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Plasma-grating-based laser pulse compressor
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To avoid damage in high-power laser systems, a chirped plasma-based grating is proposed for compressing
laser pulses that have been previously stretched and amplified. This chirped grating is generated through the
interaction of chirped pump laser pulses in a plasma slab. Particle-in-cell (PIC) simulations demonstrate that
the grating exists for a duration sufficient to be utilized in the final chirped pulse amplification (CPA) stage.
The generation of the grating is quite flexible, as several parameters can be adjusted, such as plasma density,
chirp, length, and intensity of the pump laser. To begin, the structure of the grating is analyzed in terms of
ponderomotive effects of the pump laser pulses. The primary application of the chirped plasma-based grating lies
in compressing laser pulses to large amplitudes and short durations after they have been stretched and amplified
beforehand. The compression factor is explored in connection with potential grating parameters. Reflectivity and
effective bandwidth of chirped plasma gratings are parameters to be optimized. However, the grating spectral
bandwidth can only be increased at the expense of reflectivity. The PIC results are made understandable through
model calculations based on coupled mode equations.
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I. INTRODUCTION

To avoid damage of optical components in high-power
laser systems, the Nobel-Prize-worthy chirped pulse amplifi-
cation (CPA) technique was developed [1,2]. Initially, pulse
stretching, amplification, and compression were performed
exclusively by pairs of conventional solid-state components
[3]. The highest peak power is limited by the optical threshold
of the compressor components. Compared to solid-state ma-
terials, plasma—being already ionized—does not suffer from
breakdown at extreme light intensities. Therefore, interest of
the high-intensity laser community is increasingly focused on
plasma-based components to overcome the limitations posed
by solid-state components [4–6]. More and more plasma-
based components are becoming available for shorter laser
pulse duration. The last compressor stage in a CPA chain,
in particular, is of central interest [7]. Obviously, a plasma-
based laser pulse compressor will promote technology. If one
were to succeed in significantly increasing its efficiency, many
applications in various fields would open up, aside from the
breakthrough in basic research. Material processing [8], laser
medicine [9,10], diagnostics of ultrafast processes in atoms
and molecules [11], laser fusion [12], and so on, would defi-
nitely benefit from an increase in intensity.

A plasma-based laser pulse compressor will utilize the
properties of a plasma grating. The plasma grating is a purely
optically generated plasma structure that varies in time on the
ion timescale. Therefore, it can be utilized for manipulating
short, high-intensity laser pulses. The formation of electron
and ion density gratings by the interaction of two counter-
propagating laser pulses has been known for at least 20 years
[13–16]. Since then, many fundamental properties have been
worked out [17–30]. The plasma grating is tunable since its
period can be varied when changing the angle between the
pump pulses. On the other hand, a plasma does not allow

one to manufacture a grating with sharp boundaries and quite
homogeneous amplitude. Typically, a grating is produced by
intersecting pump laser pulses. Their profiles determine the
spatial envelope of the produced grating. Thereby, grating
structures with constant grating periods but space-dependent
envelopes appear [31,32]. A strictly homogeneous plasma
grating with constant amplitude is an idealization whose limits
were discussed [33]. However, understanding the differences
allows us to extend many model statements obtained with
constant grating amplitude to inhomogeneous gratings.

For high-power laser physics, the production of chirped
plasma gratings is a major challenge for the future. One can
learn a lot from the development of fiber optics [3,34–40].
Within the area of fiber optics, refractive index modification
for volume chirped Bragg gratings was proposed [3] by con-
sidering the interaction of a focused laser with a defocused
writing laser. It is still unknown whether this technique can be
transferred to producing chirped plasma-based gratings. We
shall come back to this problem in a subsequent paper. Here
we prefer another idea. A chirped plasma-based grating may
occur when two oppositely propagating chirped pump lasers
interact within a plasma slab. There is also a third idea [41]
which is based on the fact that light reflection from an inhomo-
geneous plasma occurs for different frequencies at different
positions. We will briefly comment on this when analyz-
ing coupled mode equations for inhomogeneous plasma. The
coupled mode equations [42] demonstrate a direct analogy
between a quadratically chirped and a linear inhomogeneous
lattice. However, this correspondence is based on some sim-
plifying assumptions. Therefore, it remains to be examined
whether the predictions actually hold true for plasma situa-
tions. If so, it could potentially offer a simple way to realize a
plasma pulse compressor.

The present work was strongly inspired by a paper by
Edwards and Michel [7]. They proposed a realistic scenario
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for a compact CPA system, in which the final stage comprises
a homogeneous plasma transmission grating. This should
compensate for low angular dispersion. Here, we raise the
question of whether and how a chirped plasma grating can
be produced and subsequently utilized in a CPA system. We
hope that our concept could achieve compression of a chirped
pulse using a single plasma-based device used in reflection,
whereas Ref. [7] used a pair of transmission gratings (one of
which is plasma based).

The paper is organized as follows. After the Introduction,
Sec. II deals with the production of a chirped grating by two
oppositely propagating laser pulses. It contains a first part
where results from a PIC simulation are shown. A subsequent
theoretical interpretation supports the idea that for certain
configurations of the pump lasers a chirped plasma-based
grating occurs. Section III is devoted to a theoretical under-
standing of the spectral properties of the grating. It assumes
a homogeneous grating with chirp. Then, based on coupled
mode equations, analytic solutions are possible. A connec-
tion to the inhomogeneous case with a Gaussian envelope
would be possible by applying a discretization process, with
subsequent transfer-matrix method, for nonuniform gratings
[43]. However, omit this. The analytic solutions are for the
Fourier components of a pulse, i.e., for a plane wave enter-
ing a chirped grating. Different frequency components of a
probe pulse propagate with varying phases [36]. When a broad
spectral range is separated by a grating, the latter separates
different spectral components with varying phases and then
recombines them. Through this combination, the original laser
pulse can be restored and significantly shortened in duration.
Thus, Sec. III is useful for the PIC simulations of Sec. IV
where chirped pulses enter a chirped grating, and leave it
compressed and unchirped. The results of Sec. IV allow for
an estimate of the efficiency of a grating in reflection and the
chirp compensation during compression. Appendices A and B
support the theory presented in Sec. III. In Appendix A 2 we
also show the analogy between chirp and inhomogeneity. A
specific result is that a Gausssian envelope always produces a
correction similar to quadratic chirp. The paper is concluded
by a short summary and outlook.

II. BASIC CHIRPED GRATING CONFIGURATIONS

A. PIC simulations

We begin by studying the formation of density gratings
via the interaction of two chirped laser pulses in underdense
plasma. The plasma is assumed to be fully ionized prior to the
incidence of the pump lasers. We consider counterpropagating
geometry and choose x as the propagation direction. The elec-
tric fields of the pulses in vacuum, before entering plasma, are
given as

E1,2(x, t ) = E0 exp

[
−
(

x ∓ vgt

σ̃

)2
]

× exp {i[ω0(1 + b1,2 t )t ∓ k0x]}, (1)

where 1 belongs to the upper sign and 2 to the lower sign.
Furthermore ω0 is the central frequency, b1,2 is the chirp
parameter for linear chirp, k0 = 2π/λ0, and λ0 is the vacuum

laser wavelength. Since the pulses start in vacuum, the group
velocity vg = ω0/k0 = c. The pulse E1 propagates in the pos-
itive x direction, E2 opposite to that. The coefficients σ̃ and
b1,2 can be easily given in standard form for chirped Gaussian
pulses when we perform a frequency analysis at x = 0. The
Fourier transform E (t ) = 1√

2π

∫ ∞
−∞ E (ω) exp(iωt )dω of

E (ω) = σ

2
exp

(
σ 2(ω − ω0)2

4

)
exp(−iD2[ω − ω0]2), (2)

with the standard coefficient D2 for quadratic phase and
Gaussian envelope width σ , is

E (t ) = σ√
4iD2 + σ 2

exp

(
− σ 2t2

16D2
2 + σ 4

)

× exp

(
i

[
ω0t + 4D2

16D2
2 + σ 4

t2

])
. (3)

This leads to

E0 =̂ A = σ√
4iD2 + σ 2

,
v2

g

σ̃ 2
=̂ B = σ 2

16D2
2 + σ 4

,

b =̂ 1

ω0

4D2

16D2
2 + σ 4

. (4)

Depending on the sign of D2 we have positive (b > 0) or
negative (b < 0) chirp. The minimal pulse duration τmin =
2σ

√
ln(2) is obtained for D2 = 0. For finite D2, the FWHM

duration of the chirped pulse τch is

τch = τmin

√
1 +

(
16D2 ln(2)

τ 2
min

)2

. (5)

For b1,2 > 0, the pulse will be up-chirped, i.e., the instan-
taneous frequency ω will rise from head to tail of the pulse
(irrespective of the propagation direction). The unchirped
case b1,2 = 0 corresponds to the bandwidth limited pulse, the
shortest laser pulse possible given the bandwidth of the laser.
In what follows, we will always assume that the bandwidth
of the laser pulses is constant, i.e., the pulses E1,2 originate
from the same laser. Then |b1,2| �= 0 will always lead to pulses
longer than the bandwidth limited FWHM duration τmin. The
sign of b1,2 determines up- or down-chirp, but has no influence
on pulse duration.

Let us now assume, without loss of generality, that both
pulses have the same amount |b1,2| of chirp. We can then
distinguish between two cases. In the first case, both pulses
are either up- or down-chirped. In the second case, one of the
pulses is up-chirped, the other one is down-chirped. As we
shall discuss later, this second case is equivalent to the situ-
ation where one pulse is unchirped (i.e., bandwidth limited)
and the second pulse is chirped at a rate twice as large.

In order to study the generation of chirped density gratings
we performed PIC simulations using the EPOCH code [44].
In all simulations discussed in the following, the spectral
bandwidth of all laser pulses is the same and the temporal
pulse shape is Gaussian. We define bandwidth as the full width
at half maximum (FWHM) of the magnitude of the electric
field in frequency space, i.e., of |E (ω)|. The pulses only differ
in their spectral phase, i.e., arg[E (ω)] due to the parameter
b1,2. We consider a central laser wavelength of λ0 = 800,
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i.e., ω0 = 2.35 × 1015 s−1, and assume that for b1,2 = 0 we
have pulses with FWHM duration of 30 fs. This corresponds
to a frequency bandwidth �ω = 0.078 ω0 or a wavelength
bandwidth in vacuum of approximately 800 ± 62 nm.

In all simulations, we use 20 cells per λ0 and 250 parti-
cles per cell and per species. We simulate hydrogen plasma
with mobile ions of mass mi = 1836 me, electron temperature
Te = 1 eV and ion temperature Ti = Te/10. In the center of the
simulation box we have an 800 λ0 long plasma slab of initially
homogeneous density n0 = 0.05 nc, where nc = ω2

0ε0me/e2.
To the left and right of the plasma there is sufficient vacuum,
2500 λ0 on each side, to fully cover all incoming and outgoing
laser fields. The position x = 0 is in the center of the plasma,
where the maxima of the two pulses overlap at t = 0.

1. The case b = b1, b2 = 0

We begin by discussing the case where only the laser field
E1 is chirped, i.e., stretched to a longer duration. The second
laser pulse E2 is assumed to be bandwidth limited, i.e., of 30 fs
FWHM duration (b2 = 0). The pulse E+ is chirped such that it
is 100 times longer than the short pulse (b1 = 1.31 × 1010 s−1,
i.e., D2 = 8.1 × 10−27 s2). Both pulses have the same peak
intensity of 2.5 × 1014 W/cm2, implying that the long pulse
carries 100 times the energy of the short pulse. The length of
the total interaction region between the two pulses is mainly
determined by the length of the long pulse and is about
600 λ0 long. The beat electric field of the two overlapping
laser pulses will initiate the formation of an electron density
grating. Wavelength and frequency of the beat field will be
spatially varying due to the chirp of the long pulse.

Figure 1(a) shows the electron density 12.6 ps after the
interaction. In the interaction region, the plasma density is
modulated by fast oscillations with wave numbers k = 2k1,
where k1 = k0

√
1 − n0/nc. Due to the temporal Gaussian en-

velopes of the two laser pulses, the envelope of the density
modulation is also Gaussian [33]. Ion and electron densities
are almost the same. Figure 1(b) shows a spectrogram of the
density modulation, making the changes in the local wave
number visible. The interaction between the two pulses E1

and E2 begins at x = 400 λ0, where the low-frequency compo-
nents of E1 beat with the unchirped pulse E2. Towards the end
of the interaction, E2 propagated to x = −400 λ0, beating with
the high-frequency components of E1. The result is a linearly
chirped plasma density grating.

2. The case b1 = b2 = b

When b1 = b2 = b, both laser pulses E1 and E2 have the
same chirp. Both pulses are now either up- or down-chirped,
depending on the sign of b. Independent of the precise value
of b, the resulting plasma density grating is not chirped, and,
as we shall discuss in Sec. II B, the length of the grating as
well as the modulation period is practically equivalent to that
resulting from the interaction of two unchirped pulses of same
bandwidth.

Figure 2 shows the plasma density grating result-
ing from the interaction of two up-chirped pulses with
b = 1.3 × 1011 s−1 (i.e., D2 = 8.1 × 10−28 s2) of intensity
2.5 × 1014 W/cm2. This chirp rate corresponds to a tenfold
temporal stretching of the original 30 fs pulse. For comparison

(a)

(b)

FIG. 1. (a) Electron density (blue) ne at t = 12.6 ps, fast oscil-
lations on scale of λ0/2 can be seen in the inset. The envelope of
the density variation is shown as red solid line, the initial density
profile is shown as black dashed line. (b) Normalized spectrogram
of the electron density variation δne = ne − n0 for ne shown in (a),
depicting which wave number contributes to the density oscillation
at which position in the plasma grating. Shown are the respective
Fourier amplitudes on a linear scale. The black dashed line shows
the analytic result discussed at the end of Sec. II B 3.

Fig. 2 additionally shows the density grating driven by to two
unchirped 30 fs pulses with intensities of 2.5 × 1015 W/cm2.
The two gratings in Fig. 2 are identical. This seemingly un-
spectacular result has important practical consequences for
the production of plasma gratings in experiments. It shows
that residual chirp on the driving pulses E1,2 does not harm

FIG. 2. Electron density ne at t = 4.7 ps resulting from the inter-
action of two up-chirped laser pulses of 300 fs duration with intensity
2.5 × 1014 W/cm2 (solid gray line). The density modulation result-
ing from the interaction of two unchirped 30 fs long pulses with
intensity 2.5 × 1015 W/cm2 is shown as a red dashed line. The black
dash-dotted line shows the envelope of the density modulation as
obtained from the analytic estimate (20).
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the production of gratings, as long as both pulses have the
same chirp profile.

B. Basic understanding of the grating structures
observed in PIC simulations

In this interpretative section, we describe the chirped laser
pulse as

E (τ ) = Ae−Bτ 2
eiω0(τ̃+bτ̃ 2 ). (6)

We distinguish between phase propagation with phase ve-
locity ω0

k0
(described by the retarded time τ̃ ) and envelope

propagation with group velocity vg (described by the retarded
time τ ). When assuming n0 � nc, then ω0 ≈ ck0 applies. In
that case, a distinction between τ and τ̃ is no longer necessary,
and the representation would be somewhat simplified.

Pulse 1 should propagate from left to right and has retarded
times

τ → τ1 = t̄ − 1

vg
(x + x0), τ̃ → τ̃1 = t̄ − k0

ω0
(x + x0),

(7)

when starting at time t̄ = 0 at x = −x0 < 0. We reserve the
determination of the time origin and therefore denote the time
as t̄ . On the other hand, pulse 2 should propagate from right

to left and has retarded times

τ → τ2 = t̄ + 1

vg
(x − x0), τ̃ → τ̃2 = t̄ + k0

ω0
(x − x0),

(8)

when starting at time t̄ = 0 at x = x0.
The ponderomotive potential will be proportional to the

product E1 E∗
2 + c.c. We first calculate the contribution from

the envelopes, starting with the cases B1 = B2 ≡ B:

S1 := e−Bτ 2
1 e−Bτ 2

2 = exp

[
− σ 2

16D2
2 + σ 4

(
2

v2
g

x2 + 2t2

)]
(9)

with t = t̄ − 1
vg

x0. On the other hand, for b2 = 0 and b1 ≡ b,
we obtain

S1 := e−Bτ 2
1 e−σ−2τ 2

2 = exp

[
− 16D2

2 + 2σ 4(
16D2

2 + σ 4
)
σ 2

(
1

v2
g

x2 + t2

)]

× exp

[
−16D2

2(
16D2

2 + σ 4
)
σ 2

2

vg
x t

]
. (10)

Now, t = 0 corresponds to maximum overlap of the two pump
pulses.

Next, we evaluate the product of the phase factors

S2 := eiω0(τ̃1+b1 τ̃
2
1 ) e−iω0(τ̃2+b2 τ̃

2
s ). (11)

A short calculation leads to

S2 =

⎧⎪⎪⎨
⎪⎪⎩

exp {−2ik0x[1 + 2b(t + tε )]} for b = b1 = +b2,

exp
{ − 2ik0x

(
1 − k0

ω0
bx

)}
e2ibω0(t+tε )2

for b = b1 = −b2,

exp
{ − 2ik0x

[
1 − k0

ω0

b
2 x + b(t + tε )

]}
eibω0(t+tε )2

for b = b1, b2 = 0,

(12)

where

tε =
(

1

vg
− k0

ω0

)
x0 ≈ 0. (13)

In most cases, the limit 16D2
2 � σ 4 will be of special interest

since that limit covers the situation with significant chirp.

1. The case b = b1 = −b2 �= 0

The forecast for that case of interacting chirped pump
lasers of opposite chirp is straightforward. A spatially chirped
grating with linear chirp should appear. The grating should
have a spatial density variation

δn

n0
∼ a(x) cos

[
2k0x

(
1 − k0

ω0
bx

)]
. (14)

Its Gaussian-type envelope a(x) should be proportional to

a(x) ∼ exp

(
− 2

v2
g

σ 2

16D2
2 + σ 4

x2

)
≈ exp

(
− 1

v2
g

σ 2

8D2
2

x2

)
.

(15)

The chirp factor increases the width.

Summarizing, a chirped grating appears with varying wave

number K = 2k0 − 2k2
0 b

ω0
x. The grating is of Gaussian form

with a width (FWHM), e.g., for 16D2
2 � σ 4,

W =
√

2 ln 2 vg

√
16D2

2 + σ 4

σ
≈ 4

√
2 ln 2 vg

|D2|
σ

. (16)

Its width increases with chirp of the pumps.

2. The case b = b1 = +b2 �= 0

In this case, a grating with fixed lattice spacing

δn

n0
∼ a(x) cos [2k0x] (17)

appears. For its envelope distribution two factors arising from
(9) and (12) are relevant, namely

exp

[
− 2σ 2t2

16D2
2 + σ 4

]
and exp [−4ik0bx(t + tε )]. (18)
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Let us consider the integral∫
e−2Bt2

exp [−4ik0b(t + tε )x] dt

= 1

2
√

2

√
π

B
exp

{
−2k2

0b2x2

B

}
erf

(√
2Bt + i

2k0bx√
2B

)
× exp(−4ik0btεx). (19)

The overlapping of pulses occurs during a short time com-
pared with the total existence time of the grating. Therefore,
we average over time such that for tε ≈ 0 the x depen-

dence exp{− 2k2
0 b2x2

B } survives together with a constant factor.

We combine with exp(− σ 2

16D2
2+σ 4

2
v2

g
x2) from (9) to obtain the

product

exp

(
−2k2

0b2x2

B

)
exp

(
− σ 2

16D2
2 + σ 4

2

v2
g

x2

)

= exp

(
−2x2

σ 2

1

v2
g

)
e−εx2

(20)

with

ε = 2

σ 2

16D2
2

16D2
2 + σ 4

(
k2

0

ω2
0

− 1

v2
g

)
≈ 0 for n0 � nc. (21)

Summarizing, no chirp appears in the grating. The grating
is of Gaussian form with a width (FWHM)

W =
√

2 ln 2 vgσ (22)

for tε ∼ ε ≈ 0. Its width does not depend on the chirp of the
pumps.

3. The case b1 = b, b2 = 0

This encompasses both effects encountered in preceding
subsections, namely chirp and length modification. First, a
spatial density variation with chirp,

δn

n0
∼ a(x) cos

[
2k0x

(
1 − k0

ω0

b

2
x

)]
, (23)

occurs. Second, for the calculation of the width in x we need
the integral∫

e−(A1−iA4 )t2−(A2+iA3 )tx dt

= 1

2

√
π

A1 − iA4
exp

{
(A2 + iA3)2x2

4(A1 − iA4)

}

× erf

(√
A1 − 4A4t − A2 + iA3

2
√

A1 − iA4
x

)
(24)

with appropriate definitions of A1, A2, A3, and A4, which can
be deduced from (10) and (12).

Without repeating similar calculations as before, we sum-
marize that the envelope of the grating is of Gaussian form.

For 16D2
2 � σ 4, its spatial width (FWHM) is

W = 4
√

ln 2 vg
|D2|
σ

. (25)

The situation where only one pulse is chirped and the
other is not corresponds to the case of two oppositely chirped
pulses with half the value of b. Figure 1(b) then allows a
comparison to Eq. (14). The gradient d (k/k0)/d (x/λ0) can
be visually estimated from Fig. 1(b) as 3 × 10−4. Taking the
spatial derivative of the phase in the cosine term in Eq. (14)
results in d (k/k0)/d (x/λ0) = 4πb/ω0 = 2.8 × 10−4.

III. SPECTRAL PROPERTY OF HOMOGENEOUS
GRATING WITH LINEAR CHIRP

A. Solution of coupled mode equations
for single spectral components

To analyze the spectral properties of the obtained chirped
grating (however, in constant envelope approximation) we
start from the standard coupled mode equations (A16) and
(A17) for

D ≡ 0, C = const., ϕ(ξ ) = β(ξ − ξ0)2. (26)

We assume propagating plane waves (Fourier modes) within
the slowly varying envelope approximation. The notation fol-
lows from Appendix A. Then, the basic equations are

du(ξ )

dξ
= i

[
1

N2
0

� − β(ξ − ξ0)

]
u(ξ ) + iC0 v(ξ ), (27)

dv(ξ )

dξ
= −i

[
1

N2
0

� − β(ξ − ξ0)

]
v(ξ ) − iC0 u(ξ ), (28)

where β and C0 = 1
4 (1 − 1

N2
0

)C < 0 are constants. The vari-
able u corresponds to the envelope of the incoming (and
transmitted) wave while v describes the reflected wave. As
before, the frequency mismatch � is a fixed parameter. In that
case, analytic solutions are possible.

Let us rewrite Eqs. (27) and (28) with

Z (ξ ) = 1

N2
0

�ξ − 1

2
ϕ(ξ ), Z ′(ξ ) = 1

N2
0

� − β(ξ − ξ0),

Z ′′(ξ ) = −β, (29)

and introduce

ū = ue−iZ , v̄ = veiZ . (30)

Then we obtain

d2ū(ξ )

dξ 2
+ 2iZ ′ dū(ξ )

dξ
− C2

0 ū = 0, (31)

d2v̄(ξ )

dξ 2
− 2iZ ′ d v̄(ξ )

dξ
− C2

0 v̄ = 0. (32)

We may transform this set of equations into standard forms
for known polynomials by defining the dimensionless space
variable

ζ = C0(ξ − ξ0) − C0

βN2
0

� � ξ = ζ

C0
+ �

N2
0 β

+ ξ0, (33)

and changing the dependent variables into

U (ζ ) ≡ ū(ξ ), V (ζ ) ≡ v̄(ξ ). (34)
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Note that

V (ζ ) = −i
dU (ζ )

dζ
e2iZ , (35)

U (ζ ) = −i
dV (ζ )

dζ
e−2iZ (36)

holds. The set of equations

d2U

dζ 2
= iχ1ζ

dU

dζ
+ U, (37)

d2V

dζ 2
= −iχ1ζ

dV

dζ
+ V (38)

with

χ1 = 2β

C2
0

(39)

will appear. The system of differential equations can be solved
in various ways.

Here, in the main text, we present a solution with Kummer
functions. Alternatively, one may use Hermite polynomials as
shown in Appendix B.

Starting from Eqs. (37) and (38), we now introduce the new
coordinate

z = i

2
χ1ζ

2. (40)

Then the coupled mode equations become

z
d2U

dz2
+

(
1

2
− z

)
dU

dz
+ i

1

2χ1
U = 0, (41)

z
d2V

dz2
+

(
1

2
+ z

)
dV

dz
+ i

1

2χ1
V = 0. (42)

For the first equation, two independent solutions can be writ-
ten in terms of confluent hypergeometric functions of the first
kind, also known as Kummer functions M(a, b, z) as (see also
Ref. [36])

U1(ζ ) = M

(
−i

1

2χ1
,

1

2
,

i

2
χ1ζ

2

)
, (43)

U2(ζ ) = ζ M

(
1

2
− i

1

2χ1
,

3

2
,

i

2
χ1ζ

2

)
. (44)

Similarly for the second equation

V1(ζ ) = M

(
i

1

2χ1
,

1

2
,− i

2
χ1ζ

2

)
, (45)

V2(ζ ) = ζ M

(
1

2
+ i

1

2χ1
,

3

2
,− i

2
χ1ζ

2

)
. (46)

From here we define the general solutions with so far arbitrary
coefficients A1, A2, B1, and B2, i.e.,

U (ζ ) = A1 U1(ζ ) + A2 U2(ζ ), (47)

V (ζ ) = B1 V1(ζ ) + B2 V2(ζ ). (48)

In addition, we use (35) and (36) with

Z = �

N2
0

[
1

2

�

N2
0 β

+ ξ0

]
− β

2C2
0

ζ 2. (49)

The boundary condition V (ζ+) = 0 leads to

ρ ≡ B2

B1
= −

M
(
i 1

2χ1
, 1

2 ,− i
2χ1ζ

2
+
)

M
(

1
2 + i 1

2χ1
, 3

2 ,− i
2χ1ζ

2+
) , (50)

where ξ0 = 2πN0x0. For further relations we do not use a
normalized input at ζ = ζ−. Instead, we compare the series
expansion of U (ζ ) with that of V (ζ ) making use of (35) and
(36). A short calculation leads to

A1

B2
= ie−iθ ,

B1

A2
= −ieiθ , θ = 2

�

N2
0

[
1

2

�

N2
0 β

+ ξ0

]
,

ρ = B2

B1
= A1

A2
. (51)

For calculating reflection and transmission, respectively, the
two quantities

r = ṽ(ξ−)

ũ(ξ−)
= exp

[
−4π iN0� + i

�2

N4
0 β

− i
π

2

]

× V1(ζ−) + ρV2(ζ−)

ρU1(ζ−) + U2(ζ−)
, (52)

t = ũ(ξ+)

ũ(ξ−)
= exp

[
−4π iN0�

(
1 − 1

N2
0

)
L

]

× ρU1(ζ+) + U2(ζ+)

ρU1(ζ−) + U2(ζ−)
(53)

are obtained with the help of (51). Then, the reflection coeffi-
cient R and the transmission coefficient T follow from

R = |r|2 =
∣∣∣∣ V1(ζ−) + ρ V2(ζ−)

ρ U1(ζ−) + U2(ζ−)

∣∣∣∣2 (54)

and

T = |t |2 =
∣∣∣∣ρ U1(ζ+) + U2(ζ+)

ρ U1(ζ−) + U2(ζ−)

∣∣∣∣2. (55)

These formulas lead to results that are identical to (B11) and
(B12), respectively.

Note that in (A5) the normalized frequency mismatch �

is defined with respect to ω0. However, when we choose
x0 = −L, the resonance frequency ω0 occurs at the entrance
of the grating, i.e., at x = −L. Very often, the frequency
deviation is defined with respect to the resonance frequency
in the middle of the grating, i.e., at x = 0. In that case, we
shift � by 2πN0|β|L. This shift becomes obvious from (A9)
and (A10). We may write in nondimensional form

ψ = 4πN0x + 4π2N2
0 β(x − x0)2, (56)

leading via keff = ∂�/∂x to

keff = 4πN0[1 + 2πN0β(x − x0)] (57)

for the effective wave number of the grating. Therefore, we
introduce

�̃ = � + 2πN0|β|L (58)

for the following plots when the resonance frequency occurs
in the middle of the grating.
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B. Forecasts for parameter dependencies

Next we discuss the properties of a more realistic chirped
plasma-based grating. We pose the question of effectiveness
by varying different parameters. The grating (for b1 = b and
b2 = 0) may be written in the form

δne = C cos
[
4πN0x + 4π2N2

0 β(x − x0)2
]
, (59)

where the density perturbation δne is normalized by n0 and x
is normalized by λ0. For the theoretical forecast, the grating is
assumed to be spatially homogeneous, existing in the region
−L � x � L.

We start now from the parameter set

L ≡ L0 = 270, β ≡ β0= − 2.35 × 10−5, C ≡ C0 = 0.2,

(60)

and n0 = 0.05nc. The initial position is x0 = −L, where the
grating starts with wave number 2k0. As before, shifting the
resonance to the center of the grating is done afterwards by
changing � to �̃. The sign of the grating chirp is such that the
probe pulse arrives on the side of the grating where the large
wave numbers are.

1. Reflection in dependence of various parameters

We use (54) and (55) to study how variations of these
parameters affect reflection and transmission. For clarity of
presentation, we will only discuss reflection as transmission
follows via T = 1 − R. Even though in a realistic setting
grating amplitude, length, and chirp will depend on each other,
we shall treat them as independent for this section in order to
see the influence of each parameter separately.

Let us start with a variation of the chirp parameter β; re-
sults are shown in Fig. 3(a). We observe a clear dependence on
the strength of the chirp parameter for both the bandwidth and
the strength of the reflection behavior. Within the reflection
windows, different frequencies are reflected with almost the
same amplitudes. The observed oscillations in the reflection
coefficient are similar to earlier predictions for Bragg gratings
with linear chirp [36,40]. Obviously, chirp increases the win-
dow width (bandwidth) while decreasing the reflectivity.

Next, we vary the strength of the grating, i.e., the param-
eter C. Results are shown in Fig. 3(b). Increasing the grating
amplitude obviously does not alter the bandwidth in � for the
reflection. However, it does lead to the expected increase in
the reflection rate.

Finally, we vary the total length 2L of the grating. Results
are shown in Fig. 3(c). Varying the length of the grating results
in a change in the reflection window. Longer lattices allow
for a larger bandwidth in �. However, the length does not
significantly influence the strength of the reflection.

2. Bragg reflection points

Different frequency contributions are effectively reflected
at different depths in the grating. A typical example is de-
picted in Fig. 4.

Two understand this phenomenon, we briefly refer to the
standard theory of Bragg reflection. A first estimate can
be obtained along the following line. Recognizing relatively
small windows for reflection in the chirpless case β = 0,
we introduce a coarse grained detuning parameter �̄ which
corresponds to the center of the chirpless reflection window.

(a)

(b)

(c)

FIG. 3. (a) Kummer function solutions of (37) and (38) for chirp
rates β0/2 (blue line), β0 (orange line), and 2β0 (red line). Grat-
ing amplitude C = 0.2 and length L = 270 are fixed. (b) Results
for fixed chirp rate β0 and fixed grating length L0, but amplitudes
C = 0.1 (blue line), C = 0.2 (orange line), and C = 0.3 (red line),
respectively. (c) Results for variation of the grating length L = L0/2
(blue line), L = L0 (orange line), and L = 2L0, respectively. Grating
amplitude C = 0.2 and chirp rate β0 are fixed. Shown in all panels
is the reflection coefficient R in dependence of frequency mismatch
� = �̃.

We have �̄ = 0 for β = 0. Then, using (57) we estimate the
points of reflection xB from

�̄ ≈ 2πN0β(xB − x0). (61)

For x0 = −L

xB = �̄

2πN0β
− L (62)

follows. When analyzing the distributions in Fig. 4, we find
excellent agreement with the analytic prediction. Note that
� = −0.01 might be interpreted as �̄ ≈ 0 and � = −0.08
as �̄ ≈ −0.08 ± 0.01.
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FIG. 4. Absolute value of the transmitted wave amplitude as a
function of x for different frequencies � as obtained from Hermite
function solutions (B6). Parameters are (60). Clearly, for the different
frequencies, the points of effective reflection are different.

The more precise method, almost used as standard [36],
calculates the group delay starting from (52),

f = d arg(r)

d�
= d Im ln(r)

d�
. (63)

Various contributions can be identified. Around a mean slope,
there are ripples, also called chirped oscillations. Additional
oscillations occur at the border of significant reflection In our
case, the mean slope can be identified form the first (exponen-
tial) factor on the right-hand side (r.h.s.) of (52). It shows the
same behavior ∼�

β
as estimated in (62). The r.h.s. of (52),

at least concerning the first factor, also explains the result
already shown in Fig. 3(c), namely that the strength of the
reflection does not depend on the length L.

IV. PULSE COMPRESSION BY A CHIRPED
PLASMA GRATING

Chirped plasma density gratings could provide the means
to compress chirped high-power laser pulses in reflection,
very similar to conventional solid-state gratings in CPA
schemes. Solid-state gratings usually have to be operated at
fluences below 0.1 J/cm2 for 30 fs pulses, translating to peak
intensities of about 1012 W/cm2. Such intensities are close
to the ionization threshold of solid-state material, which is
why the compressor gratings have to be adequately sized
(several hundreds of cm2 for petawatt systems). Repetition
rates of CPA-based laser systems at the same time are cur-
rently limited to about 1 Hz (PW level lasers) to 10 Hz (0.1
PW level lasers). Higher rates are desirable to increase the
average power which in turn increases average power of, e.g.,
laser driven radiation or particle sources. Current limitations
in repetition rate are mainly due to pumping processes of the
laser, cooling of the amplifiers, but also due to heat induced
deformation of the compressor gratings [45–47].

Plasma compressor gratings could provide remedy for two
issues. Their damage threshold is usually determined by the

fact that the density modulation should not be altered by
the ponderomotive potential of the probe pulse. This trans-
lates for typical underdense plasmas to intensities close to
1017 W/cm2, i.e., five orders of magnitude higher than for
solid-state gratings. At the same time, one could use a fresh
plasma grating for every shot, which could allow for repetition
rates far beyond a few Hz.

A. PIC results

To demonstrate that pulse compression is possible, we
study the reflective properties of the grating previously dis-
cussed in Sec. II. Once the grating is fully established, we
continue the simulation and send a chirped laser pulse onto
the grating. The chirp rate of this probe pulse is the same
as that of the chirped driver pulse. If the compression was
perfect, we would expect the reflected pulse to have a 100
times shorter duration and at the same time a 100 times higher
intensity. For demonstration purposes we use a probe intensity
of 1014 W/cm2. Figure 5 shows the electric field of the incom-
ing probe (moving from left to right) and that of the reflected
part of the probe. The fields in Fig. 5(a) are normalized to the
maximum of the incoming pulse. The reflected pulse is clearly
very much shorter than the incoming pulse, but the maximum
electric field is only about 5 times larger than that of the
incoming pulse. The intensity of the reflected pulse is about
27 times larger. The main reason for not achieving an intensity
increase by a factor of 100 is that about 50% of the incoming
laser energy is transmitted by the grating. In particular ener-
gies of frequencies in the wings of the probe spectrum are not
sufficiently reflected. This decreases the de facto bandwidth of
the laser pulse. Accordingly, we measure a FWHM duration
of the reflected pulse of about 50 fs. The spectrum of the
reflected pulse has almost a flat phase, i.e., little residual chirp,
which is mostly quadratic chirp, originating from the spatial
inhomogeneity of the grating amplitude. Overall, the grating
reflects 50% of the pulse energy and produces spectral nar-
rowing, leading to an increase in pulse duration. An increase
in plasma temperature from Te = 1 eV to Te = 10 eV results
in about 10% less total reflected energy.

The coupled mode equations show that reflectivity and
effective bandwidth of chirped plasma gratings are parame-
ters to be optimized. The grating spectral bandwidth can be
increased at the cost of reflection efficiency. We shall leave
this optimization process for a future work, addressing in
more detail a realistic implementation of a holographic CPA
compressor grating.

B. Comparison of PIC results with model predictions

Let us use parameters approximating the situation dis-
cussed in Sec. II. We choose the values (60). The initial
position is x0 = −L, where the grating starts with wave num-
ber 2k0. The sign of the grating chirp is such that the probe
arrives at the side of the grating where the large wave numbers
are.

Figure 6 shows the result for the reflection coefficient ob-
tained from (54) and compared to the corresponding spectral
data of the PIC simulation. From the PIC data shown in
Fig. 5(b) R is obtained by normalizing per frequency the
absolute reflectivity to the incoming spectral amplitude. We
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(a) (b)

FIG. 5. (a) Reflection of an incoming chirped pulse (blue) by a chirped plasma grating (position indicated by gray line), resulting in a
strongly compressed reflected pulse (red line). Shown are the electric fields of the laser pulses normalized to the maximum of the incoming
laser pulse. The plasma density ne/nc has been scaled by a factor 20 for better visibility. The incoming laser pulse has a maximum intensity
of 1014 W/cm2. (b) Energy spectrum |E (k)|2 of incoming probe pulse (dashed line), reflected pulse (red line), and transmitted pulse (orange
line).

find that the two curves in Fig. 6 show good agreement in
terms of width and maximum amplitude. The analytic curve,
however, predicts a steeper rise and fall of the reflectivity, re-
spectively, in the wings. The PIC results show a more smooth,
Gaussian-like profile. We attribute this to the fact that the
actual grating has a smooth Gaussian envelope [indicated by
the solid line in Fig. 1(a)], compared to the assumption of a
constant amplitude grating in the analytic model. Neverthe-
less, the overall agreement between the two results is good.

V. SUMMARY AND OUTLOOK

The present work addresses the question of how a plasma-
based grating can be generated and utilized for compressing
previously amplified broad laser pulses. In addition to other
proposals, the superposition of two chirped pump lasers is
employed here, inducing density fluctuations in a plasma.
Depending on the configuration of the pump lasers, ei-
ther chirped or unchirped inhomogeneous grids are formed.
Simple theoretical analysis demonstrates that ponderomotive
forces are responsible for this phenomenon. The analytical
considerations fully support the results of PIC simulations.

Following a thorough understanding of grid formation, the
transmission and reflection behavior of individual spectral

FIG. 6. Reflection coefficient R as obtained from (54) (orange
solid line) for parameters resembling the chirped grating shown in
Fig. 1(a). The black dashed line shows the reflection coefficient
obtained from the PIC results shown in Fig. 5(b).

components (plane waves) is examined using a simple model.
This involves the coupled mode equations, which can be an-
alytically solved in the case of a homogeneous chirped grid.
The assumption of homogeneity could be overcome by con-
necting individual layers in series and solving analytically for
each layer. However, we refrain from this enhancement here,
as we already know from previous work [33] the differences
between homogeneous and Gaussian gratings.

The analytical model calculations are particularly interest-
ing because they allow for simple predictions regarding the
behavior of the grid depending on various parameters such as
chirp rate, amplitude, and length of the pump pulses. They
apply to individual spectral components of an input pulse,
and we can assume that their superposition fairly represents
the pulse behavior. The latter is precisely demonstrated in the
third part of the paper, where PIC simulations simulate the
interaction of a chirped probe pulse with the chirped plasma-
based grating. This allows for a very good estimation of the
bandwidth.

For applications, central questions revolve around the life-
time and quality of the grating, as well as potential repetition
and compression rates. We have only presented exemplary
cases in this regard. A systematic investigation is still pending.
We consider the present work as a proof of principle and hope
for experimental realization. In this regard, we find ourselves
in a constructive comparative situation with the plasma-based
concept of a transmission grating for the compression of high-
intensity laser pulses [7]. The latter currently seems to be
somewhat closer to experimental realization. The theoretical
evaluations presented here appear to show similarly favorable
values as in Ref. [7]. However, as theoreticians, we should
not speculate too much about the potential advantages or
disadvantages of our plasma-based reflection grating concept
but rather leave that evaluation to the experimental physicists.
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APPENDIX A: COUPLED MODE EQUATIONS
FOR A GRATING WITH LINEAR CHIRP

The coupled mode system will be used to interpret the
numerical PIC results. We first set up the basic equations.
Subsequently we discuss appropriate boundary conditions to
determine the transmission and reflection coefficient. As a
byproduct of the general formulation, we can infer the in-
fluence of inhomogeneous density variations compared to the
chirp effect. The investigation benefits from previous papers
[14,15,36,48,49] on group delay in Bragg gratings with linear
chirp.

Within a coupled mode analysis we start with incident
plane waves. The individual waves can be interpreted as spec-
tral contributions to pulses. Therefore, the reflections shown
here are not directly applicable to the reflected pulses in PIC
simulations. Nevertheless, they will be extremely helpful for
interpreting the PIC results.

1. General form

We consider a plane test wave E ∼ e−iωt with frequency
ω such that (before normalization) the stationary amplitudes
will be obtained from

d2E

dx2
+ k2 N2

N2
0

E = 0 (A1)

with

k ≡ ωN0

c
, N =

√
1 − ω2

pe

ω2
. (A2)

N is the refractive index, and N0 is a reference index. Ob-
viously, when the test wave frequency approaches the pump
frequency, i.e., ω → ω0, we have

k → k1 ≡ ω0N0

c
, N → N0 =

√
1 − ω2

pe

ω2
0

. (A3)

From the (dimensional) wave number k1 and the (dimen-
sional) space-coordinate x we may construct the nondimen-
sional variable

ξ = k1x = k1

k0
k0λ0︸︷︷︸

2π

x

λ0
=̂ 2πN0x, (A4)

where, in the last term on the r.h.s., x is dimensionless,
i.e., normalized by λ0. Normalization is performed using the
following units. We normalize frequency ω by the pump
frequency ω0, time t by 2π/ω0, distances with the laser
wavelength λ0 in vacuum, and wave numbers k by k0 ≡ 2π

λ0
.

In plasma, the pump wave number is k1 = k0N0 with N0 =√
1 − n0/nc. The (constant) mean density n0 will be used

for density normalization, while the velocity of light c is the
velocity unit. Then, 2k1x → 4πN0x in nondimensional form.
For the (normalized) frequency mismatch � we find

� = ω − 1 � k2 ≈ k2
1 (1 + 2�) (A5)

for |�| � 1. Also

N2 ≈ N2
0

(
1 +

[
1 − 1

N2
0

]
δne −

[
1 − 1

N2
0

]
2�

)
(A6)

and

k2 N2

N2
0

≈ k2
1

(
1 +

[
1 − 1

N2
0

]
δne + 2

N2
0

�

)
. (A7)

The electron density variation δne is driven by the pondero-
motive force and (at least in the first part of the present
discussion) may have an inhomogeneous contribution δninh

e ∼
D. We write the ansatz in generalized form as

δne = 1
2C(x)(eiψ + e−iψ ) + D(x), (A8)

where the coefficients C and D may still be space dependent.
Furthermore,

ψ = 2ξ + ϕ(ξ ). (A9)

We allow for a (nonlinear) phase ϕ which becomes essential
for chirped gratings. For example, linear chirp is equivalent to
a quadratic phase

ϕ(ξ ) = β(ξ − ξ0)2. (A10)

The (normalized) wave equation (A1) takes the form

d2E

dξ 2
+

{
1 + 2

N2
0

� +
[

1 − 1

N2
0

]
D(ξ )

+1

2

[
1 − 1

N2
0

]
C(ξ )

(
e2iξ+iϕ + e−2iξ−iϕ

)}
E = 0. (A11)

For the electric field E we make the ansatz

E (ξ ) = a+(ξ )eiξ + a−(ξ )e−iξ , (A12)

with slowly varying envelopes a±. Later, we shall generalize
to carrier wave numbers k �= k1. Within a slowly varying
envelope approximation one obtains

da+
dx

= iπN0

[
2

N2
0

� +
(

1 − 1

N2
0

)
D

]
a+

+ i
πN0

2

(
1 − 1

N2
0

)
Ceiϕa−, (A13)

da−
dx

= − iπN0

[
2

N2
0

� +
(

1 − 1

N2
0

)
D

]
a−

− i
πN0

2

(
1 − 1

N2
0

)
Ce−iϕa+. (A14)

As mentioned already in several places, x is dimensionless
(normalized by λ0). For the amplitudes u and v, which are
defined through

a+(ξ ) = u(ξ )eiϕ/2, a−(ξ ) = v(ξ )e−iϕ/2, (A15)

the standard coupled mode equations

du(ξ )

dξ
= i[σ (ξ ) u(ξ ) + κ (ξ ) v(ξ )], (A16)

dv(ξ )

dξ
= −i[σ (ξ ) v(ξ ) + κ (ξ ) u(ξ )] (A17)
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appear. Here,

σ (ξ ) = 1

N2
0

� + 1

2

(
1 − 1

N2
0

)
D(ξ ) − 1

2

dϕ

dξ
, (A18)

κ (ξ ) = 1

4

(
1 − 1

N2
0

)
C(ξ ). (A19)

2. Discussion of inhomogeneity versus chirp

Now we would like to point out an interesting general
point. Equation (A18) shows that two terms occur side by side,
namely a possible inhomogeneity in density and the derivative
of the phase, i.e.,

1

2

(
1 − 1

N2
0

)
D(ξ ) =̂ − 1

2

dϕ

dξ
. (A20)

From this, we can conclude that linear chirp and linear density
variation are equivalent to each other.

Since plasma gratings are produced by pump pulses with
nonconstant envelopes, the generation of a pure linear density
grating might be difficult (or even impossible).

In applications, exponential variations might appear in
addition, i.e.

D(ξ ) ∼ exp

(
−ξ 2

ξ 2
0

)
(A21)

might additionally occur. The latter then corresponds to a
certain behavior of ϕ, namely

ϕ(ξ ) ∼ −
∫ ξ

D(ξ ′)dξ ′ ∼
√

π

2
erf

(
ξ

ξ0

)
. (A22)

Since the Taylor series of the error function is

erf(x) ≈ 2√
π

x − 2

3
√

π
x3 + O(x5), (A23)

we always expect from a Gaussian inhomogeneity a third-
order phase contribution, which should be minimized. In other
words, it will be challenging to produce a grating with a purely
linear chirp. Corrections due to quadratic chirp can always be
expected due to the inhomogeneous envelopes.

3. Boundary conditions

Now a few remarks concerning boundary conditions and
the definition of reflection as well as transmission coefficients.
Since in nondimensional form

2πN0(1 + �)x = 2πkx, (A24)

we may introduce

σ = � − 1

2

dϕ

dξ
+ σ̄ , ũ = u e−i�ξ+iϕ/2, ṽ = v ei�ξ−iϕ/2,

(A25)

to obtain the test electric field (in non-dimensional form) with
appropriate carrier wave number k,

E = ũ(ξ ) e2π ikx + ṽ(ξ ) e−2π ikx. (A26)

The corresponding modified coupled mode equations are
dũ(ξ )

dξ
= i[σ̄ (ξ ) ũ(ξ ) + κ (ξ ) e−2i�ξ+iϕ ṽ(ξ )], (A27)

d ṽ(ξ )

dξ
= −i[σ̄ (ξ ) ṽ(ξ ) + κ (ξ ) e2i�ξ−iϕ ũ(ξ )] (A28)

with

σ̄ (ξ ) = 2πN0

(
1 − 1

N2
0

)[
1

2
D(ξ ) − �

]
. (A29)

When solving the coupled mode equations for a finite grat-
ing we remind the reader that ω0 is the fixed frequency of the
pumps creating the grating. The variable probe frequency is ω.
Thus, with respect to the boundaries and the space variables,
the transformation ξ = 2πN0x is straightforward since for
fixed n0/nc the factor N0 will be constant.

For the region −L � x � L we use the boundary condi-
tions ũ(x = −L) = 1 and ṽ(x = L) = 0. Then, the reflection
coefficient R and the transmission coefficient T follow via

r = v(x = −L)e−i2πN0�L+iϕ(x=−L)/2

→ R ≡ |r|2 = |v(x = −L)|2, (A30)

t = u(L)e−i2πN0�L+iϕ(x=L)/2 → T ≡ |t |2 = |u(L)|2. (A31)

APPENDIX B: SOLUTION WITH HERMITE
POLYNOMIALS

Here we present an alternative method for the solution of
the basic equations (37) and (38). Solutions are the Hermite
polynomials of imaginary order

U (ζ ) = Hi/χ1

(
±
√

i
χ1

2
ζ

)
, V (ζ ) = H−i/χ1

(
±
√

i
χ1

2
ζ

)
.

(B1)

They will be applied for −L � x � L, which translates into a
region ζ between

ζ± = C02πN0(±L − x0) − C0

βN2
0

�. (B2)

As discussed before, the appropriate boundary conditions
follow from ũ(x = −L) = 1 and ṽ(x = L) = 0. We have to
handle them for U (ζ ) and V (ζ ), having in mind the definition
(34). Because of

ũ(ξ ) = U (ζ )e
−i
(

1− 1
N2

0

)
�ξ

, (B3)

ṽ(ξ ) = V (ζ )e
i
(

1− 1
N2

0

)
�ξ

, (B4)

we obtain

U (ζ−) = e
−i
(

1− 1
N2

0

)
�2πN0L

, V (ζ+) = 0. (B5)

When writing the general solution as

U (ζ ) = c1 Hi/χ1

(√
i
χ1

2
ζ

)
+ c2 Hi/χ1

(
−
√

i
χ1

2
ζ

)
, (B6)
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we may use (35) and (36) to obtain

V (ζ ) =
√

2i

χ1

{
c1 Hi/χ1−1

(√
i
χ1

2
ζ

)

− c2 Hi/χ1−1

(
−

√
i
χ1

2
ζ

)}
e2iZ . (B7)

The boundary conditions (B5) lead to an inhomogeneous
linear system of equations for the coefficients c1 and c2 which
has to be solved to obtain the complete analytic solution. We
get

c2 =
Hi/χ1−1

(√
i χ1

2 ζ+
)

Hi/χ1−1
( −

√
i χ1

2 ζ+
)

︸ ︷︷ ︸
c211

c1 ≡ c211c1, (B8)

c1 = e
−i
(

1− 1
N2

0

)
�2πN0L

Hi/χ1

(√
i χ1

2 ζ−
) − c211 c1

Hi/χ1

( −
√

i χ1

2 ζ−
)

Hi/χ1

(√
i χ1

2 ζ−
)

︸ ︷︷ ︸
c212

, (B9)

or

c1 = 1

1 + c211 c212

e
−i
(

1− 1
N2

0

)
�2πN0L

Hi/χ1

(√
i χ1

2 ζ−
) . (B10)

Having determined the coefficients c1 and c2 we may
determine the transmission coefficient T as well as the
reflection coefficient R from (B6). The result is

T = |ũ(x = +L)|2 = |U (ζ+)|2, (B11)

R = |ṽ(x = −L)|2 = |V (ζ−)|2. (B12)

The formulas prompt two remarks. First, we may esti-
mate the extent to which the chirp alters the effectiveness
of the grating in reflection compared to an unchirped grid.
Furthermore, examining the argument in the Hermite poly-
nomials is insightful. It demonstrates a variation with the
chirp parameter of the grating. Consequently, an incident
plane wave is reflected with a slight change in effective
wavelength.
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