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Predicting excitation energies in warm and hot dense matter
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In a dense plasma environment, the energy levels of an ion shift relative to the isolated ion values. This shift
is reflected in the optical spectrum of the plasma and can be measured in, for example, emission experiments.
In this work we use a recently developed method of modeling electronic states in warm dense matter to predict
these level energies. In this model excited state energies are calculated directly by enforcing constrained one-
electron occupation factors, thus allowing the calculation of specific transition and ionization energies. This
model includes plasma effects self-consistently, so the effect of continuum lowering is included in an ab initio
sense. We use the model to calculate the K-edge and K-alpha energies of solid density magnesium, aluminum,
and silicon over a range of temperatures, finding close agreement with experimental results. We also calculate
the ionization potential depression to compare to widely used models and investigate the effects of temperature
on the lowering of the continuum.
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I. INTRODUCTION

In warm and hot dense plasma environments, the screening
cloud of free electrons causes the energy levels of an ion to
shift. A schematic of this energy shift is shown in Fig. 1.
The ability to model such conditions is crucial in the field of
astrophysics, as these conditions can be found in stellar and
planetary interiors [1–3]. Also, the opacity of such plasmas is
the subject of current experimental efforts [4,5]. The lowering
of the continuum, or ionization potential depression (IPD), in
dense plasmas affects atomic binding energies, as well as the
cross sections of atomic processes, such as collisional ioniza-
tion and excitation. It can also limit the number of allowed
bound states, which shifts the charge state distribution towards
higher ionization, affecting the properties of the system, such
as the equation of state and opacity.

The IPD is also important for calculating spectral line
shapes and intensities [6]. Many white dwarf atmosphere
models rely on line profiles, so accurate modeling of con-
tinuum lowering is essential [7]. In addition, modeling IPD
in plasmas is a long-standing goal. Early works used a
two-particle Green’s function and numerical solutions of the
Schrödinger or Bethe-Salpeter equations [8,9], or methods in-
volving the minimization of the Helmholtz free energy and the
incorporation of Fermi-Dirac statistics [10] to study the IPD.

Recent experiments carried out at the Linac Coherent Light
Source (LCLS) [11,12], the Orion laser [13], and the National
Ignition Facility (NIF) [14] have measured the IPD in warm
dense matter. In addition to the IPD, some of these experi-
ments also measured K-edge and K-alpha energies.

A number of sophisticated models have been used re-
cently to predict the IPD. These include, but are not limited
to, a two-step Hartree-Fock method [15], classical molecu-
lar dynamic simulations [16], Monte Carlo simulations [17],
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simulations based on finite-temperature DFT [18,19], atomic-
solid-plasma models [20], quantum average-atom models
[21], occupation probability formalism in a chemical model
[22], and average-atom DFT methods [23]. Some of these
models have also been used to calculate K-edge and K-alpha
energies.

Two well-known and widely used IPD models are the
Stewart-Pyatt (SP) [24] and Ecker-Kroll (EK) [25] models,
which are popular due to being rapid to evaluate and simple
to implement. However, these models need to be tested and
verified through comparisons with more sophisticated models
and experiments. The validity of these models is important,
as many atomic physics codes implement them in their calcu-
lations. For example, the Stewart-Pyatt [24] model is used in
the Los Alamos suite of atomic physics codes [26] and in the
FLYCHK [27] code.

In this work we use our recently developed excited states
model (ESM) [28] to predict the IPD and compare with the
SP and EK models. Our model has plasma screening built
in, so it includes the IPD without an external, ad hoc model.
In addition to the IPD, we use our model to calculate the
K-edge and K-alpha energies to compare to experiments
[11,12]. The model is found to make accurate predictions
for the experiments on magnesium, aluminum, and silicon.
We also discuss limitations of our model, including the local
density approximation (LDA) for exchange and correlation
and the lack of multiple scattering.

We first present a summary of our model in Sec. II. In
Sec. III we use this model to calculate K-edge and K-alpha
energies and compare our findings with experimental results.
In Sec. IV we calculate the IPD and compare with the SP and
EK models.

II. EXCITED STATES MODEL

We first review the ESM, originally presented in Ref. [28],
and use the atomic model presented in that work. The strategy
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FIG. 1. Schematic showing the effects of continuum lowering on
the energy levels of an ion in warm dense matter, compared with
the energy levels of an isolated ion. The ionization potential (IP) is
shown in red, and the ionization potential depression (IPD) is shown
in green.

of this model is to calculate the energies of individual excited
states using effective single-electron expressions. The individ-
ual excited states are defined by a chosen set of single-particle
level occupations. For example, we may wish to calculate
the energy of a 1s22s22p6 + FD configuration in magnesium.
This notation means that we fix the occupation of the 1s shell
to be two, the 2s shell to be two, and the 2p shell to be
six, and the remaining two electrons have Fermi-Dirac (FD)
occupation factors.

The definition of a particular orbital is such that it extends
into the continuum. This means, for example, that if an excited
state has two electrons in the 3s orbital, but the 3s orbital is not
bound, or is partially bound, the definition smoothly assigns
part of the continuum to be the 3s orbital. Such a smooth def-
inition of the orbitals is necessary to avoid discontinuities in
physical quantities such as pressure and temperature changes.
See Ref. [28] for details.

The model is based on minimizing the free energy that
explicitly includes the excited states. In Hartree atomic units,
the free energy is written

F =
∑

x

Wx[Ex − T Sx] + T
∑

x

Wx logWx, (1)

where the sum is over all nondegenerate (in energy) electronic
excited states, x, of the system; Wx is the probability of the
excited state; Ex is the internal energy; Sx is the entropy of the
electrons in the excited state; and −Wx logWx is the entropy
associated with energy-degenerate excited states.

The energy is given by the effective single-particle
expression

Ex = Eel
x + Exc

x + E (0)
x , (2)

in which Eel
x is the electrostatic energy, Exc

x is the exchange
and correlation internal energy, and E (0)

x is the kinetic energy
of the electrons. The electrostatic energy, Eel

x , is given by

Eel
x = 1

2

∫
V

nx(r)

[
V el

x (r) − Z

r

]
d3r, (3)

where V is the volume of the ion sphere (which is equal
for all excited states and determined by the atomic mass and

mass density), Z is the nuclear charge, nx(r) is the electron
density associated with excited state x, and the electrostatic
potential is

V el
x (r) = −Z

r
+

∫
V

nx(r′)
|r − r′| d3r′. (4)

The exchange and correlation energy is given by

Exc,LDA
x =

∫
V

εxc[nx(r)] d3r. (5)

The kinetic energy of electrons in the configuration is

E (0)
x =

∑
i∈B

nx,εi,li Nx,εi,liεi +
∫ ∞

0
nx,ε,l ε Nx,ε,l dε

−
∫

V

[
V eff

x (r) − γ
]
nx(r) d3r. (6)

The effective single-particle potential V eff
x (r) is

V eff
x (r) = V el

x (r) + V xc
x (r), (7)

in which V xc
x (r), the exchange and correlation potential, is

given by

V xc
x (r) = δF xc

δnx(r)
, (8)

where F xc is the chosen exchange and correlation free energy.
The normalization factor, Nx,ε,l , in Eq. (6) is given by the
integral

Nx,ε,l =
∫ R

0
yx,ε,l (r)2 dr, (9)

and the constant γ sets the zero of energy

γ =
∑

x

WxV
xc

x (R), (10)

where R is the ion sphere radius.
In a practical sense, the model starts with an initial guess

at the effective one-particle potential, V eff
x (r), for a given

configuration x, and uses that to solve the radial Schrödinger
equation for the eigenfunctions, yx,ε,l (r),

d2yx,ε,l (r)

dr2
+ 2

(
εx,l − V eff

x (r) − l (l + 1)

2r2
+γ

)
yx,ε,l (r) = 0,

(11)

in which εx,l is the eigenenergy of the eigenstate in configura-
tion x and orbital angular momentum quantum number l . The
model then constructs the electron density

nx(r) =
∑
i∈B

2(2li + 1)
nx,εi,li

4πr2
yx,εi,li (r)2

+
∫ ∞

0

∞∑
l=0

2(2l + 1)
nx,ε,l

4πr2
yx,ε,l (r)2 dε (12)

with occupations nx,ε,l of configuration x, and the first term
is a sum over all bound states B. The occupation factors, or
occupation numbers, nx,ε,l are set at input and ensure that the
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FIG. 2. Schematic diagram showing all of the configurations
needed to calculate the K-edge and K-alpha for magnesium with 10
bound electrons (charge state 2). On the left is the ground state. In the
middle an electron has been ionized from the K-shell. The difference
between the energies of these two configurations gives the K-edge
energy. On the right an electron from the 2p has radiatively decayed
to the K-shell. The difference in energies between this ion and the
middle ion gives the K-alpha energy.

ion sphere is charge neutral, i.e.,

Z −
∫

V
nx(r) d3r = 0, (13)

where Z is the nuclear charge. Using the determined nx(r), a
new effective potential is formed, and the process is repeated
until self-consistency is achieved.

A key choice in this model is the list of excited states,
defined by a set of occupation factors {nx,ε,l}. Following
Ref. [28], the list of excited states includes integer permu-
tations of the occupations of one-electron orbitals up to a
chosen nmax. For example, for nmax = 2, we consider inte-
ger permutations of the occupations of the 1s, 2s, and 2p
orbitals. Any remaining electrons that are not in these shells
are given Fermi-Dirac occupations. The physical reasoning
for choosing nmax is based on the lifetime of the orbital. If
an experimental timescale is much longer than an excitation
lifetime, then the measurement will be averaged over such
excited states. For example, excitations in free electron states
are very short-lived due to rapid collisional decay, whereas
excitations of core electrons are relatively long-lived.

III. K-EDGE AND K-ALPHA

The K-edge refers to the minimum amount of energy
needed to ionize an electron from the 1s orbital or the K-shell.
Since the energy levels of an ion in warm dense matter are
shifted from that of an isolated ion, the K-edge energy will
also be different. This is true for transition energies as well.
The K-alpha transition occurs when an electron from the
n = 2 shell radiatively decays to the K-shell after an electron
has been ionized from the K-shell. This transition emits a
photon, and the energy of that photon is the K-alpha energy
(see Fig. 2).

A series of experiments [11,12] provided experimental
measurements of the K-edge and K-alpha for solid density
magnesium, aluminum, and silicon. In these experiments,
conducted with the Linac Coherent Light Source (LCLS), an
x-ray free-electron laser (XFEL) was used to excite and probe
a target with a range of laser energies. If the energy of the
laser was great enough, an electron from the K-shell would
be ionized. Then an electron from the L-shell (n = 2 orbital)
would radiatively decay, filling the hole in the K-shell and
emitting a photon. The energy of the emitted photons was
measured in the experiment, as well as the intensity of the

FIG. 3. Radial wave functions y(r) of a magnesium configura-
tion (1s0 2s2 2p6 3s2) inside the ion sphere with radius R = 3.34 a0,
calculated with ESM. Due to its not being well localized inside the
ion sphere, the 3s orbital is deemed to be hybridized and is assumed
to be occupied with Fermi-Dirac statistics. The other eigenstates are
well localized, and we permute of all possible integer occupations of
them to create a configuration list.

emission. During this process, the target heated up due to
the thermalization of the ionized electrons. Temperature was
not measured, but, due to the short timescales (hundreds of
femtoseconds), the plasma mass density could be assumed to
be unchanged (i.e., remain at solid density).

To model these experiments with the present model, we set
nmax = 2 for all three materials. This choice was based on the
degree of localization of the n = 3 wave functions. As seen
in Fig. 3, the 3s wave function is not well contained within
the Wigner-Seitz radius R; it is hybridized. This indicates that
electrons in this state will be itinerant, like free electrons.
Excitations will therefore have short lifetimes, and it is rea-
sonable to use nmax = 2.

Figure 4 shows the experimental data from Ref. [12] for
solid density magnesium. The different colors reflect the in-
tensity of measured photon emission in arbitrary units, the
energy of which is plotted on the horizontal axis. The ap-
pearance of the bright vertical lines shows the energy of the
K-alpha transitions for different charge states. These vertical
lines begin only above a certain LCLS energy. This is due
to the fact that the K-alpha transition will occur only once the
LCLS energy is enough to ionize an electron from the K-shell.
The LCLS energy at which these vertical lines begin for each
charge state is the K-edge energy.

We calculated the K-edge and K-alpha energies for
magnesium at solid density using our model. The energies of
specific configurations were calculated to find these ionization
and transition energies. For example, the ground state of a
magnesium ion with ten bound electrons is 1s2 2s2 2p6 + FD.
After an electron is ionized from the K-shell, the new
configuration is 1s1 2s2 2p6 + FD. After an electron from
the L-shell fills the hole in the K-shell, the configuration
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FIG. 4. K-edge and K-alpha results calculated using our model
for magnesium at solid density plotted in red atop experimental
results. The experimental results [12] show the measured intensity
of emission on a logarithmic scale in arbitrary units (labeled as
“arb. units”). The charge states corresponding to each K-alpha tran-
sition are labeled at the top.

becomes 1s2 2s2 2p5 + FD. The K-edge energy is then
given by

Kedge = E1s12s22p6+FD − E1s22s22p6+FD − Etherm, (14)

and the K-alpha energy is given by

Kα = E1s22s22p5+FD − E1s12s22p6+FD, (15)

in which E is the energy of a given configuration. A visual
schematic of the configurations used in this example of
magnesium with 10 bound electrons is shown in Fig. 2. For
the contents of this paper, the label of “charge state” refers to
the charge state of the initial configuration before an electron
from the K-shell is ionized. For example, in Fig. 2, the initial
configuration (shown on the left) has an ionic charge of 2,
while the other two configurations have an ionic charge of
3. The K-edge energy is the difference in energy between
the initial configuration with an ionic charge of 2 and the
subsequent configuration with an ionic charge of 3, so we
label it the K-edge for charge state 2. While the K-alpha
energy calculation is the difference in energy between the two
configurations with ionic charges of 3, it is labeled as charge
state 2, as that is the charge of the initial configuration.

The thermalization energy, Etherm, is the energy required
to thermalize a free electron. This energy is included in the
energy of a final-state configuration, as the ionized electron
is modeled with the Fermi-Dirac distribution. Since we only
want to know the minimum energy required to remove an
electron from the K-shell and place it in the continuum, we
subtract Etherm in Eq. (14). The thermalization energy was
calculated assuming a free electron gas model for the ionized
electron, which is a reasonable estimate, though it clearly
leaves room for improvement.

Figure 4 shows calculated K-edge and K-alpha results (red
line) compared with the experimental emission results. For

FIG. 5. K-edges calculated with our model for temperatures of
20, 40, 60, 80, and 100 eV for solid density magnesium (top), alu-
minum (middle), and silicon (bottom), compared with experimental
results (shaded, labeled as “Exp.”) [12]. Experimental K-edges for
silicon were only reported up to charge state 7.

this overall comparison, we have chosen the temperature that
best fits the K-edge measurements; we address the temper-
ature dependence next. While we see reasonable agreement
from the contour plot alone, it is difficult to discern exactly
where the K-edge ionizations and K-alpha transitions occur.
Ciricosta et al. [12] extracted the K-edge values from the data,
to which we compare our results directly. They also extracted
the K-edge values for aluminum and silicon, and we compare
the predictions of our model for these cases as well. The
comparisons of the K-edge energies for all three elements are
shown in Fig. 5.

In Fig. 5 we show K-edge results from our model for sev-
eral temperatures. Importantly, the temperature of the plasma
was not directly measured in the experiments [12]. The pre-
dicted K-edge energies become sensitive to temperature at
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higher charge states. For all elements the calculated K-edge
values for lower charge states are very close to each other,
despite being calculated over a large range of temperatures.
However, at higher charge states, the calculated K-edge values
vary more over the same range of temperatures. This is due
to a larger fraction of ionized electrons that thermalize and,
therefore, become more sensitive to temperature. Agreement
between the model and the experiments is excellent, for all
three materials. Even though temperature is not measured,
the relative insensitivity of the K-edge values means that the
experiment provides a useful constraint on the model.

For comparison, Fig. 6 shows lineouts of the measured
experimental emission for magnesium, showing our calcu-
lated K-edges over a range of temperatures for each charge
state. For lower charge states, there exist very sharp edges in
emission, indicating clear values for the K-edge locations. We
see that as the charge state increases, the slope that indicates
the edge gets shallower. This is clearly apparent at higher
charge states, as we see that the “edges” for these higher
charge states span a much larger range of LCLS energies. The
shallower slope of the K-edge reflects two things: first, for
higher charge states, bound states relocalize due to the higher
charge of the ion, leading to more states near the bound-free
threshold; second, the Fermi edge becomes blurred due to
the higher temperatures [11]. This behavior makes it more
challenging to identify a single value for the K-edge, as the
K-edge itself is blurred out.

Our aluminum K-edge results, shown in Fig. 5, also agree
with those of the finite-temperature DFT methods presented
in Ref. [18], as well as the two-step Hartree-Fock method in
Ref. [15]. Our aluminum K-edge is mostly consistent with the
K-edge presented in Ref. [29]; however, the K-edge calculated
with our model is lower than Ref. [29] for higher charge
states. As seen in our results, the higher charge states are more
sensitive to temperature variation, so this disagreement could
be sensitive to the temperature treatment in the model. In all of
our K-edge calculations for all three elements shown in Fig. 5,
the K-edge increases with charge state, which is consistent
with the aforementioned experiments and models, as well
as with the atomic-solid-plasma model presented in Ref. [20],
in which they show the K-edge of a carbon plasma increasing
with charge state.

In Fig. 7 we look at lineouts of the experimental data for
magnesium, highlighting the K-alpha peaks. We see that the
K-alpha values calculated with our model correspond with the
peaks in emission for most of the charge states. The K-alpha
values plotted in Fig. 7 are calculated at a specific temperature
for each charge state. This temperature corresponds to the
best fit for the K-edge results. Agreement between our model
and the data is generally good. However, our K-alpha values
for the higher charge states, notably charge states 8 and 9,
are ∼10 eV from the peaks of the experimental data. Similar
findings were also obtained for aluminum by Son et al. [15],
who observed that the K-alpha energies of the higher charge
states were lower than experimental values.

A possible reason for the discrepancy at higher charge
states could be because our model does not include multiple
scattering [30]. Multiple scattering will more strongly affect
the higher charge states since it has the strongest effect on
valence states, which are hybridized, and are more abundant
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FIG. 6. Lineouts of experimental data [12] taken at peak emit-
ted photon energy for each charge state (labeled in the top left
corners), compared with the K-edges calculated by our model at
various temperatures (represented by colored vertical lines: solid for
falling within experimental range, dashed for falling outside) and the
experimental edge (shaded region). The gaps in the lineout data are
due to negative values of the emission.

in higher charge states. Valence states are more abundant
due to increased state localization caused by less screening
of the nucleus by core state. More tightly bound states are
less affected by multiple scattering due to their localized
nature [30]. Our model also does not include configuration
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FIG. 7. Lineouts of the emission [in arbitrary units (arb. units)]
measured in the experiment for magnesium [12] taken at LCLS en-
ergies of 1350 eV and 1515 eV. Each peak corresponds to the energy
of the photon emitted from a K-alpha transition, with the transition at
charge state 2 having the lowest energy and charge state 9 having the
greatest energy. The K-alpha energies calculated with our model are
indicated by the colored, solid vertical lines. The lineout at an LCLS
energy of 1350 eV shows only peaks for the first three charge states
because the LCLS energy is not high enough to ionize an electron
from the K-shell in higher charge states. Thus, there is no subsequent
K-alpha transition. The 1350 eV lineout shows that the location of the
peaks do not significantly differ for different LCLS energies.

interaction, but rather uses LDA for exchange and correlation,
which has some error associated with it, and this error could
be dependent on the charge state [31].

Another possible explanation for the observed discrepancy
is the influence of possible nonequilibrium effects in the
experiment. Our model assumes local thermodynamic equilib-
rium (LTE) free electron distributions. While nonequilibrium
effects may be present in the experiment, previous work
suggests that these do not significantly affect the K-alpha
position [32].

IV. IONIZATION POTENTIAL DEPRESSION

The IPD is the change in ionization energy in a plasma
at non-zero temperature and density, relative to the isolated
ion case (see Fig. 1). We can use our model to calculate the
ionization potential of a given ion for arbitrary temperatures
and densities. For example, the ionization potential (VIP) of
a magnesium ion with 10 bound electrons (charge state 2) at
temperature T and density ρ, assuming nmax = 2, is given by

VIP(T, ρ) = E (T, ρ)1s22s22p6+FD

− [E (T, ρ)1s22s22p5+FD − E (T, ρ)therm]. (16)

Similarly, the same ionization potential can be calculated
for an isolated ion (denoted by II). The ionization potential
of an isolated magnesium ion with 10 bound electrons is
given by

VIP(II ) = E (II )1s22s22p6+FD

− [E (II )1s22s22p5+FD − E (II )therm]. (17)

FIG. 8. IPDs calculated with our model for temperatures ranging
from 20 eV to 750 eV for magnesium at solid density. At charge state
2, the IPD is lowest at a temperature of 20 eV and highest at 750 eV.
At a charge state of 7, the IPD is lowest at a temperature of 750 eV
and highest at 20 eV.

The IPD (VIPD) is obtained by taking the difference of
the ionization potential for an ion in a hot dense plasma, at
some finite temperature and density, with the corresponding
ionization potential for an isolated ion. Therefore, the IPD at
temperature T and density ρ is given by

VIPD = VIP(T, ρ) − VIP(II ). (18)

In Fig. 8 we show the predicted IPD for solid density
magnesium plasmas over a range of temperatures. We see that
the IPD increases with the charge of the ion, and that it also
depends on the temperature of the plasma. Since core states
are more weakly affected by plasma conditions than valence
and continuum states, it is to be expected that higher charge
states would have a larger IPD than the lower charge states.

The SP [24] and EK [25] models are commonly used
analytic models of the IPD. The SP IPD is given in Hartree
atomic units by

SP = T

2(z∗ + 1)

{[
6z(πne)1/2(z∗ + 1)3/2

T 3/2
+ 1

]2/3

− 1

}
,

(19)

where z is the charge state +1, z∗ is the average ionization of
the plasma, ne is the electron density given by z∗/V , and T
is the temperature in atomic units. Also in Hartree atomic
units, the EK IPD is

EK = z

4πε0

[
4π (ne + ni )

3

]1/3

, (20)

where z and ne are defined in the same way as the SP model,
and ni is the ionic density, given by 1/V .

The SP model uses a finite temperature potential for the
average electrostatic potential near the nuclei. The free elec-
trons in the plasma are described by Fermi-Dirac statistics,
while the ions are described by Maxwell-Boltzmann statistics.
In this model, the screening from the bound electrons does not
contribute to the IPD. We note that multiple forms of the SP
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FIG. 9. Comparison of the SP (solid lines) and the EK (dashed
lines) models for temperatures ranging from 20 eV to 750 eV for
solid density magnesium. For both models, the IPD increases as
temperature increases. However, for the SP model, the IPD at a
temperature of 750 eV is lower than that of 500 eV and 250 eV.

model have been described in the literature [16,23,24,29,33].
All SP calculations presented in this work use Eq. (19).

The EK model is a generalized Saha equation as a function
of the plasma’s chemical potential. The model assumes two
forms of the IPD, depending on the density of the ions and
electrons combined. In the cases that we are investigating, the
density is always above the “critical density,” defined by the
model as

nc = 3

4π

(
T

z2

)3

. (21)

The form that the IPD takes above this critical density is given
by Eq. (20).

Figure 9 shows that there is a dependence on temperature
for both the SP and EK models. Both models require an
input of z∗, for which we have used the Tartarus average
atom model [34] to obtain. We can also see how the models
compare to each other, e.g., the SP model displays a shallower
slope than the EK model. In the SP equation, the IPD for
a given charge state depends on two things: the temperature
T and the average ionization of the plasma z∗. For a con-
stant temperature T , the IPD increases as z∗ increases. For a
constant z∗, the IPD decreases as temperature increases. How-
ever, the value of z∗ increases as the temperature increases,
though at high enough temperatures, the value of z∗ begins
to plateau towards the maximum value (12 for magnesium).
At these temperatures, z∗ can be considered constant com-
pared to the change in temperature. This behavior causes the
SP model IPD to decrease as T increases for these higher
temperatures.

In Fig. 10 we compare the SP and EK predictions to the
present excited states model at select temperatures. We find
that at the lower temperatures, the IPD calculated with our
model is slightly closer to the EK model, while at higher
temperatures our model is closer to the SP model.

At temperatures consistent with experiments, the IPDs cal-
culated with our model in Fig. 10 have mixed agreement
with the SP and EK models. This is consistent with the two-
step Hartree-Fock results presented in Ref. [15], in which

FIG. 10. IPD calculated with our model compared with SP and
EK models for magnesium at solid density and temperatures of 20 eV
(top), 100 eV (middle), and 750 eV (bottom).

the calculated IPD falls between the SP and EK models, for
aluminum in that case. This behavior was also reported in
Ref. [33]. Additionally, Ref. [35] shows a model of the IPD
of high density iron at T ≈ 100 eV that falls between the
EK and SP models, which is consistent with our findings
as well.

Our results at T = 100 eV for magnesium are consistent
with the findings in Ref. [36] for lower charge states, but
disagree more at higher charge states, with our model predict-
ing a lower IPD comparatively. Our magnesium results also
disagree with the IPD predicted from the atomic-solid-plasma
method [20], which estimates an IPD greater than both the SP
and EK models.

V. CONCLUSIONS

We used our recently developed excited states model [28]
to model the experiments in Refs. [11,12]. The model is
variationally derived and uses an effective single-particle ex-
pression for the energy of a chosen set of excited states,
defined by their single-particle occupation factors. The model
was used to calculate K-edge and K-alpha energies, as well
as the ionization potential depression for solid density magne-
sium, aluminum, and silicon at various temperatures.

We found generally good agreement between the model
and experiment for the K-edge and K-alpha. Some differences
were observed for higher charge states for the K-alpha ener-
gies. This behavior echoes earlier findings in Ref. [15]. Some
possible inadequacies in the present model that could cause
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this discrepancy are the absence of multiple scattering [30]
and the use of a local density approximation (LDA) expression
for the exchange and correlation energy.

Finally, we calculated the IPD over a large range of tem-
peratures to compare to the SP [24] and EK [25] models, and
we investigated the temperature dependence of the models
themselves. As is shown in previous works, the EK model
gives higher estimates of the IPD than the SP model and
depends more strongly on the charge state of the ion; both
models also generally estimate an increase in IPD as the tem-
perature increases. We showed that the IPD calculated with
our model at lower temperatures agrees more with the EK
model, while our calculated IPD at higher temperatures agrees
better with the SP model, which is consistent with findings in
Refs. [3,23]. However, for the most part, our calculated IPD
has mixed agreement with both models, rather than strictly
agreeing with one model over the other, which is also found
in other results in the literature [15,33,35].

In summary, our model can accurately predict the excita-
tion energies in these dense plasmas. This level of agreement
further validates our approach, while also revealing areas
where additional research is needed.
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