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Bulk viscosity of the rigid rotor one-component plasma
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Bulk viscosity of a plasma consisting of strongly coupled diatomic ions is computed using molecular dynamics
simulations. The simulations are based on the rigid rotor one-component plasma, which is introduced as a model
system that adds two degrees of molecular rotation to the traditional one-component plasma. It is characterized
by two parameters: the Coulomb coupling parameter, �, and the bond length parameter, �. Results show that the
long-range nature of the Coulomb potential can lead to long rotational relaxation times, which in turn yield large
values for bulk viscosity. The bulk-to-shear viscosity ratio is found to span from small to large values depending
on the values of � and �. Although bulk viscosity is often neglected in plasma modeling, these results motivate
that it can be large in molecular plasmas with rotational degrees of freedom.
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I. INTRODUCTION

Bulk viscosity is a transport coefficient associated with the
irreversible resistance to expansion or compression of a fluid
[1]. The resistance arises from time lags of energy transfer
between translational modes and the rest of the system (ro-
tational modes, vibrational modes, internal energy, etc.). For
more than a century following its appearance in Stokes’s 1845
paper on viscous fluids, the very existence of bulk viscosity
was the source of considerable controversy [2–6]. However, it
has become clear in recent decades that fluids can exhibit large
values of bulk viscosity, especially when they are composed
of molecules [7–13]. A number of studies have investigated
the effects of bulk viscosity in neutral gases and showed it can
significantly alter acoustic attenuation [14], shock wave struc-
ture [15–17], turbulence [18–20], and instabilities [21,22].

Although similar fluid phenomena are also present in plas-
mas, little attention has been paid to bulk viscosity in plasma
physics. Perhaps this is related to an early study, which used
molecular dynamics simulations to show that the bulk viscos-
ity of the one-component plasma is small in comparison to
the shear viscosity [23]. This is the case in dilute monatomic
neutral fluids as well [24,25]. However, as in neutral fluids,
bulk viscosity may be much larger if internal degrees of
freedom such as vibration or rotation are present [7,11,26].
This motivates revisiting the calculation of bulk viscosity in
the context of molecular plasmas. Such a study is timely, as
recent papers have begun to explore the potential implications
of bulk viscosity in plasmas. Istomin et al. [27] demonstrated
that electronic excitation can significantly increase the bulk
viscosity in ionized gases, potentially impacting shocks in
spacecraft reentry. In a plasma astrophysics context, Beattie
et al. [28] showed that bulk viscosity can strongly suppress
compressible modes in the turbulent dynamo. And in studying
the propagation of magnetoacoustic waves using magnetohy-
drodynamics, Cunha et al. [29] showed that bulk viscosity
can be a dominant source of energy dissipation in expanding
plasma flows and that the rate of dissipation can be controlled
by tuning the intensity and orientation of an applied magnetic

field. These papers demonstrate that bulk viscosity can sub-
stantially alter the macroscopic fluid dynamics of plasmas.
Therefore, it is important to characterize the bulk viscosity
in a molecular plasma for the sake of more accurate fluid
models.

In this work, we compute the coefficient of bulk viscosity
for a system of strongly coupled diatomic ions using molec-
ular dynamics (MD) simulations. We first establish the rigid
rotor one-component plasma (ROCP) model, which consists
of diatomic molecules with a neutral atom bonded to an ion at
a fixed bond length rB. It is a variation of the traditional one-
component plasma (OCP), which is commonly used to study
strongly coupled monatomic ions [30]. The properties of the
traditional OCP are characterized by just one dimensionless
parameter, the Coulomb coupling parameter,

� = q2/a

4πε0kBT
, (1)

where a = (3/4πn)1/3 is the average interparticle spacing and
T is the temperature. In contrast, characterizing the ROCP
requires two parameters due to the rotational degrees of free-
dom. In addition to �, which is associated with translational
degrees of freedom, the bond length parameter,

� = rB

a
, (2)

is associated with the rotational degrees of freedom. Together
� and � fully characterize the ROCP.

Under this framework, equilibrium MD simulations were
run to compute both bulk (ηv) and shear (η) viscosity using the
Green-Kubo formalism [14,31,32]. Results are compared with
those for the OCP model. It is found that the shear viscosity
of the OCP and ROCP are identical, but the bulk viscosity
is much larger in the ROCP than in the OCP. For the OCP,
bulk viscosity is at least an order of magnitude smaller than
shear viscosity at any � value. For the ROCP, bulk viscosity
can exceed the shear viscosity by several orders of magnitude
at particular combinations of � and � values. Large values
of bulk viscosity are found to be associated with a long time
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decay of the pressure autocorrelation function, which can be
traced to a long relaxation time between the translational and
rotational degrees of freedom. In particular, it is found that
small values for � and � lead to larger ηv . It is thought that
this is because the long-range nature of the Coulomb force ef-
fectively shields the rotational degree of freedom and that the
shielding is more effective at smaller values of the bond length
compared to interparticle spacing (�) and smaller values of
the Coulomb coupling strength (�). In this regime, any de-
viation from equilibrium will cause energy to be temporarily
trapped in rotational degrees of freedom, leaving translational
energy away from its equilibrium value for a long time. As an
example, at a density corresponding to standard temperature
and pressure (STP) conditions (n = 2.5 × 1025 m−3), room
temperature (T = 293 K), and a bond length corresponding
to N+

2 (rB = 1.1 Å), or in dimensionless units � = 31.5 and
� = 0.05, we predict a bulk to shear ratio for the ROCP of
ηv/η ∼ 103. To contrast, at these same conditions we found
the OCP has ηv/η ∼ 10−2, and Sharma et al. [12] found neu-
tral N2 to have ηv/η ∼ 1. This demonstrates that the presence
of molecular ions can dramatically impact bulk viscosity.

Previous models from neutral gas dynamics have been
developed to connect the rotational relaxation time to the
bulk viscosity. Here we tested the application of one of these
models to plasmas by computing the rotational relaxation time
from separate MD simulations, plugging the relaxation time
into the model, and comparing the predicted bulk viscosity
coefficient with the result of the Green-Kubo calculation.
This comparison showed excellent agreement over the range
of parameters that both methods could be evaluated. Due to
the long time required for convergence of the Green-Kubo
relations, values could only be computed for a limited range
of � and � from this method; � in the strong-coupling
regime from 1 to 100 and � from 0.1 to 0.3. To extend this,
rotational relaxation data were acquired for a wider range
of � values (0.01–0.30), and the results input into the bulk
viscosity formula in order to predict values for bulk viscosity
across a larger parameter space. Furthermore, a model for the
relaxation time is applied to provide a practical formula for
estimating the ROCP bulk viscosity.

This paper is organized as follows: Section II introduces
the ROCP model. Section III introduces some historical con-
text on bulk viscosity, describes previous models connecting
bulk viscosity in molecular gases with the rotational relax-
ation time, where bulk viscosity arises in hydrodynamics,
and how it can be computed from the Green-Kubo relations.
Section IV describes the MD simulation setup and results of
the viscosity coefficients for the OCP and ROCP computed
from the Green-Kubo relations. Section V describes an MD
setup to compute the rotational relaxation time, and a test of
the model connecting relaxation time to bulk viscosity, along
with a practical formula for computing the bulk viscosity of
the ROCP. Finally, some potential implications of bulk viscos-
ity to sound attenuation, shocks, and turbulence are discussed
along with concluding comments in Sec. VI.

II. THE RIGID ROTOR ONE-COMPONENT PLASMA

The OCP model is a well-established means for study-
ing the properties of strongly coupled particles [30]. When

applied to plasmas, ions are often modelled as point particles,
each with charge q and mass m, and collectively a density n
and temperature T . Electrons are not modelled directly but
taken to provide a noninteracting, charge neutralizing back-
ground. The OCP applies particularly well to systems where
the electrons are at a weaker coupling strength than the ions,
such as when the electron temperature is much larger than
the ion temperature. A particularly attractive feature of the
OCP is that when time is quantified in dimensionless units of
the plasma period ω−1

p = (εom/q2n)1/2 and space in units of
the interparticle spacing a = (3/4πn)1/3, it is entirely char-
acterized by the Coulomb coupling parameter �, defined in
Eq. (1).

By treating ions as point particles, the traditional OCP
is limited to describing monatomic ions. However, there are
many examples of plasmas in which strongly coupled molecu-
lar ions exist. Atmospheric pressure plasmas commonly reach
ion densities sufficient for strong coupling [33–36] and can be
composed, in large part, of molecular ions [37–39]. Addition-
ally, in ultracold plasmas strong coupling has been achieved
and studied with NO+ ions [40–42]. And in high-energy-
density plasmas, strongly coupled molecular ion species may
form during implosions, since molecular species are common
in dense shell material and implosions often reach strong
coupling [43,44].

To study the dynamics of strongly coupled diatomic ions,
we establish the rigid rotor one-component plasma (ROCP).
In this model, diatomic ions consist of two point particles,
each with mass m, rigidly bonded to each other at some fixed
distance, rB. One particle represents an atomic ion with charge
q that interacts with other ions through the Coulomb poten-
tial Vc(r) = q2/(4πε0r). The other represents a neutral atom
which does not interact with the rest of the system. The jus-
tification for the neutral atom to be passive (interacting only
through its bonding to an ion) is that the Coulomb potential
of the ion is much longer range than the interatomic potential
of the neutral atom and therefore shields it in any interaction.
This expectation that ion-neutral and neutral-neutral interac-
tions are very weak compared to the Coulomb interaction is
tested and validated in Sec. V.

This model behaves in much the same way as the tradi-
tional OCP but with the addition of two rotational degrees
of freedom. Therefore, some properties, like shear viscosity,
remain unchanged; see Sec. IV. However, the rotational de-
grees of freedom add an associated relaxation time, τrot, which
impacts the bulk viscosity ηv . Additionally, the coupling pa-
rameter � cannot fully characterize this model like it does the
traditional OCP. The additional rotational degrees of freedom
are quantified by the dimensionless bond length parameter �,
defined in Eq. (2).

Physically, � is the ratio of a molecule’s bond length to the
average interparticle spacing. It quantifies how important rota-
tion is in collisional processes. Larger values of � correspond
to larger changes in the force on an ion as it travels around its
circumference of rotation. Conversely, at sufficiently small �,
molecules begin to act like atoms, so rotation has little effect
on collisions.

The rotational coupling parameter can fully account for the
effects of molecular rotation in this framework. Consider the
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torque equation for a given rigid rotor

I
dω

dt
= r × F, (3)

where I = 1
2 mr2

B is the moment of inertia, ω is the angular
velocity, r points from the center of mass to the ion, and F =
q2/(4πε0)

∑
j r j/r3

j is the Coulomb force on the ion due to
the other ions in the system. By using dimensionless units of
time in terms of ω−1

p and length in terms of a,

x̃ = x/a, t̃ = tωp, (4)

Eq. (3) can be expressed in terms of �,

dω̃

dt̃
= 1

3
�−1

∑
j

sin θ j

r̃2
j

, (5)

where θ j is the angle between r and r j . Similarly, since only
one particle in the rigid body interacts, the translational equa-
tion of motion looks the same as the traditional OCP

d ṽ

dt̃
= 1

3

∑
j

r̃ j

r̃3
j

. (6)

The dependence on � arises from the initial condition, specif-
ically by setting the particle velocities corresponding to a set
temperature ṽo = ṽT = √

2/(3�). As with � for the OCP,
since the dimensionless equations of motion of the ROCP
can be written in terms of � and �, all properties can be
characterized by these parameters when cast in the associated
dimensionless units. One note when comparing the OCP and
ROCP is that the mass (m) is the atomic mass in the OCP but
the molecular mass in the ROCP.

III. OVERVIEW OF BULK VISCOSITY

A. Underlying mechanisms

In his original 1845 paper on viscous fluids, Stokes as-
sumed that a fluid, on being subjected to a given dilatation,
will still have a mechanical scalar pressure given by its ther-
modynamic equation of state, i.e., pm = p(n, T ) [2]. This
assumption, known as Stokes’s hypothesis, implies that the
coefficient of bulk viscosity (ηv) is zero. By definition, pm =
− 1

3 Tr{�}, where � is the stress tensor, which for a compress-
ible Newtonian fluid takes the form

� = −pt I + η

[
∇V + (∇V)T − 2

3
(∇ · V)I

]
+ ηv (∇ · V)I,

(7)

where pt = p(n, T ) is the thermodynamic pressure and V is
the fluid velocity, yielding the result

pm − pt = −ηv∇ · V. (8)

Clearly, if pm = pt , then ηv = 0.
Some 80 years after Stokes’s publication, Herzfeld and

Rice proposed a mechanism by which this assumption could
be violated [26]. If a fluid is composed of molecules, not
atoms, then a given expansion or compression will cause a
temporary violation of the equipartition theorem, as work
is done only at the expense of translational kinetic energy.
It takes a finite amount of time for an equilibrium between

degrees of freedom to be restored, during which pt �= pm,
implying a finite value for ηv .

Mandelstam and Leontovich in 1937 [45], and then Tisza
in 1942 [7], developed formulas which connected underlying
relaxation times to the bulk viscosity coefficient. Tisza’s is
given by

ηv = ρa2
s

γ − 1

γ

∑
i

cv,i

cv

τi, (9)

where ρ is the mass density, as is the speed of sound in
the absence of viscosity, γ is the ratio of specific heats, cv

is the specific heat at equilibrium, cv,i is the specific heat of
the ith vibrational mode, and τi is the relaxation time of the ith
vibrational mode [7]. Importantly, Tisza assumed molecular
rotation to be unimportant because rotational relaxation is
often a much faster than vibrational relaxation. This formula
has since served as a standard means for computing the bulk
viscosity of neutral fluids [11]. Tisza applied the appropriate
values for CO2 at STP conditions and predicted a bulk to shear
viscosity ratio of ηv/η > 1000.

In 2019, Kustova et al. [46] derived a more general expres-
sion for bulk viscosity from kinetic theory without neglecting
molecular rotation. They found

ηv = nkBT R

(
cint

cv

)2(crot

τrot
+ cvib

τvib

)−1

, (10)

where R is the specific gas constant, cint is the specific heat
capacity of internal degrees of freedom, crot = ( frot/2)R is the
specific heat capacity of rotational degrees of freedom, cvib is
the specific heat capacity of vibrational degrees of freedom,
τrot is the rotational relaxation time, and τvib is the vibrational
relaxation time. Here frot is the number of rotational degrees
of freedom. In Kustova’s formula, the coefficient of bulk vis-
cosity is set by the faster of the two relaxation processes. As
a result, they predict CO2 to have a bulk to shear ratio on the
order of 1 at STP conditions [46].

In the ROCP, molecules do not vibrate. In the context of the
physical systems of interest, rotational relaxation is, in almost
all cases, significantly faster than vibrational relaxation. As
such, Eq. (10) predicts that rotation will set the coefficient of
bulk viscosity, rather than vibration, justifying the application
of the ROCP model. For the ROCP, cint = crot = R, cvib = 0,
and cv = R( 5

2 + cv,ex). Here the factor of 5/2 comes from the
five total degrees of freedom of molecular motion (three trans-
lational and two rotational) and cv,ex is the excess (nonideal)
specific heat at constant volume. With these substitutions,
Eq. (10) becomes

ηv =
(

5

2
+ cv,ex

)−2

nkBT τrot. (11)

Since cv,ex is associated with the molecular configuration,
it is not expected to be significantly influenced by the ro-
tational degrees of freedom. Therefore, it can be modeled
using a fit to Hansen’s data for excess specific heat of
the OCP [47]: cv,ex = 0.000 002 86�3 − 0.000 572 49�2 +
0.042 787 96� + 0.149 485 73. It will be shown below that
Eq. (11) provides an accurate model for the bulk viscosity of
the ROCP when an accurate model for τrot is provided.
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There exist several mechanisms outside the Herzfeld and
Rice mechanism for bulk viscosity. In 1948, Hall proposed
a mechanism known as intrinsic bulk viscosity, applicable to
both atomic and molecular fluids [48]. A collection of parti-
cles, on being compressed, will not be compressed into the
lowest internal energy configuration immediately. Thus, over
the course of some finite amount of time, the particles will un-
dergo a process of structural rearrangement, leading to a finite
value for bulk viscosity. Intrinsic bulk viscosity is often small
because structural rearrangement is a fast process that occurs
on the timescale of translational motion. Nevertheless, it is
important because this mechanism causes even monatomic
gases to have finite bulk viscosity [24,25]. In the traditional
OCP, intrinsic bulk viscsosity is the only mechanism present.
Previous work has shown the bulk viscosity of the OCP to
be small compared to the shear viscosity [23,49]. Here we
obtain better resolved data that agree with this conclusion; the
bulk to shear visocsity ratio is found to be smaller than 0.1 for
all � values. Therefore, the Herzfeld and Rice mechanism is
expected to dominate in the ROCP.

Other origins of bulk viscosity that have been explored in-
clude a chemical nonequilibrium induced by nuclear reactions
[50] and electronic excitation [27]. However, these processes
are not present in the ROCP and will not be discussed here.

B. Hydrodynamic equations

Bulk viscosity affects the stress tensor �, which appears in
the hydrodynamic equation for momentum conservation as

ρ
dV
dt

= ∇ · �, (12)

where d/dt = ∂/∂t + V · ∇ is the convective derivative and ρ

is the mass density. It also influences the energy conservation
equation as

du

dt
= λ∇2T + � : ∇V, (13)

where u is the energy density, λ is the thermal conductivity,
and T is the temperature. When combined with the mass
conservation equation

dρ

dt
= −∇ · (ρV), (14)

these form the complete set of Navier-Stokes hydrodynamic
equations [14].

Bulk viscosity is a powerful transport coefficient in that it
can, in principle, account for the dynamical effects of struc-
tural rearrangement, rotational relaxation, and vibrational
relaxation processes with a single number. This can dramat-
ically improve computational costs for fluid simulations, as
these processes would otherwise need to be accounted for
with additional rate equations [51]. However, it should be
stressed that transport coefficients can only be utilized if the
underlying relaxation process that they represent occur on a
timescale much faster than the flow timescale, i.e., the con-
dition of local thermodynamic equilibrium must be satisfied
[52,53]. Molecular vibration often violates this condition, as
vibrational temperatures can be highly elevated and the asso-
ciated relaxation time very long. For this reason, it is common

practice to only consider the contribution of molecular rota-
tion to bulk viscosity [54]. This serves as another justification
for ignoring vibration in the ROCP.

C. Green-Kubo relations

The Green-Kubo relations relate linear transport coeffi-
cients to the integral of a macroscopic variable’s equilibrium
time autocorrelation function. For shear and bulk viscosity,
they take the following forms [14]:

η = V
6kBT

3∑
i=1

3∑
j=1
j �=i

∫ ∞

0
dt〈�i j (0)�i j (t )〉, (15a)

ηv = V
kBT

∫ ∞

0
dt〈δp(0)δp(t )〉, (15b)

where V is the volume, �i j is the stress tensor, δp = pm − pt ,
and the angle brackets 〈. . .〉 represent an equilibrium en-
semble average. Here pm(t ) = − 1

3 Tr{�i j} is the mechanical
pressure and the thermodynamic pressure pt is obtained from
a time average of pm over the entire simulation. One should
note that in accordance with Eq. (8), δp = −ηv∇ · V, leaving
Eq. (15b) as a rather intuitive statement. The Green-Kubo
relations show that relaxation processes resulting from equi-
librium fluctuations are equivalent to the linear response to an
external perturbation.

For the ROCP, the stress tensor is related to the particle
trajectories by

�i j = − 1

V

Nα∑
α=0

⎡
⎣mαvαivα j +

Nα∑
β>α

(rαβi Fαβ j ) + rα,iFC, j

⎤
⎦,

(16)

where Nα is the number of atoms in the system, mα is the mass
of atom α, rαi and vαi are the position and velocity of atom α

in direction i, Fαβ is the Coulomb force between atoms α and
β, and FC is the constraint force on atom α resulting from a
rigid bond. It is clearly seen that there are three contributions
to the system’s stress: a kinetic contribution resulting from
each atom’s kinetic energy, a potential term resulting from the
pairwise interaction between atoms, and a bond contribution
resulting from the implied force it takes to hold the distance
between two bonded atoms constant.

The Green-Kubo relations can be employed to compute
transport coefficients from MD simulations [23,49,55–58]. To
do so, the autocorrelation function must be discretized in time
and cutoff at some long time L, by which the autocorrelation
has decayed to zero and its integral has converged. In practice,
MD simulations have a finite number of particles, so a single
autocorrelation function is far too noisy for convergence to be
reached. However, if a time series �i j (t ) is generated from
MD with length tN 	 L, then tN − L separate autocorrela-
tion functions can be computed, as each timestep (from 0 to
tN − L) can be used as t = 0 in a new autocorrelation func-
tion. By averaging these separate autocorrelation functions
together, one can obtain a smooth decay to zero and hence a
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convergent viscosity integral. With these changes, Eqs. (15a)
and (15b) become

η(t ) = V
6kBT

�t

tN − L + 1

×
t∑

τt =0

3∑
i=1

3∑
j=1
j �=i

tN −L∑
τ=0

�i j (τ )�i j (τ + τt ), (17a)

ηv (t ) = V
kBT

�t

tN − L + 1

t∑
τt =0

tN −L∑
τ=0

δp(τ )δp(τ + τt ),

(17b)

where �t is the length of a timestep, tN is the total number of
timesteps, and L is the length of the autocorrelation function.

IV. MD SIMULATIONS AND RESULTS

A. MD setup

Equilibrium MD simulations were run to compute bulk and
shear viscosity using the Green-Kubo relation from Eqs. (15a)
and (15b). Simulations consisted of 20 000 diatomic ions in
a box with periodic boundary conditions. Ions were mod-
elled as rigid rotors with just one of the atoms ionized.
Short-range interactions (r < 5a) were computed exactly us-
ing the Coulomb potential while long-range interactions (r >

5a) were computed using the particle-particle-particle-mesh
(P3M) algorithm as described in Ref. [59]. A timestep of �t =
0.01ω−1

p was found to be sufficiently small for conserving
energy, matching the timestep requirement for the OCP. To
start the simulations, translational and rotational degrees of
freedom were thermostat to the same temperature until equi-
librium was reached. The system was subsequently evolved
in the microcanonical (NVE) ensemble. The stress tensor was
output every 10 timesteps and computed using Eq. (16), with
a slight modification of the potential term due to the use of
P3M, which is discussed in detail in Ref. [57].

The results of an ROCP bulk viscosity calculation from
a particular simulation (� = 50 and � = 0.14) is shown in
Fig. 1(a). It can be seen that the pressure autocorrelation
function decays over thousands of plasma periods ∼2000 ω−1

p .
This simulation, however, needed to run for 105ω−1

p to achieve
convergence, and still some noise is observed in the decay. As
autocorrelation functions get longer, more and more averaging
must be done. Several data points required simulation lengths
greater than 106ω−1

p . The long time needed for convergence
limited the range for which bulk viscosity values could be
computed. Accurate data were obtained for 1 < � < 100 and
0.10 < � < 0.30. In physical units, if one takes rB ∼ 1 Å,
corresponding to N2, then this parameter space corresponds to
approximately 1026 m−3 < n < 1028 m−3 and 250 K < T <

20 000 K.
Simulations were also run of the traditional OCP. The OCP

is subject to less noise than the ROCP, so only 5000 particles
were used. These simulations otherwise proceeded in the same
fashion as for the ROCP.

FIG. 1. Autocorrelation functions (ACFs) and their respective
integrals for (a) ROCP bulk viscosity, (b) OCP bulk viscosity, and
(c) ROCP and OCP shear viscosity at � = 50 and � = 0.14.

B. Results

Simulation results are shown in Fig. 2, and the data are
provided in Tables I and II. Figure 2(a) shows shear and bulk
viscosity for both the OCP and ROCP as a function of � with a
constant value of � = 0.14 chosen for the ROCP. Figure 2(b)
shows bulk viscosity of the ROCP as a function of � for fixed
values of � of 20 and 50. Values are presented in terms of
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FIG. 2. Reduced bulk viscosity variation with (a) the coupling
parameter � and (b) the bond length parameter �. In (a), � was held
constant at � = 0.14. The green region (“Model”) refers to Eq. (23).

TABLE I. MD results of reduced shear and bulk viscosity of the
OCP and ROCP as a function of �. ROCP values use � = 0.14.

OCP ROCP

� η∗ η∗
v η∗ η∗

v

1 1.07 3.40 × 10−3 1.12 57.0
2 0.440 3.50 × 10−3 0.480 32.5
3 0.269 3.06 × 10−3 0.272 25.8
5 0.150 2.77 × 10−3 0.149 12.0
7 0.126 2.50 × 10−3 0.125 11.8
10 0.0985 1.75 × 10−3 0.0980 5.00
15 0.0840 1.33 × 10−3 0.0850 3.00
20 0.0855 1.09 × 10−3 0.0820 1.60
30 0.0880 8.50 × 10−4 0.0860 0.600
50 0.110 5.50 × 10−4 0.109 0.200
70 0.140 3.95 × 10−4 0.140 0.0385
100 0.185 3.1 × 10−4 0.173 0.0125

TABLE II. MD results of reduced shear and bulk viscosity of the
ROCP as a function of �. Shear viscosity is constant with �.

� � η∗ η∗
v

20 0.10 0.100 10.0
0.14 1.60
0.15 0.864
0.20 0.320
0.25 0.0750
0.30 0.0336

50 0.10 0.109 1.00
0.14 0.200
0.15 0.0925
0.20 0.0200
0.25 0.00730
0.30 0.00500

reduced bulk and shear viscosity, defined as

η∗
v = ηv

mna2ωp
and η∗ = η

mna2ωp
, (18)

which correspond to the natural units defined in Sec. II. For
the ROCP, m is the molecular mass, whereas for the OCP it
is the atomic mass. The bulk viscosity of the ROCP is found
to be larger than the bulk viscosity of the OCP by at least
an order of magnitude. This is because the ROCP has two
internal degrees of freedom (molecular rotation) which can
temporarily trap energy. When the equipartition theorem is
violated during an expansion or compression process, equilib-
rium is not restored until rotational relaxation occurs, leading
to a large bulk viscosity. The OCP has no internal degrees of
freedom, and hence the time-lag to equilibrium occurs due to
structural rearrangement, which is a much faster process than
rotational relaxation. This leads to a very small bulk viscosity
for the OCP.

Further insight can be obtained by analyzing the autocorre-
lation functions shown in Fig. 1. The pressure autocorrelation
function of the OCP [Fig. 1(b)] decays to zero on the timescale
of a single plasma period, implying that this system will
restore equilibrium in ∼ω−1

p following a small perturbation.
The autocorrelation function of the ROCP [Fig. 1(a)] shows
a similar decay at early times, demonstrating the mechanism
of structural rearrangement is present in the ROCP as well.
However, this autocorrelation function does not reach zero un-
til approximately 2000 ω−1

p have passed, as energy is trapped
in the two rotational modes.

Figure 2 also highlights how bulk viscosity of the ROCP
varies with � and �. It can be observed that η∗

v increases with
decreasing � and decreasing �, with the latter dependence
appearing more severe. This scaling can be understood in the
context of the rotational relaxation dynamics, so discussion of
this physics will be reserved for Sec. V.

Figure 2 shows that the shear viscosity of the ROCP is
identical to that of the OCP. This is not a surprising result,
for shear viscosity originates from translational motion and
center-of-mass motion in the ROCP is essentially the same
as translational motion in the OCP. However, in Fig. 1(c),
one can see that the early time behavior of their autocorre-
lation functions differ. The ROCP starts at a larger value and
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experiences a bump on the path to zero, while the OCP shows
a smooth decay. The bump occurs after a time of approx-
imately ω−1

T = √
I/2kBT has passed, which is the average

time it takes for a rigid rotor to rotate. In this sense, it does
seem that molecular rotation has an effect on early-time shear
stresses. However, the integrated value is essentially the same,
so the influence of this on the shear viscosity coefficient is
negligible. Importantly, it is also shown in Fig. 2 that the bulk
viscosity of the ROCP can exceed the shear viscosity by more
than an order of magnitude. In general, when ηv/η > 1, bulk
viscosity effects are expected to be significant. For instance,
this means that the bulk viscosity determines the kinematic
longitudinal viscosity, b = ( 4

3η + ηv )/ρ, rather than the shear
viscosity.

The data in this section suggest that the rotational degrees
of freedoms are responsible for the large bulk viscosity coef-
ficient of the ROCP. In the next section, nonequilibrium MD
simulations of rotational relaxation are used to give insight
into the observed � and � scaling and to validate the use of
Eq. (11) in plasmas. The results are used to construct a model
for bulk viscosity of the ROCP and demonstrate that it agrees
well with the results of the Green-Kubo simulations. Since
rotational relaxation simulations are computationally cheaper
than Green-Kubo, data are acquired for a wider range of �

values (0.01–0.30) and used to predict the bulk viscosity of
diatomic ions across a broader range of conditions.

V. MODEL BASED ON ROTATIONAL RELAXATION

A. MD setup

Molecular dynamics simulations of rotational relaxation
were setup in similar fashion to those from Sec. IV, with
the exception that to start the simulations, the ion transla-
tional and rotational degrees of freedom were thermostat to
differing temperatures, creating a ∼10% temperature pertur-
bation around some desired equilibrium temperature. During
the NVE stage that follows, the translational and rotational
temperatures come to an equilibrium. An example tempera-
ture relaxation curve generated from this procedure can be
seen in Fig. 3. To extract the rotational relaxation time, an
exponential is fit to the temperature data, as has been done in
previous work [60,61]. Since there is some noise in the data,
a range of exponentials could be taken as the line of best fit
depending on at which times best agreement is prioritized.
The shaded region represents this range, which for all data
collected was roughly ±40% from the average. This is taken
to be the statistical error in the subsequent plots.

Here a parameter space relevant to atmospheric pressure
plasmas is explored [62]. In particular, densities from n =
1025–1027 m−3, temperatures from T = 250–5000 K, and
bond lengths between rB = 0.545–1.635 Å are simulated. In
dimensionless units, this corresponds to � = 1–100 and � =
0.01–0.30.

B. Results

A subset of simulation results can be seen in Fig. 4. Error
bars on the MD data are generated by looking at the minimum
and maximum for τrot that still give reasonable agreement
with the temperature data. The data indicate that rotational

FIG. 3. Time evolution of the translational temperature (blue)
and rotational temperature (green) from an MD simulation at the
specified density and temperature and rB = 1.09 Å. The shaded re-
gion represents the range of possible curves used to fit the data, with
the top half showing better agreement at early times and the bottom
half at late times. The dashed line represents the actual curve used to
extract τrot.

relaxation speeds up with increasing density and bond length
and slows down with increasing temperature.

We model the data in terms of the reduced rotational re-
laxation time, defined as τ ∗

rot = τrotν, where ν is the collision
frequency. It should be noted that τ ∗

rot is defined identically
to the rotational collision number commonly used in studies
of neutral gas, Z = τrotν, which represents the number of
collisions required to reach equilibrium. However, in strongly
coupled plasmas, collisions are not binary, so the collision
frequency ν only represents the frequency at which a particle
deviates 90◦ from its original trajectory. For this reason, we
will not adopt the Z convention.

In the OCP, ν has been studied in the context of diffusion
[63,64]. Though diffusion is a different physical process from
viscosity and rotational relaxation, the collision frequency
found in these works is still applicable because it scales with
� in a way that captures strong-coupling effects. From these
works on diffusion, ν can be written as [63,64]

ν =

⎧⎪⎨
⎪⎩

αν0, for � < 25
�

A
eB�

kBT

ma2ωp
for � > 25.

(19)

For the � < 25 equation, α = 0.647,

ν0 = 4n

3

√
π

m

(
e2

4πε0

)2 ln �

(kBT )3/2
(20)

is the collision frequency predicted in weak coupling pre-
dicted by Landau-Spitzer theory, and

ln � = ln

(
1 + C

λD

rL

)
(21)

is a modified Coulomb logarithm that extends the Landau-
Spitzer expression for ν to � ≈ 25 [63]. Here C = 2.159
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FIG. 4. Variation of the rotational relaxation time, τrot, with (a) density, (b) temperature, and (c) bond length. ROCP data from MD are
plotted with blue points and data with ion-neutral and neutral-neutral interactions turned on with orange crosses. The “fit” line refers to Eq. (22)
in real units (τrot = τ ∗

rot/ν) and the shaded region around it represents the uncertainty in the fit (±40%) due to noise in the MD data. Aside from
when it is the parameter being varied, data correspond to n = 5 × 1026 m−3, T = 1000 K, and rB = 1.09 Å.

is a fit factor, λD =
√

ε0kBT/e2n is the Debye length, and
rL = e2/4πε0kBT is the Landau length (distance of closest ap-
proach). For the � > 25 equation, A = 1.52 and B = 0.0082.

By fitting to the relaxation data, we obtained the following
expression:

τ ∗
rot = τrotν = α0e−α0��−5, (22)

where α0 = 0.18. There are several important physical effects
to extract from this relationship. For one, rotational relaxation
grows longer with decreasing � and �, consistent with the
findings in the previous section. This matches physical in-
tuition as well; as � decreases, i.e., the ratio of interaction
energy to kinetic energy decreases, forces on the molecules
become weaker and hence energy exchange between transla-
tional and rotational modes takes longer. And as � decreases,
i.e., the ratio of the bond length to average interparticle
spacing decreases, molecules begin to look more like atoms,
effectively shielding the rotational degrees of freedom.

However, the scaling is in sharp contrast to what is pre-
dicted in neutral gases, implying the presence of different
physics processes in plasmas. For instance, Parker’s model,
a standard formula for estimating rotational relaxation in di-
atomic neutral gas, predicts ∼r−2

B scaling with bond length
and no scaling with density outside of the translational col-
lision frequency [65]. Equation (22), on the other hand,
demonstrates a r−5

B scaling with bond length and exponential
scaling with density beyond the collision frequency.

We propose two mechanisms unique to plasmas that are
likely responsible for this difference. For one, at STP density
and temperature, neutral gas is considered dilute, as collisions
between molecules are relatively sparse and binary. However,
a strongly coupled plasma at the same density and temperature
is considered dense, as many-body effects are present due
to the long-range nature of the Coulomb force. Many-body
effects likely alter the rotational relaxation dynamics, thereby
causing a deviation from neutral gas behavior.

For another, in the ROCP only one atom per molecule in-
teracts, making activation of rotational degrees of freedom in a
collision more difficult. This effect, however, is not merely an
artifact of ignoring ion-neutral and neutral-neutral interactions
in the ROCP but rather a result of the Coulomb potential being

far stronger than the ion-neutral or neutral-neutral interaction
potentials at the location of the interaction. Due to their long-
range nature, ion-ion interactions effectively shield the other
interactions, which is why they are left out of the ROCP. To
confirm that this is a good approximation, MD simulations
were run with ion-neutral and neutral-neutral interactions
turned on, using values corresponding to nitrogen. Neutral-
neutral interactions were modelled with a Lennard-Jones
potential and ion-neutral interactions with a charge-induced
dipole potential with an artificial repulsive core to prevent
bound states, the details of which can be found in previous
work [62]. The results of these simulations are shown in
Fig. 4(a). It can be seen that adding ion-neutral and neutral-
neutral interactions has no effect on the rotational relaxation
time, confirming intuition. It should be noted that this result
has been confirmed only for � � 0.3. As � approaches 1,
close ion-neutral and neutral-neutral collisions can occur. For
this reason, the ROCP model likely does not apply as � → 1.

In comparison to a neutral gas subject to the same condi-
tions, the ROCP has a very long rotational relaxation time.
At a temperature of 1000 K and density 2.5 × 1025 m−3 (at-
mospheric pressure), MD simulations revealed τrot = 125 ns
for the ROCP. At the same temperature and density, MD
simulations of neutral N2 gas ran by Valentini et al. [61] found
τrot ≈ 0.5 ns. The shielding of neutral interactions discussed
in the previous paragraph is likely responsible, as with only
one interacting atom, molecules in the ROCP cannot exchange
translational and rotational energy as efficiently.

C. Predicting bulk viscosity

Results of the rotational relaxation simulations can be used
to predict bulk viscosity using Eq. (11). Plugging the rota-
tional relaxation fit formula from Eq. (22) into the ROCP
expression for bulk viscosity from Eq. (11) provides

1

η∗
v

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
3

π

α

α0
eα0��5/2�5

(
5

2
+ cv,x

)2

ln �, � < 25

e(B+α0 )�

Aα0
��5

(
5

2
+ cv,x

)2

, � > 25.

(23)
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FIG. 5. Ratio of bulk to shear viscosity coefficients, computed
using the model from Eqs. (23) and (24). Here a bond length of rB =
1.1 Å was used.

Here α is the constant from the translational collision fre-
quency formula from Eq. (19), α0 is a constant from rotational
relaxation Eq. (22), and ln � is the modified Coulomb log-
arithm from Eq. (21). In the second term, A and B are the
constants for the collision frequency from Eq. (19).

The result of Eq. (23) is shown in Fig. 2. This shows very
good agreement with data computed from the Green-Kubo
relation, validating the use of Eq. (11) in the ROCP. We can
therefore use Eq. (23) to estimate the bulk viscosity of the
ROCP for 1 < � < 100 and 0.01 < � < 0.30.

Figure 5 shows the bulk to shear ratio across the entire
density-temperature space studied (with rB = 1.1 Å), com-
puted using Eq. (23) and the following fit to OCP shear
viscosity from Bastea [66]

η∗ = 0.482�−2 + 0.629�−0.878 + 0.00188�. (24)

At low densities and high temperatures, the ROCP exhibits
a very large bulk to shear ratio. Such a large value should be
used with caution—one must confirm that τrot is much faster
than the fluid’s characteristic timescale to be sure the linear
hydrodynamic regime is valid. At a density corresponding to
STP (n = 2.5 × 1025 m−3), and room temperature, a bulk to
shear ratio ηv/η ∼ 103 is predicted. For context, neutral N2 at
atmospheric pressure and 1000 K has a bulk to shear ratio of
just ηv/η ∼ 1 [12]. This highlights an important point: Effects
unique to plasmas can lead to large bulk viscosity, motivating
a need for further studies in the field of plasma physics.

VI. CONCLUSION

In this work, bulk viscosity was computed for systems of
strongly coupled diatomic ions using the framework of the
rigid rotor one-component plasma. Equilibrium MD simula-
tions were run and the Green-Kubo relations were used to
compute the coefficients of shear and bulk viscosity. Results
show that the shear viscosity of the OCP and ROCP are
identical, but the bulk viscosity of the ROCP is much larger
than for the OCP. This is attributed to a long relaxation time
of the rotational degree of freedom in the ROCP, causing
a long time-lag for the mechanical pressure to relax to the

thermodynamic pressure. This relaxation rate is longer, and
therefore the bulk viscosity larger, particularly when � and �

are small.
Previous work has proposed models connecting the rota-

tional relaxation rate and bulk visocisty coefficients in dilute
neutral gases. Here these models were applied to the ROCP
but through modified expressions appropriate to the rota-
tional relaxation time for ionized molecules in a strongly
coupled regime. Nonequilbrium MD simulations were then
run to compute the rotational relaxation time. By plugging
the results into a known formula for bulk viscosity, we were
able to construct a simple model for bulk viscosity of the
ROCP. These simulations also gave insight into the underlying
physics responsible for the ROCP’s large bulk viscosity and
the way in which it scales. The long-range nature of the
Coulomb force was found to be a significant factor because it
shields the ion-neutral and neutral-neutral interaction forces.

This work concentrated on the ROCP as a reduced model
that demonstrates the relevant physics of molecular rotation
in ionized gases. However, future work will be required to
connect this to physical systems. In the ROCP, all particles are
singly ionized diatomic molecules, regardless of the density
and temperature conditions. Of course, physical systems will
commonly consist of some mixture of molecular ion species,
and atomic ion species, as well as neutral molecular and
atomic species. The relative concentrations of each will be
determined by a complex combination of reactions, such as
ionization, dissociation, recombination, and molecular bond-
ing. Exploring the influence of multiple species will be a topic
of future work.

The results presented here demonstrate that phenomena
unique to plasmas can affect bulk viscosity in a significant
manner, motivating a need for further study of how bulk
viscosity influences plasma hydrodynamics. For instance, the
hydrodynamic sound attenuation coefficient is proportional
to the kinematic longitudinal viscosity coefficient b = ( 4

3η +
ηv )/ρ [14]. This suggests that in plasmas with ηv 	 η, bulk
viscosity can be the dominant effect determining the damping
rate of sound waves.

There are many other potential applications. A recent paper
on astrophysical plasmas showed that large bulk viscosity
can strongly suppress compressible modes in the turbulent
dynamo [28]. A number of studies have shown that includ-
ing bulk viscosity is necessary to agree with experimental
data for shock wave structure [16,17,67]. Emanuel and Ar-
grow showed that in dense molecular gas, shock thickness
is roughly linear with the bulk to shear ratio [15]. Since the
bulk to shear ratio of the ROCP can be thousands of times
larger than its neutral gas counterpart at the same conditions,
assuming neutral gas predictions for bulk viscosity carry over
to plasma may lead to signficant under-predictions of shock
width. Another important implication of a large bulk viscosity
is its effect on turbulence. It has been shown to increase the
decay rate of turbulent kinetic energy and render compressible
turbulence incompressible [18–20]. And for the Rayleigh-
Taylor instability, it has been shown to affect the growth of
the mixing layer and lead to a more consistent time variation
of total entropy [21]. Each of these are important phenomena
in plasmas, further motivating the need for bulk viscosity to
be studied in plasma physics.
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