
pled system can be observed. We attribute these discrepancies
to discretization errors, since the two-way coupling involves
interpolation and discrete time-stepping, while the viscous
term is integrated exactly using integrating factors. Indeed, we
confirmed that on refining the spatiotemporal resolution, this
remaining discrepancy at high wave numbers vanishes (not
shown).

We thus understand that the added mass effect of bubbles
enhances the turbulence in the forcing and inertial range,
while it simultaneously also enhances the viscous dissipation,
attenuating the turbulence in the dissipative range. However,
while we have shown this for the case of a uniform density
of bubbles, in reality, due to preferential sampling of bubbles
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FIG. 2. A 2/3-dealiasing rule applied to a δ function in real
space reduces the magnitude of the δ-peak and produces spurious
oscillations in its vicinity.

in vortex filaments, we should expect the back-reaction of
bubbles to be highly localized in space, which can change the
global influence of the bubbles on the underlying turbulence.

From the numerical point of view, this poses two addi-
tional problems in the pursuit to obtain reliable simulations
of bubbly turbulence. For one, since bubbles sample the
Kolmogorov-like scales of vortex filaments, the resulting high
spatial dishomogeneity emphasizes the action of the back-
reaction force in the high-wave-number range. This warrants
more caution in treating the dealiasing of the modified veloc-
ity field, as will be discussed in the next section. The second
problem concerns the stability of the two-way coupled system,
as discussed after.

C. Dealiasing

After that the particle feedback force f p(x) is computed in
real space on the N3 grid, it is transformed into Fourier space,
yielding f̂ p(k) on the N3 Fourier grid with k ∈ [−(N/2 −
1), . . . , N/2]3. In a conventional pseudospectral algorithm
with a 2/3-dealiasing rule, all Fourier space fields would
be zeroed for all |k| > (2/3)N/2 to avoid spurious aliasing
contributions from the nonlinear term.

However, in the case of light particles, due to their strong
clustering, the particle feedback force becomes strongly
localized and rough (large gradients), such that f̂ p(k) has sig-
nificant contributions in the high-wave-number range. Hence,
truncating f̂ p(k) using a 2/3-dealiasing rule would be a strong
approximation, significantly decreasing the intensity of the
two-way coupling, and it should thus be avoided. See Fig. 2
for an example of the consequences of 2/3-dealiasing on a δ

function.
Therefore, we propose a slightly different dealiasing ap-

proach where the nonlinear term is computed on a larger grid
than the one used for other real space quantities such as the
feedback force, avoiding the need for truncation of the latter.
The scheme is laid out in Fig. 3.

The zero-padded Fourier transform from Fourier space to
the real space convolution grid and vice versa can be com-
puted efficiently as a pruned fast Fourier transform (FFT)
and by skipping one-dimensional (1D) transforms that are

identically zero. This is implemented using the P3DFFT pack-
age [33]. Note that the dealiasing approach suggested here
raises the effective resolution of the simulation to (3N/2)3

as compared to a N3 resolution with a conventional 2/3-
dealiasing rule.

An alternative way to mitigate the dealiasing problems
would be to replace the δ function by a broader smoother
kernel over which the momentum is coupled back to the fluid.
This can conveniently be done within the current scheme by
replacing the δ function in Eq. (8) by a different compact func-
tion, although this will compromise the physical connection
with vanishingly small point particles.

D. Stability

The strong clustering of light particles not only poses a
challenge due to the roughness that it introduces in the feed-
back force, but it can also compromise the stability of the
integration of the two-way coupled system. This becomes
apparent by considering Eq. (10). Recall that the explicit time
derivative ∂u/∂t with respect to which the integration is per-
formed is contained in the material derivative. Now Eq. (10)
shows that due to the two-way coupling, the time derivative is
fed back into the evolution equation itself. Practically, since
the material derivative as sensed by the particles is evaluated
on one time step �t prior to the current integration time step,
this effectively reduces Eq. (10) to

∂u(t )

∂t
≈ α

∂u(t − �t )

∂t
+ F[u], (12)

with F[u] capturing the other forces (pressure gradient, ad-
vective acceleration, viscosity, and external force). This is a
dynamical system of the type bn = αbn−1, which becomes
unstable if α > 1, yielding exponentially growing solutions.
This indicates that we should expect the two-way coupled
system of bubbles to become unstable if the local volume
fraction α exceeds unity. Physically, this can never occur if
one enforces excluded volume interactions. This warrants the
need for explicit treatment of the particle-particle interaction,
indicating that in order to obtain reliable two-way coupled
simulations of bubbly turbulence, one in fact needs to resort
to four-way coupled simulations. This is treated in Sec. III.

The particle-particle interaction that will be considered
here, however, is an approximate method in order to be able
to computationally handle large number densities of bubbles.
As a consequence, not all excluded volume interactions are
strictly enforced at all times. To ensure stability, we therefore
need to explicitly enforce that the local volume fraction does
not exceed unity by carefully clipping the particle feedback
force in those cases. To that extent, we multiply the particle
feedback force by a local clipping factor c(x, t ) as

c(x, t ) =
{

1 for α(x, t ) � α0,
α0

α(x,t ) for α(x, t ) > α0.
(13)

By carefully clipping the particle feedback force in just the
right places and times, this prefactor enforces that the effective
local volume fraction never exceeds α0, ensuring the stability
of the integration. While any α0 < 1 works, we set it to the
close packing fraction of spheres α0 = π/(3

√
2) ≈ 0.74.
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FIG. 3. A schematic of the proposed dealiasing routine. The schematic depicts the analog 2D approach, but a 3D setting is implied. (a) The
conventional 2/3 dealiasing rule, where all quantities are computed on a N3 grid and the Fourier space quantities are truncated at |k| > N/3.
(b) Our suggested routine. The flow field is evolved on a N3 Fourier grid. For computation of the nonlinear term, the flow field is inflated and
padded with zeros to make a (3N/2)3 grid, which is transformed to real space, where the convolution is carried out on the (3N/2)3 convolution
grid. The nonlinear term is then taken back to Fourier space, where all contributions on wave numbers |k| > N/2 are removed for dealiasing.
This yields a fully dealiased flow field on the N3 Fourier grid. Other contributions such as the particle feedback force can be computed on a
N3 real space and N3 Fourier space grid, needing only truncation of the wave numbers |k| > N/2 rather than |k| > N/3 as in the conventional
2/3-dealiasing routine.

For our benchmarking simulations of four-way coupled
bubbly turbulence (bubbles with D = 0.8η at varying volume
fraction ᾱ), we find that the total integrated magnitude of f p
(L1 norm) is clipped by less than 1% as the volume fraction
remains ᾱ � 15%, which we deem acceptable.

E. Performance

The two-way coupling routine involves one loop over
all Lagrangian particles as well as one FFT over the Eu-
lerian grid. This routine can thus always be run within
a runtime that is less than the combined runtime of the
Eulerian part (involving two FFTs) and the integration of
Lagrangian trajectories (involving also one loop over the
Lagrangian particles, but with a heavier workload). Hence,
the two-way coupling has a minimal impact on the overall
performance.

III. PARTICLE-PARTICLE INTERACTION

A. Efficient excluded volume interaction

To enforce the excluded volume hard-sphere interactions
between particles, one needs to solve overlaps between
particles at every time step. Solving all excluded volume
interactions between all particles submerged in the fluid at
large number densities is potentially a daunting problem from
the computational point of view. However, instead of checking
for all N2

p/2 possible collisions between particles, we can
use a boxing approach. This is a classical approach borrowed
from molecular dynamics that only checks locally for possible
collisions [34]. Another computational difficulty is posed by
particles that are involved in multiple collisions. Solving all
overlaps recursively can in turn also become computationally
intractable for sizable clusters of overlapping particles. We
therefore propose an approximate algorithm for the excluded

015301-5



DE WIT, KUNNEN, CLERCX, AND TOSCHI PHYSICAL REVIEW E 110, 015301 (2024)

FIG. 4. The boxing approach boxes all particles contained in pro-
cess pn (solid boxes), while it sends (shaded solid boxes) and receives
(shaded dashed boxes) the outer boxes to its nearest-neighboring
processes. Overlaps are then only checked between the particles
contained within each box itself and its nearest-neighboring boxes.

volume interaction, with efficiency in mind, that at every time
step solves only the strongest overlap for every particle. The
second most severe overlap can then be solved in the next
time step, and so on. This allows us to have an excluded
volume interaction algorithm that is efficient enough to allow
for large number densities (with the number of particles on
the same order as the number of Eulerian grid points) but also
accurate enough to ensure a minimal total overlap volume
of the particles. We coin this algorithm YOCO (“You Only
Collide Once”). The algorithm is laid out below.

At every time step:
(1) Boxing. The bubbles are collected in cubic boxes with

sides that are minimally one diameter of a particle. This re-
quires the creation of an array of boxes that tiles the full 3D
space. By looping over all particles, this array is filled with
references to the particles contained in that box. Each parallel
process needs to communicate one extra layer of boxes in each
direction to its neighboring processes to facilitate the overlap
checking in the next step. See Fig. 4.

(2) Overlap checking. By looping over each box, we check
for overlaps between particles within the box as well as be-
tween particles in the box and in the directly neighboring
boxes. To avoid double counting, we check only for overlaps
between particle i and j when the globally unique identifier
of particle i is larger than that of particle j. All overlaps
are recorded in a local list, storing the references of the
overlapping particles and the linear size of the overlap Q =
D − |X i − X j |. We also check for forecasted collisions that
are predicted to happen within the next time step based on the
current velocities of the particles.

(3) Sorting. The list of overlaps is sorted from largest to
smallest Q.

(4) Purging. We eliminate every second occurrence of a
particle, leaving only the strongest overlap for each particle
in the list. This can be done efficiently using a hash map as a
look-up table to keep track of whether particles have already
occurred in the list.

FIG. 5. The excluded volume hard-sphere interactions are en-
forced by moving overlapping pairs of particles radially outwards
over their mutual centerline from X i, X j to X ′

i, X ′
j .

(5) Solving collisions. All remaining overlaps in the list
are solved by moving each pair of overlapping particles out-
wards over their mutual centerline such that the new Q = 0
for this pair as depicted in Fig. 5. The forecasted collisions
are solved by performing an elastic collision on the particle
velocities.

To assess the effectiveness of this YOCO algorithm in en-
forcing the most important excluded volume interactions, we
perform a simulation of bubbly turbulence with and without
excluded volume interaction. A resulting exemplary snap-
shot of particle positions is provided in Fig. 6. This shows
that, indeed, due to excluded volume interactions, particles
become notably more spread out around the vicinity of vor-
tex filaments rather than collapsing into the centers of the
filaments.

At the more quantitative level, we can compute the overlap
volume by Monte Carlo sampling probes in the whole space
and checking whether they are inside or outside at least one
particle. The fraction of Monte Carlo samples that are inside
at least one particle will then converge to Vu/V with Vu the
total union volume of all particles and V the total volume of
the simulation domain. In the case of perfect excluded volume
interactions, one should obtain Vu → ∑Np

i Vp, the summed
volume of all particles. We can thus define the overlap
ratio as

γ =
∑Np

i Vp − Vu∑Np

i Vp

, (14)

which yields γ → 0 in the case of perfect excluded volume
interactions and γ → 1 in the case of total overlap (vanishing
union volume). The results of this Monte Carlo sampling are
presented in Fig. 7, which shows that the overlap ratio for the
simulation without excluded volume interaction yields γ =
(78.3 ± 0.1)% while in the simulation with excluded volume
interactions an overlap ratio γ = (0.5 ± 0.1)% remains. This
shows that the YOCO algorithm is very effective in reduc-
ing the overlap between particles, with an almost negligible
remaining overlap ratio. The histogram of the found overlaps
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(a) (b)Without excluded volume With excluded volume

FIG. 6. A snapshot of particle positions for a simulation without excluded volume interactions (a) and with excluded volume interactions
(b) with bubbles of size D = 0.8η and average volume fraction ᾱ = 3.5%. The resolution is N3 = 1283 and number of particles Np = 262 144
and Taylor-scale Reynolds number Reλ ≈ 35. The inset zooms show a small cross section of the full domain, where the background color
indicates the local enstrophy �2 = |∇ × u|2.

for the cases with and without excluded volume interactions is
provided in Fig. 8. This shows that for the case with excluded
volume interactions, most remaining overlaps are small, while
for the case without excluded volume interactions, the most
probable overlap is close to full overlap Q/D ≈ 1. This further
assures us of the effectiveness of the proposed YOCO algo-
rithm. We find that when pushing the volume fraction ᾱ even

further into the very dense regime, the overlap ratio remains
γ � 3% while ᾱ � 15%.

B. Evaluation of the material derivative

A final point of attention concerns the evaluation of the
material derivative at the position of the particle as needed for
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FIG. 7. Monte Carlo sampling of the overlap volume for a simulation with bubbles of size D = 0.8η and average volume fraction ᾱ =
3.5% for the case without excluded volume interaction (a) and with excluded volume interaction (b) between bubbles. The figures show the
convergence over the obtained overlap ratio as a function of the number of Monte Carlo samples taken.
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FIG. 8. Histogram of the relative overlap Q/D of the found over-
lapping pairs in a snapshot of a simulation without excluded volume
interaction (dashed line) and with excluded volume interaction (solid
line) for a simulation with bubbles of size D = 0.8η and average
volume fraction ᾱ = 3.5%.

the particle equation of motion Eq. (3). Recall that the material
derivative at the position of the particle is given as

Du(X , t )

Dt
= ∂u(X , t )

∂t
+ u(X , t ) · ∇u(X , t ). (15)

A commonly used trick in Lagrangian tracking is to evaluate
the material derivative at the particle position from the full
derivative of the fluid velocity at the position of the particle
du(X , t )/dt . This quantity is numerically easily accessible, as
it involves only the result of the interpolation of the velocity
at the previous time step. Then, considering that

du(X , t )

dt
= ∂u(X , t )

∂t
+ dX (t )

dt
· ∇u(X , t ), (16)

the material derivative at the position of the particle can be
obtained as

Du(X , t )

Dt
= du(X , t )

dt
+ [u(X , t ) − V (t )] · ∇u(X , t ). (17)

This conveniently avoids the evaluation of the partial time
derivative of the fluid velocity at the current position of the
particle, which would require knowledge of the previous state
of the full flow field. However, note that here we have tacitly
assumed that dX (t )/dt = V (t ). While this is usually true, this
is not the case with our treatment of particle-particle colli-
sions, which can alter the particle position due to collisions
in a way that does not follow the integration of the velocity
alone.

Therefore, when applying particle-particle interactions, we
do not evaluate the material derivative at the particle position
according to Eq. (17), but we instead evaluate Eq. (15) di-
rectly. This involves keeping one previous flow snapshot in
memory and interpolating both the current velocity as well
as the previous velocity at the current position of the particle
in order to evaluate the partial time derivative. This can be
done with a minimal impact on the overall performance of the
code.

104 105 106

Np

10−2

10−1

100

R
un

ti
m

e
(s

)

Eulerian

N3

∼ N1.6
p

Lagrangian

β = 3
β = 2
β = 1
β = 0

FIG. 9. Performance of the four-way coupling method as a func-
tion of the number of particles Np. Solid lines with symbols denote
the runtime of the proposed YOCO algorithm for the particle-particle
interaction for particles with different buoyancy ratios. The horizon-
tal dotted line and curve coined Eulerian and Lagrangian denote
the runtime of routines for the Eulerian part and of the integration
of the Lagrangian trajectories, respectively. The vertical dashed-
dotted line denotes the number of Eulerian grid points N3 = 1283 for
reference. The particle size D = 0.65η, such that the volume fraction
varies from ᾱ = 0.01% to ᾱ = 29%.

C. Performance

Treating pairwise particle collision is a problem that can
in principle be of quadratic complexity in the number of
particles. While the algorithm proposed here effectively
reduces the complexity, for example through the boxing ap-
proach that employs the locality of collisions, the complexity
of the algorithm is still expected to exceed linearity. For an
increasingly large number of particles, the collision routine
can thus become the computationally heaviest part of the full
four-way coupling code. We have therefore carefully assessed
the performance of the four-way coupling method as laid
out in Fig. 9. Since the performance of the particle-particle
routine depends on the number of realized collisions, the
slowest runtime is obtained for bubbles (β = 3), as expected.
However, as can be appreciated from the figure, thanks to the
efficient implementation of the YOCO algorithm, the collision
algorithm only starts to bottleneck the overall performance as
the number of particles approaches the number of Eulerian
grid points (N3). Indeed, here we obtain a scaling of the
runtime with the number of particles with a power between 1
and 2.

IV. EXAMPLE OF FOUR-WAY COUPLING

Finally, we present an example simulation of the full four-
way coupled bubbly turbulence in Fig. 10. At contrast with the
artificial test case where bubbles were kept fixed to enforce
uniform density as presented in Fig. 1, here we see that the
amplification of the large and inertial scales vanishes. Instead,
when the bubbles are free to move and preferentially concen-
trate, we observe a slight attenuation of the intermediate to
dissipative scales and a strong amplification of the smallest
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FIG. 10. (a) Energy spectra of the one-phase turbulent flow and the four-way coupled bubbly turbulent flow with average volume fraction
of bubbles ᾱ = 3.5% with size D = 0.8η. (b) Four-way coupled energy spectrum compensated by the one-way energy spectrum. This shows a
slight attenuation of the turbulence at intermediate to dissipative scales and a relatively strong enhancement of the smallest scales. The shaded
regions denote statistical error bars. The resolution is N3 = 1283 and number of particles Np = 262 144 and Taylor-scale Reynolds number
Reλ ≈ 35. Compare with Fig. 1 that is run at enforced uniform particle density.

scales. We argue that the attenuation is an effect of increased
effective viscosity, while the amplification of the smallest
scales can be understood as a redistribution of energy towards
the smallest scales where the particles are active. These find-
ings are qualitatively consistent with earlier experimental and
numerical findings [30,35–37]. In future work, we plan to as-
sess the effect of four-way coupling further using the method
presented here, studying, e.g., the effect on the preferential
concentration, pair dispersion, and energy spectra under the
influence of different concentrations of various particles and
for various Reynolds numbers.

V. CONCLUSIONS AND OUTLOOK

In this work, we have presented a four-way coupling ap-
proach for simulating small particles in a turbulent flow,
tailored towards supporting high number densities of particles
and/or cases of intense particle clustering. While more accu-
rate methods exist, which extend the support of particle sizes
up to the integral scales of turbulence, these more complex
methods compromise on computational efficiency, limiting
the number of particles that can be resolved. Our point-based
method, on the other hand, has a computational cost that is of
a similar order as the one for the evolution of the Eulerian
flow, at least when the number of particles remains of the
same order of the number of Eulerian grid points, which in
practice amounts to millions of particles. This method is thus
well suited for studying the collective effect of large volume
fractions of small submerged particles in turbulent flows as
encountered in plenty of industrial and natural applications
[4].

Moreover, our method can be straightforwardly extended
to more complicated systems, for example when there are
other forces acting on the particle, such as an external driving
force. By extending the equation of motion of the parti-
cle, the feedback mechanism presented here automatically
couples its dynamics to the dynamics of the background turbu-
lence through the mutual momentum exchange. The method
presented here can also be combined with other grid-based

flow solvers, which would allow the treatment of, e.g., wall-
bounded turbulence. Another extension that one can make
is to include rotational dynamics of the particle as well as
its feedback onto the flow, as is laid out in Ref. [38]. The
versatility of this method thus opens up many opportunities to
study a large variety of complex particle-laden fluid systems
in which resolving a large number of particles is important to
capture their collective physical effect.
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APPENDIX A: SCHEME FOR EULERIAN
PSEUDOSPECTRAL SOLVER

For the Eulerian part, a classical pseudospectral approach
is employed. To solve the Navier-Stokes equations,

∂u
∂t

+ u · ∇u = −∇p + ν�u + f , (A1)

under the condition of incompressibility ∇ · u = 0, we write
the velocity field u in terms of its vector potential b as

u = ∇ × b, (A2)

which inherently ensures incompressibility since
∇ · ∇ × b = 0.

Taking the curl of Eq. (A1) and using the definition of vor-
ticity ω = ∇ × u then yields the Navier-Stokes equations in
vorticity-velocity formulation,

∂ω

∂t
= ∇ × (u × ω) + ν�ω + ∇ × f . (A3)
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This can be rewritten as a dynamical equation for the vector
potential by noting that ω = −�b as

−∂�b
∂t

= ∇ × (u × ω) − ν�2b + ∇ × f . (A4)

This equation is solved in spectral k space, where we define
the Fourier transform b̂(k) = F[b(x)]k. Then we can write
Eq. (A4) in the final pseudospectral form

|k|2 ∂ b̂
∂t

= ik × F[u × ω]k − ν|k|4b̂ + ik × f̂ . (A5)

In practice, this equation is evaluated on a finite k space of size
N3. This should be large enough to resolve the smallest active
scale, with the dissipative Kolmogorov scale η, such that the
largest wave number kmax ≈ 2π/η. The nonlinear term F[u ×
ω]k is evaluated in real space by first computing the velocity
and vorticity in real space as

u = F−1[ik × b̂]x, ω = F−1[|k|2b̂]x, (A6)

and then carrying out the cross product between them using
pointwise multiplication and transforming this product back
to the Fourier space. This is the essence of the pseudospectral
method, as evaluating the nonlinear term in spectral space
would involve a convolution of quadratic complexity, while
the Fourier transform can be performed with lin-log complex-
ity, owing to the FFT algorithm [39]. In 3D on an N3 Eulerian
grid, the complexity of the pseudospectral method thus be-
comes O(N3 log N ). For an efficient parallel implementation
of the FFT in 3D, we use the P3DFFT package [33].

The pseudospectral method produces higher harmonics in
the nonlinear term that need to be dealiased. This dealiasing
needs to be done after the nonlinear term is transformed back
into the Fourier space. Our dealiasing approach is laid out in
the main text in Sec. II C.

To solve Eq. (A5), we need to integrate it in time. Let us
rewrite it as

∂ b̂(k, t )

∂t
= cb̂(k, t ) + K (b̂(k, t ), t ), (A7)

where c ≡ −ν|k|2 and K (b̂(k, t ), t ) ≡ |k|−2(ik × F[u ×
ω]k + ik × f̂ ). Then we can solve for the viscosity exactly by
treating it as an integrating factor,

∂

∂t
[b̂(k, t ) exp(−ct )] = K (b̂(k, t ), t ) exp(−ct ). (A8)

Integrating for a small time step dt from tn to tn+1 = tn + dt
then gives

b̂(k, tn+1) = b̂(k, tn) exp(cdt ) + exp(cdt )
∫ dt

0

× exp(−cτ )K (b̂(k, tn + τ ), tn + τ )dτ. (A9)

To evaluate the temporal integral numerically, we employ a
second-order accurate Adam-Bashfort scheme, yielding

b̂(k, tn+1) ≈ b̂(k, tn) exp(cdt ) +
[

3dt

2
Kn exp(cdt )

]

−
[

dt

2
Kn−1 exp(2cdt )

]
, (A10)

where we abbreviated Kn ≡ K (b̂(k, tn), tn) and Kn−1 ≡
K (b̂(k, tn−1), tn−1). This completes the implementation of the
Eulerian part of the numerical method presented here.

APPENDIX B: VALIDATION OF THE ABSENCE OF
SELF-INDUCED MOTION

Here we follow the approach that is put forward in
Ref. [30] to verify that the self-induced motion created by the
two-way coupling mechanism is not influencing the dynam-
ics of the particles significantly. Formally, the Maxey-Riley
equations Eq. (3) assume that the flow field is perturbed by
all other particles except for the particle under consideration
itself. Since it is practically impossible to separate the contri-
butions from the different disturbance fields created by each
particle, we have to assume that the perturbation created by
one particle to the flow field is only negligibly influencing its
own dynamics.

To verify this, we compare the dynamics of particles that
are back-coupled to the fluid to particles that are not back-
coupled to the fluid, which are evolved in the same simulation.
The coupled particles are thus influenced by the perturbations
from all other coupled particles as well as from themselves,
while the uncoupled particles are influenced by the perturba-
tions from all coupled particles but not from themselves. All
particles have the particle-particle excluded volume interac-
tions as considered in the main text.

In Fig. 11, we compare the diffusion of both classes
of particles through their mean-squared displacement
〈[X (t ) − X (0)]2〉. This shows that both classes of particles
diffuse indistinguishably from one another, indicating
that there is no measurable effect of the self-induced
motion.
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FIG. 11. Comparison of the mean-squared displacement of par-
ticles that are back-coupled to the fluid (solid line) and particles that
are not back-coupled to the fluid (dotted line) evolved in the same
simulation. The shaded region indicates the statistical uncertainty.
All particles have excluded volume interactions. The particles are
bubbles of size D = 0.8η and the average volume fraction ᾱ = 3.5%.
The resolution is N3 = 1283 and number of particles Np = 262 144
(half coupled and half uncoupled) and Taylor-scale Reynolds number
Reλ ≈ 35.
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