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Proton deflectometry analysis in magnetized plasmas:
Magnetic field reconstruction in one dimension
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Proton deflectometry is used in magnetized high-energy-density plasmas to observe electromagnetic fields.
We describe a reconstruction algorithm to recover the electromagnetic fields from proton fluence data in 1-D.
The algorithm is verified against analytic solutions and applied to example data. Next, we study the role of
source fluence uncertainty for 1-D reconstructions. We show that reconstruction boundary conditions can be
used to constrain the source fluence profile and use this to develop a reconstruction using a specified pair of
boundary conditions on the magnetic field. From these considerations, we experimentally demonstrate a hybrid
mesh-fluence reconstruction technique where fields are reconstructed from fluence data in an interior region with
boundary conditions supplied by direct mesh measurements at the boundary.
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I. INTRODUCTION

Proton deflectometry (or radiography) [1–3] is increasingly
used to observe the evolution of electric and magnetic fields in
high-energy-density plasmas. This has enabled magnetic field
observations in experiments ranging from compressed fields
for inertial fusion energy [4] and self-generated magnetic
fields in laser-solid interaction [5–7] to laboratory astro-
physics measurements of Weibel instability [8], magnetic
reconnection [9–12], magnetized shocks [13], and plasma
dynamos [14].

The principle of the measurement, which has been dis-
cussed in Refs. [1,2], and a recent review article [3], is to
use a beam of protons to map the electromagnetic fields in an
experiment. A point source of protons is generated through
either a laser-driven implosion of a D3He-filled capsule or
laser-solid interaction. The protons then stream through a
region under study, where they pick up small-angle deflections
from the electromagnetic fields, before propagating ballisti-
cally to a detector. The goal is to use the detected protons to
infer the electromagnetic fields. Oftentimes a grid or mesh is
used to break the protons into beamlets (e.g., Refs. [6,10]).
This has the virtue that the beamlets can be directly located
on the detector to measure the proton final positions. X rays
are also generated in D3He implosions, and these can be
mapped simultaneously using appropriately designed detector
stacks [15,16]. Since x rays are not deflected by electromag-
netic fields, the x-ray beamlets provide a direct reference of
the undeflected beamlet locations.
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‡Present address: Department of Physics and Astronomy, Univer-

sity of California - Los Angeles, Los Angeles, California 90095,
USA.

While the mesh enables a direct measurement of the proton
deflections, it also sacrifices spatial resolution. To observe
at higher resolution, it is also possible to take direct pro-
ton fluence images without a mesh. In this case, the proton
focusing and defocusing by the electromagnetic fields leads
to fluence variations on the detector, and the goal is then to
reconstruct the fields which create these variations. Generat-
ing forward proton models (e.g., Ref. [11]) to compare with
experimental data is straightforward, since one simply has
to generate model fields and then calculate and bin proton
trajectories to generate an image for comparison. A quanti-
tative analytic theory connecting proton deflections to fluence
variations was described by Kugland et al. [1]. Finally, and
potentially most powerfully, algorithms have been developed
to invert measured fluence images to obtain the experimental
electromagnetic fields [2,17,18]. These inversion techniques
generally involve an optimization or relaxation-type solution
to the Monge-Ampère transport equation [2,17,19], whereas
other algorithms have been developed that exploit the analogy
between deflectometry and charged particle motion [18], or
use neural networks [20].

In this article, we develop and verify a 1-D inversion
algorithm to obtain 1-D field profiles from proton fluence
profiles through direct integration of an ordinary differential
equation (ODE). This is complementary to 2-D algorithms
mentioned above [2,17,18]. The algorithm is fully nonlinear
and can reconstruct for large proton deflections, as long as
there are no caustics and the proton trajectories do not cross.
It therefore works in the same “nonlinear injective” regime of
Ref. [2]. A virtue of a 1-D algorithm is that it can run very
quickly (typically <0.1 sec for a reconstruction), and there-
fore can be easily embedded within higher-level workflows
for error analysis and parametric scans. Furthermore, several
experiments, including magnetic reconnection [12], magne-
tized cylindrical implosions [4], or transport in magnetized
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plasmas [21] related to fusion concepts such as MagLIF [22]
have 1-D or nearly 1-D regions which can be analyzed by
this technique. Variations on this algorithm have been im-
plemented in cylindrical geometry to analyze cylindrically
symmetric expanding plasmas [23].

Next, we investigate some subtleties for 1-D reconstruc-
tions, such as the connection between the reconstruction
boundary conditions and the “source” proton fluence, which
is the proton fluence before it is deflected by the experimen-
tal fields. We show that reconstruction boundary conditions
can be used to directly constrain the average source proton
fluence. We use this result to implement arbitrary magnetic
field boundary conditions for the 1-D algorithm. (Other com-
monly used solvers, e.g., PROBLEM [24] at the time of
this writing, apply the zero-deflection boundary condition
Btangential = 0.) We also explore the “integration error” intro-
duced by error in the source fluence. We focus on error in
the average level, yet the results also have implications for
the more general question of source fluence nonuniformity.
These results complement prior statistical analysis of source
fluence uncertainties [25]. Finally, we develop and experi-
mentally demonstrate a “hybrid” proton fluence deflectometry
technique, with separate mesh and fluence regions in the same
radiograph, where mesh regions provide direct measurement
of magnetic field boundary conditions for the reconstruction
in the fluence region.

This work is intended to be the beginning of a series of
works that discuss analysis of proton data for recent exper-
iments. The focus is on proton deflectometry with careful
analysis of the various sources of measurement uncertainty, to
allow quantitative statements about measured magnetic fields
with error bars. A first physics analysis of magnetic recon-
nection experiments using this analysis technique is presented
in Ref. [26]. Finally, an Appendix describes the implementa-
tion of the routines (presently in Matlab) in a package called
PRADICAMENT.

II. PROTON DEFLECTIONS

In this section, we briefly review the measurement setup
and basic theory of proton deflections to fix the geometry and
notation to be used below. The reader is referred to Refs. [1–3]
for extended discussion of the proton deflectometry theory.
Figure 1 shows a typical experimental geometry. The protons
emerge from a point source located at a distance Ls from the
plasma under study. The detector is positioned at a distance
Ld on the opposite side. (The figure is not to scale, as often
Ld � Ls, in a point-magnification geometry.) As the protons
travel through the plasma region, they pick up small angle de-
flections �α due to electromagnetic fields. The figure shows
an example magnetic geometry representative of recent ex-
periments on laser-driven magnetic reconnection [10,12], in
connection with the verification example below.

Following the development from prior work on proton
deflectometry [1,2], we consider high-energy protons which
only pick up small deflections |�V| � Vp while propagating
through the plasma, where Vp = (2Ep/mp)1/2 is the pro-
ton speed given the initial proton energy Ep. In this limit,
the deflection is given by an integral over the straight-line
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Detectorx
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FIG. 1. Schematic of the measurement setup and coordinate sys-
tem. A proton source produces a point source of high-energy protons.
These stream through an experimental region, where the protons pick
up deflections �α due to electromagnetic fields, after which they
propagate ballistically to a detector. An example proton crosses the
plasma plane at position x, where the electromagnetic fields deflect
the trajectory, causing the proton to arrive at position X ′ rather than
X on the detector.

trajectory,

�α = �V
Vp

= e

mpV 2
p

∫
(E + Vp × B)⊥ d�. (1)

The validity of this limit is extensively discussed in
Refs. [1,2].

Considering the detector geometry, the proton crossing the
plasma at position x arrives at the detector at position

X′ = (1 + Ld/Ls)x + Ld�α(x). (2)

It is convenient to work just in the coordinate system of the
plasma plane, so we use the “final” proton position mapped
back to the plasma plane, x′ = X′/M, using the magnification
M = (1 + Ld/Ls), so that

x′ = x + LsLd

Ls + Ld
�α (3)

= x + ξ(x), (4)

introducing the deflection ξ(x). With this definition,

ξ(x) = K−1
B

∫
d� × B + K−1

E

∫
E⊥ d�, (5)

using the deflection “rigidity” factors

KB = mpVp

e

Ls + Ld

LsLd
(6)

and

KE = mpV 2
p

e

Ls + Ld

LsLd
. (7)

The units of KB and KE are conveniently (in SI) Tesla and
V/m. However, with this formulation, the mapping can work
in any consistent unit scheme, and, for example, KB can be
converted to Gauss. If

∫
By dz is given in T-m and KB in T, this

produces a deflection ξ with units of m. The interpretation of
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KB is that, for example, given KB = 50 T, for a line-integrated
field

∫
d� × B = 50 T-mm, the proton will be deflected 1 mm

in plasma plane units.
For the present analysis, we now specialize to a 1-D geom-

etry, with protons propagating primarily along z, and deflected
only in the x-direction, so that we have a mapping which is the
1-D version of Eq. (4),

x′ = x + ξ (x), (8)

where ξ is a function of x only, given by

ξ (x) = K−1
B

∫
By dz + K−1

E

∫
Ex dz. (9)

The proton fluence (defined as protons / unit area, or a
similar quantity) is assumed first to have a known “initial” or
“source” fluence I0(x), when the protons first reach the plasma
plane. The proton deflections x → x′ then map this fluence to
the detector image I (x′). For a given magnetic field structure,
one can calculate a synthetic proton fluence image, which we
call Ifwd. To do this, one calculates many proton mappings via
Eq. (8), with initial positions drawn from the source fluence
profile I0(x), binning the final positions x′ to determine the
final fluence profile.

In 1-D, the fluence transforms according to the Jacobian of
the proton mapping [1],

I (x′) = I0(x)

|dx′/dx| . (10)

This equation holds if the magnetic field is limited in mag-
nitude to an extent that dx′/dx > 0, which is equivalent to
the absence of caustics in the proton image (i.e., that pro-
ton trajectories do not cross en route to the detector). While
Eq. (10) is valid in noncaustic regimes, the forward binning
technique works even in caustic regimes and is therefore more
general. Reference [1] discusses caustic formation extensively
and provides several examples.

Equation (10) is equivalent to a statement of conservation
of protons,

∫ x2

x1

I0(x) dx =
∫ x′

2

x′
1

I (x′) dx′ (11)

considering an integral on [x1, x2] of the initial protons or
[x′

1, x′
2] over the final protons. A perennial subtlety of the

analysis is that the fluence data I (x′) is “observed at” the final
coordinates x′ but depends on the source fluence at the initial
coordinates, I0(x).

III. RECONSTRUCTION

We now develop how to reconstruct the magnetic (or
alternatively electric) fields from the fluence data. The equa-
tions are the 1-D limit of prior image-fluence relations [1,2],
however, with the 1-D formulation, the present method
departs from the relaxation method of Refs. [2,19]. We in-
troduce b(x) = ∫

By dz as the line-integrated magnetic field,
for brevity. Hereafter, we also assume the electric deflection
is negligible so that there is a constant relation between ξ

and b. For the more general case, one can analyze multiple
reconstructions from various orientations [6] or with different

proton energies to separate the electric and magnetic field
contributions.

To reconstruct, we determine the relationship between the
mapping and the measured proton fluence I (x′). First, we find,
using Eq. (8),

dx′

dx
= 1 + dξ

dx
. (12)

After substituting this in Eq. (10), and using b = KBξ , we find
the following relation between b, I, and I0,

db

dx
= KB

dξ

dx
= KB

(
I0(x)

I (x′)
− 1

)
. (13)

The simple form of Eq. (13) is rather deceptive since the
LHS of the equation has the magnetic field as a function of
the initial proton coordinates x while the RHS depends as
well on the final proton coordinates x′ through I (x′), which
are in turn coupled through Eq. (8). This being said, we
have now obtained a differential equation, Eq. (13), relating
the line-integrated B field to the observed proton fluence. For
the solution, we regard I (x′) and I0(x) as input data, and inte-
grate to obtain b(x). Numerical solutions are straightforward
using ODE solvers, either by hand or using prebuilt packages.

Since Eq. (10) relies on the assumption that deflections
are sufficiently weak that dx′/dx > 0, the present recon-
struction algorithm requires the same condition. This regime
was called the “nonlinear injective regime” in Ref. [2]. The
regime guarantees that for each proton final position x′ the
protons arrived from only one x. (Ref. [2] also describes a
yet-weaker-deflection regime called the “linear” regime. The
present reconstruction technique is also valid in the linear
regime.)

Given the structure of Eq. (13), a unique reconstruction will
be provided by the solution to the equation plus a boundary
condition b0 = b(x0) at some specified point x0. Without the
boundary condition, the solution is unique up to a uniform
offset magnetic field b̄ added to the overall solution, which
also results in an additional, uniform spatial offset between x
and x′. Equivalently, without a specified boundary condition,
the reconstruction provides the relative change to the mag-
netic field on the domain. We return to further discussion of
boundary conditions below.

We can also calculate the line-integrated current,∫
Jz dz = 1

μ0

d

dx

∫
By dz = KB

μ0

(
I0(x)

I (x′)
− 1

)
. (14)

This shows the direct relationship between the parallel current
density and the proton fluence. The subtlety here again is
the mapping x → x′ so that for a current density at x, the
associated proton fluence is observed at x′. This relation is the
1-D analog of equations derived in Ref. [27]. Equation (14)
shows the close relationship between the proton fluence and
current density, and therefore why an additional integration is
needed to obtain the magnetic field, via Eq. (13).

IV. VERIFICATION

We next demonstrate a verification of the reconstruction
technique using an example analytic set of fields. We choose
a magnetic field profile that is representative of current sheet
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FIG. 2. Analytic profiles for reconstruction verification. (a) Line-
integrated magnetic field profile. (b) Plasma current. (c) Proton final
position x′ for each x. (d) Proton fluence profile.

formation between colliding magnetized plasmas in magnetic
reconnection experiments [28]. From the analytic field pro-
files, we calculate a synthetic proton fluence. This proton
fluence is then fed (numerically) into the reconstruction al-
gorithm, and we verify that the reconstruction matches the
analytic magnetic field.

We assume a magnetic profile of the form

b(x) = b0 tanh(x/δ)

(
1 − |x|

LB

)
. (15)

Here, b0 is the peak (line-integrated) magnetic field which we
take as 10 T-mm. LB is a constant related to the distance to
center of each magnetized bubble, which we take as 1 mm,
so that the B field returns to zero at x = ±LB. We will use
this formula, and reconstruct, over the domain x ∈ [−LB, LB].
Finally, the current sheet width parameter δ is taken as
30 µm. This analytic profile is shown in Fig. 2(a). From
this, we calculate a line-integrated plasma current density∫

Jz dz = (1/μ0) d/dx
∫

By dz, shown in Fig. 2(b). The cur-
rent shows a strong positive spike in the current sheet with
a magnitude larger than 250 MA/m. Away from the current
sheet, the current density is slightly negative, representing a
return current.

We next produce a synthetic set of 1-D proton fluence
data, using typical proton parameters from experiments. We
take Ep = 14.7 MeV, Ls = 10 mm, and Ld = 150 mm, from
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FIG. 3. Reconstruction demonstration. (a) Magnetic field pro-
files comparing the reconstructed magnetic field with the original
analytic form. (b) Proton fluence profiles, comparing the given input
proton fluence, and a forward proton model from the reconstructed
magnetic field profile Ifwd.

which we evaluate KB = 59 T. From this, we calculate proton
deflections ξ and accordingly x′ as a function of x, which is
shown in Fig. 2(c). Finally, we calculate the proton fluence,
based on a nominal uniform source proton fluence of I0 of
100 protons/pixel, shown in Fig. 2(d). The final proton fluence
can be calculated semianalytically using the mapping x → x′
and analytic dξ/dx, or numerically by binning the final proton
positions. The reversal of the magnetic field causes the protons
on opposite sides of the current sheet to diverge (as illustrated
in Fig. 1), producing a broad proton fluence depletion near
x = 0.

This proton fluence profile is then used in the inversion
procedure described above, which is to numerically integrate
Eq. (13) coupled to Eq. (8). We use the synthetic proton
fluence I (x′) shown in Fig. 2(d) as input data. Next, at this
point, we assume we know the source proton fluence I0 = 100
protons/pixel, and the initial condition on the magnetic field
b = 0 at x = −1 mm, and apply these in the reconstruction.
(The reconstruction can equally start at other initial condi-
tions, such as b = 0 at x = +1 mm; we verified the inversion
produces identical reconstructions within the tolerances in
each case.)

The results are shown in Fig. 3(a), showing excellent agree-
ment between the analytic profile and the reconstruction. The
maximum deviation between the inversion and the analytic B
profile is < 1 × 10−5 T-mm, or less than 0.1%.

Finally, as a standard check, we calculate the forward
proton fluence Ifwd from the reconstruction. The comparison
of Ifwd with the input data I (x′) is a useful (and minimal)
test for the general case when there is no analytic magnetic
field to compare against. To do so, we numerically calculate
ξ based on the reconstructed field and bin the final proton
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positions, shown in Fig. 3(b). The agreement with the original
input I (x′) is excellent, which is to be expected since we
also had agreement between the analytical and reconstructed
fields. Some fine-scaled “jaggedness” can be observed in
Ifwd, which is due to the finite spatial resolution of the re-
construction. The maximum difference between Ifwd and the
synthetic input data was <2.5 protons/pixel, and the RMS
deviation was <0.5 protons/pixel. These results illustrate
the overall numerical verification of this 1-D reconstruction
technique.

V. BOUNDARY CONDITIONS
AND THE SOURCE FLUENCE I0

We now study how the source proton fluence and boundary
conditions can impact 1-D magnetic reconstructions. In this
section, we develop the relationship between these quantities
and how uncertainties in these quantities feed through to re-
sults of the reconstruction.

For the reconstruction above (Fig. 3), we assumed we knew
two important quantities: the initial condition to start the in-
tegration from, and the source proton fluence I0(x). Solutions
of Eq. (13) can add a uniform magnetic field, which leads to
a constant additional offset of x and x′, So, without a speci-
fied boundary condition, only the relative change of the field
across the integration domain is obtained from the analysis.
For some applications, such as observing the RMS or fluctu-
ating components of the magnetic field (e.g., Refs. [2,14]),
the relative variations may be sufficient. However, other
contexts, such as for magnetic reconnection or collision-
less shock experiments, the absolute magnitude may be very
important.

Next, the source fluence I0 is also required for the recon-
struction. In the example above, we posited that we knew the
source fluence I0(x) = 100 protons/pixel. However, we now
conduct an exercise imagining that there was some uncertainty
in determining this quantity. Figure 4 shows the results for
reconstructing the same I (x′) above but with I0 now set at 90
or 110 protons/pixel (still uniform on the domain). The result-
ing reconstructed fields are shown in Fig. 4(a), as the dashed
and dot-dashed curves, labeled with the associated I0. We
observe that this change in I0 leads to significantly different
reconstructed magnetic fields. Roughly speaking, the change
in I0 introduces a positive or negative ramp to b(x), which we
will call the “integration error.” The magnetic field still makes
a similar jump in each case, yet the position of the jump is
offset, due to the error propagated through the mapping x →
x′. By the right-hand boundary, the curves have significantly
different magnitudes, yielding b(x) near ±10 T-mm, which
is approximately equal to the maximum value bmax from the
I0 = 100 solution. It is clear that |δb|/|bmax| ∼ 100%, where
δb is the difference between solutions.

Additionally, Fig. 4(b) shows the associated reconstructed
current density. We see that the location of the peak currents
are offset spatially, just like the spatial offsets of the magnetic
field jumps. However, the peak currents are actually fairly
similar (±10%). This indicates that some outputs from an
analysis, such as peak current, can be more robust to I0 errors
than magnetic field measurements.
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FIG. 4. Proton reconstructions under multiple values of I0.
(a) Magnetic field calculations for uniform I0 = 90, 100, and 110
protons/pixel as labeled. (b) Associated plasma current density
reconstructions.

We now characterize the ramp (“integration error”) result-
ing from an error in I0. We return to Eq. (13) and introduce an
error in the source fluence measurement δI0. We obtain

db

dx
= KB

(
I0

I (x′)
+ δI0

I (x′)
− 1

)
. (16)

While this equation is complicated, owing again to the non-
linear dependence of I (x′) on x′, we can see immediately that
adding a δI0 upsets the balance between I0 and I , leading to a
net positive or negative accumulation to the integral.

We now consider the most simple case, assuming I = I0

= const [so that the nominal b(x) = constant as well], and
again introduce δI0. This case can be solved directly for the
integration error δb, and we obtain

δb = KB

∫
δI0

I0
dx = KB

δI0

I0
�x, (17)

where �x is the integration distance. This shows that δI0

produces an integration error δb which accumulates in space,
with slope KBδI0/I0. This result matches with the numeri-
cal example in Fig. 4(a): taking KB = 59 T, δI0/I = 10%,
and �x = 2 mm, we get an accumulated δb error ≈12 T-
mm. Therefore, this explains the overall positive and negative
slopes introduced by δI0. Note that further features will also
be introduced in the general case, such as the spatial offsets of
where the magnetic jump occurs in Fig. 4(a), produced by the
additional nonlinearity of the proton mapping.

This result directly connects magnetic field measurement
errors to errors in I0. Similar classes of “integration errors”
are common in other fields, such as electronic integration
circuits, whenever small but correlated offset errors integrate
to produce spurious signals. This issue illustrates a challenge
of reconstructing magnetic fields from proton fluence mea-
surements. We note that this issue generalizes to input proton
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fluence nonuniformities [i.e., an x-dependence of I0(x)]. Such
nonuniformities, if not characterized and accounted for in
the analysis, also integrate up to produce spurious magnetic
fields. This effect is worse at long wavelengths, and for longer
integration domains (δb ∝ �x).

VI. BOUNDARY-CONSTRAINED RECONSTRUCTION

The previous section showed how different I0 can produce
significantly different reconstructions, and specifically how
the changes to the average Ī0 leads to different ramp rates of
the magnetic field across the domain. Accordingly, it is im-
portant to constrain this quantity for experimental analysis. In
this section, we develop a boundary-constrained reconstruc-
tion that uses a pair of boundary conditions on the magnetic
field, which yields a reconstruction that passes through both
specified boundary conditions, and in the process infers the
required average Ī0.

We recall that Fig. 4 shows that using different I0 produces
a large family of magnetic field solutions which ramp to
nearly arbitrary values elsewhere in the domain. However, the
converse is also true: if the magnetic field boundary conditions
are specified at multiple points, then I0 can be chosen so that
the reconstructed field passes through those points. There is a
relationship between I0 and the boundary conditions on b(x).

We now directly construct this, using the principle of con-
servation of protons: imagine that we specify a two-point
boundary condition on b(x), namely b(x1) = b1 and b(x2) =
b2. Then we can calculate x′

1 = x1 + b1/KB and x′
2 = x2 +

b2/KB. From this we integrate the total protons landing be-
tween x′

1 and x′
2, which is

∫ x′
2

x′
1

I (x′) dx′. This determines Ī0,
which is the average of I0 on [x1, x2], via∫ x′

2

x′
1

I (x′) dx′ =
∫ x2

x1

I0(x) dx ≡ Ī0�x, (18)

where �x = x2 − x1 is the integration distance. Therefore, a
two-point boundary condition on the magnetic field is sufficient
to fix the average of the input proton fluence Ī0. This relation
is exact, even considering the nonlinearity of the mapping.

We now implement this new prescription for a final set
of reconstructions, shown in Fig. 5, where we take that I0 is
unknown before the analysis but specify two-point boundary
conditions on b(x). We run two cases, one where we use
the previous bbc = 0 at xbc = ±1 mm, exactly as analyzed in
Fig. 3, and a case where (x, b)bc are (−1 mm, −10 T-mm) and
(+1 mm, +10 T-mm), which we call the ±10 T-mm case.

The boundary information is used to infer Ī0 for each case,
via Eq. (18), which is then used to reconstruct the magnetic
fields. (We again use a uniform I0 = Ī0 for each case.) For the
bbc = 0 case, I0 is inferred to be exactly 100 protons/pixel (as
expected). For the bbc = ±10 T-mm case, I0 is inferred to be
120.4 protons/pixel. The results are shown in Fig. 5(a), with
the dark blue curve showing the solution for bbc = 0, and the
light blue dashed curve showing the solution for bbc = ±10
T-mm. We observe that the magnetic field exactly achieves
the specified boundary conditions in each case.

Finally, Fig. 5(b) shows a plot of inferred line-integrated
current density

∫
Jz dz for each case, zoomed to a smaller

domain near the current sheet. We observe that the shapes are
quantitatively similar, but there is a ≈20% difference in the
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FIG. 5. Demonstration of radiography reconstructions to achieve
specified boundary conditions, where Ī0 is considered a free param-
eter. (a) Reconstruction of line-integrated magnetic field to achieve
bbc = 0 (dark blue), or bbc = ±10 T-mm (light blue, dashed) at the
two ends of the domain. (b) Current profiles determined for each
case, where the red curve is the bbc = 0 case and the yellow dashed
curve is for the bbc = ±10 T-mm case.

peak current density, due to the difference in I0 determined
for each case. The fractional difference in

∫
Jz dz is due to the

difference δI0/I0 ≈ 20% between the cases.
To conclude, in this section, we developed a boundary-

constrained reconstruction procedure, which reconstructs a
magnetic field profile matching a pair of magnetic field bound-
ary conditions (x1, b1) and (x2, b2). As shown in Fig. 5, given
different boundary conditions, different reconstructed field
profiles can be generated, even from the same observed proton
fluence profile I (x′). The difference comes in through a differ-
ent inferred (average) source fluence Ī0 for each case. These
results highlight the general importance of applying boundary
condition information for reconstruction analysis, as well as
the interrelation between boundary conditions and the source
proton fluence.

A final point is that the source proton fluence may not be
perfectly uniform. The discussion here shows that the mag-
netic field boundary conditions will constrain the average of
the input proton fluence. However, it may still be clear in the
raw data that additional “structure” and spatial dependence of
the proton fluence I0(x) should be accounted for. In general,
additional information will be needed to constrain structure of
the source fluence. Some statistical strategies for nonuniform
fluence profiles have been discussed in Ref. [25]. We leave
this to be pursued on a case-by-case basis, and for future
publications which focus primarily on experimental data.

VII. RECONSTRUCTION WITH EXPERIMENTAL DATA

We conclude with an example reconstruction using data
from magnetic reconnection experiments from the National
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Ignition Facility [26]. The goal of this section is to show a
demonstration reconstruction of raw experimental data and
the importance of boundary conditions. Here we show a “hy-
brid” proton deflectometry scheme with mesh and fluence
reconstruction regions, which allows us to directly implement
the boundary-constrained analysis of Sec. VI to complete
a reconstruction with experimentally determined boundary
conditions.

In the experiments, two separate plumes are produced
by multiple lasers irradiating a solid carbon target. The ex-
panding plumes self-magnetize through the Biermann battery
effect, which produces a toroidal field wrapping around each
plume [6]. Subsequent collision of the two plumes compresses
the opposite fields from the two plumes and drives mag-
netic reconnection [9–12]. Measuring magnetic fields in the
experiments is valuable to address scientific goals such as
understanding the structure of the current sheet, growth of in-
stabilities, and quantities such as the upstream magnetic fields,
plasma current density, the width of the current sheet, and
rate of magnetic reconnection [28–30] which can be compared
against magnetic reconnection models and observations from
space and astrophysical plasmas [31].

The experimental geometry is very similar to Fig. 1 and is
shown schematically in Fig. 6. To achieve the quasi-1-D ge-
ometry, two lines of 20 laser beams were tiled onto a flat target
occupying the (x, y) plane. The laser foci were in two groups
focused at x = ±1.2 mm, with each group tiled in the y-
direction over 4 mm, producing two highly elongated plumes.
The two plumes collided at x = 0, producing a quasi-1-D
current sheet. The peak, overlapped laser intensity on-target
was IL = 1 × 1014 W/cm2, with a 0.6 ns square pulse. The
beams were all in the group of “outer” beams at NIF which
had on-target angles of 44º–50º, and used phase plates de-
signed to focus to a circular focal spot in the horizontal plane
of the target with FWHM 1.24–1.28 mm. The calculated
intensity profile is shown in Fig. 6(c). A D 3He backlighter
was imploded by separate drive beams a distance Ls = 20 mm
away from the foil. A detector stack was mounted a distance
Ld = 222 mm on the opposite side. The data from 3 and 14.7
MeV protons was registered on CR-39 proton-track detectors
and scanned by standard techniques [32].

We attached laser-cut meshes (Au, thickness 76 µm) to
the back of the target over some regions to break the pro-
tons into beamlets. Tracking the beamlet deflections provides
a direct magnetic field measurement at these locations via
Eq. (8). In addition to the CR-39 detectors, the detector stack
also included an image plate (IP), positioned after the 14.7
MeV CR-39 which measured x rays produced by the D3He
implosion. The IP records the x-ray shadow of the mesh,
which provides the absolute reference location for each beam-
let [15,16]. Filtering through the stack provides a low-energy
cutoff of hν � 25 keV for the x rays reaching the IP. The IP
and CR-39s were co-aligned to better than 0.5 pixel in post-
processing analysis using the toothed features at the image
boundary, imprinted by a fiducial frame at the front of the
detector stack.

Figure 7(a) shows a raw 14.7 MeV proton radiograph from
the experiment. The backlighter was timed such that the 14.7
MeV protons crossed the plasma plane 3.0 ns after the start of
the main laser drive. Meshes (indicated by ‘A’ and ‘C’) were

D3He capsule
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lasers

CR-39 and image plate

(b) Setup side-on (not to scale)(a) Setup face-on 
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magnetic field

magnetic reconnection
current sheet

(c) Laser Intensity [TW/cm2]

-2 0 2

x [mm]

-3

-2

-1

0

1

2

3

y 
[m

m
]

0

20

40

60

80

100

FIG. 6. Experimental setup at NIF. (a) Schematic of the laser pro-
file on-target, Biermann battery magnetic fields, and current sheet.
(b) Schematic side-on view of the target including a D3He capsule
and detector stack (not to scale). (c) Laser intensity profile on-target
from two sets of 20 tiled laser beams. Individual laser foci are
indicated as the crossed data points.

used on the nonreconnecting sides of the plumes, whereas
the mesh-free region (‘B’) in the reconnection region allows
for a magnetic field reconstruction. The footprints of the two
groups of drive lasers are indicated by the red ovals centered
at x = ±1.2 mm, which are extended along y by tiling the
lasers, and denote the centroid of each plume. Two high-
proton-fluence (dark) bands, visible in region B, are produced
by the toroidal Biermann-battery fields wrapping around each
plume. The two plumes collide to produce a reconnection
current sheet which is observed as a low-fluence (light) region
centered at x = 0. The magnetic field in the current sheet
region is quasi-1-D, allowing the 1-D analysis developed in
this work.

The proton fluence profile along x is plotted in Fig. 7(b) and
shown as the purple curve. In regions A and C, the mesh mod-
ulation is visible. Region B provides the proton fluence data
from the central current sheet region. The fluence profile plot-
ted in Fig. 7(b) is obtained by averaging over y ∈ [−1, 1] mm.
The raw fluence data shows qualitative agreement with the
analytic profiles in Fig. 2(d), especially the broad fluence
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FIG. 7. Proton radiography data from magnetic reconnection
experiments at NIF and associated magnetic field reconstructions.
(a) Raw proton radiograph image, containing both mesh regions
‘A’ and ‘C’ and a mesh-free region ‘B’ for fluence analysis. The
footprints of the drive laser groups are indicated as light red ovals.
(b) Profile of the proton fluence data (purple) over the purple box
from (a), averaged in the y-direction. These data were used to recon-
struct the field in panel (c). The dark gray line indicates the inferred
source proton fluence, and the light gray line indicates the forward
model proton fluence from the reconstruction. (c) Direct measure-
ments of

∫
By dz (black points with error bars) from mesh data and

reconstructed
∫

By dz from the proton fluence data (blue). Boundary
conditions for the reconstruction are indicated by the blue circles
at the ends of the reconstructed curve and were determined from
extrapolating the mesh data. Green diamonds indicate the centers
of the laser foci at x = ±1.2 mm where

∫
By dz = 0 is expected by

symmetry.

depletion near x = 0, indicating the current sheet where the
magnetic field rapidly reverses.

Figure 7(c) shows the magnetic field reconstructed from
this fluence data. We apply the boundary-constrained recon-
struction developed in Sec. VI. The boundary conditions for

the magnetic field were obtained from the mesh data. The
deflection of each beamlet from its reference location was ob-
tained by comparing the beamlet data between the 14.7 MeV
proton and the IP x-ray data [15,16]. This directly provides
the magnetic field at each beamlet, plotted as the black data
points in Fig. 7(c), where the error bars indicate the standard
deviation within each column. Since the first mesh cell is some
distance into the mesh region, we extrapolated the boundary
condition linearly from the two nearest mesh points to the first
available point in the fluence region. These points are shown
in Fig. 7(c) as the blue circles at the ends of the magnetic
field reconstruction. The magnetic field is then reconstructed
from the fluence data, shown as the blue curve. The raw
proton fluence did not show strong evidence that the source’
proton fluence was nonuniform, so we reconstructed with a
uniform source fluence, with the fluence level inferred from
the boundary-constraint analysis from Sec. VI, shown as the
light gray line in Fig. 7(b). The magnetic field profile has a
qualitatively similar shape to the prior analytic examples, with
the peak line-integrated magnetic field strength near 7 T-mm.
The nominal centers of the laser foci for each plume are
indicated as green diamonds at x = ±1.2 mm, and we observe
that the inferred magnetic field crosses through zero near these
points, as expected by the symmetry of the Biermann-battery
field-generation process.

As a final check, the reconstructed magnetic field profile
was used to generate the forward model proton fluence, plot-
ted as the thin gray curve in Fig. 7(b), which is seen to be
in good agreement with the raw proton data. Some fine-scale
jaggedness in the data is observed in the current sheet, which
is a result of the finite spatial resolution of the proton data
(equivalent to 28 µm in the plasma plane). We always apply
this check to verify a minimum of agreement between the
inferred magnetic field and the data.

VIII. DISCUSSION AND CONCLUSIONS

A 1-D reconstruction procedure was developed to infer
electromagnetic fields in high-energy-density plasma exper-
iments. A 1-D reconstruction is valuable as a complement
and cross-check to 2-D analyses and may be directly applied
to 1-D experiments. Here we verified the 1-D reconstruction
algorithm against semianalytical field models, and presented
an example showing that it can reconstruct magnetic field
data from a recent experiment at NIF. The software package
PRADICAMENT was developed that implements this algo-
rithm and is discussed in the Appendix.

Using the algorithm, we then explored the relation between
the boundary conditions and source fluence for 1-D recon-
structions. First, we showed that proton fluence measurements
are closely related to plasma current measurements, which is
why an integration is required to infer the magnetic fields
from the proton fluence. A boundary condition is needed to
obtain the absolute magnetic field, as otherwise the analysis
produces only the relative change of the magnetic field across
the domain. Second, we showed that if there are errors or
uncertainties in characterizing source proton fluence, then this
leads to “integration errors” in reconstructing the magnetic
field, which increases with the length of the reconstructed do-
main. However, we showed that applying two-point boundary
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conditions on the magnetic field (x1, b1), and (x2, b2), can be
used to fix the average source proton fluence on the interval
[x1, x2], and from this we developed a boundary-constrained
reconstruction in Sec. VI.

From these considerations, we conclude that boundary
conditions can be critical input data to the analysis. It is
obviously a best practice to directly confirm the boundary
conditions with experimental measurements. To do so, we
developed a “hybrid” proton deflectometry technique, which
combines fluence analysis with boundary conditions from
beamlet mapping [15,16]. The direct magnetic field mea-
surements from the beamlet analysis were used as boundary
conditions to constrain a high-resolution fluence reconstruc-
tion in Sec. VII.

The present 1-D algorithm has some valuable complemen-
tary features compared to Monge-Ampère-type reconstruction
implementations (e.g., Ref. [2]). While not developed exten-
sively here, it is also possible to run the present algorithm in
a “free-boundary” mode. This mode takes as input the ob-
served fluence I (x′) and a specified source fluence I0(x), and
produces a reconstructed magnetic field. With no boundary
conditions applied, one should remember that this mode only
produces the relative change of the magnetic field over the
domain, and one should test the sensitivity of the results to
uncertainty in I0. Nevertheless, this technique could also be
useful under certain circumstances, and especially for “short-
baseline” reconstructions where there is not a long distance
for integration errors to pile up; in contrast, the Monge-
Ampère-type relaxation solvers always produce a magnetic
field with fixed boundary conditions (with commonly used
reconstruction codes using Btangential = 0, as of the time of this
writing [24]).

Since the goal of this work has been to demonstrate
the overall reconstruction procedure, we defer detailed er-
ror analysis to future publications, but one can imagine
that several sources of error can be incorporated, including
the uncertainty in boundary conditions, finite spatial res-
olution effects, fluence background, and nonuniformity in
the source proton fluence. For the present data, it appeared that
the source proton fluence was relatively flat, so we used a flat
source fluence profile for the simplest possible reconstruction;
however, future work will consider constraining nonunifor-
mity in the source fluence as part of the analysis, and how
this feeds into uncertainty in the final reconstructed magnetic
field. Once again, having the ground truth of direct magnetic

field data at several points will form an important constraint
on the final profiles.
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APPENDIX: RECONSTRUCTION
CODE AND AVAILABILITY

The algorithms above have been implemented in Matlab
and are available in a package called PRADICAMENT on
GitHub at [33].

The code works in the consistent unit scheme described
near Eqs. (6) and (7). In other words, if KB is in T and
spatial units are in m, then b(x) will be in T-m. If KB = 1
is specified, then the value returned from the reconstructions
will be ξ (x) rather than b(x). If KE is used rather than KB, then
the values returned will be line-integrated electric fields. The
spatial coordinates are that of the plasma plane, as described
near Eq. (8).

The main routines, as of v1.0, are as follows:
(1) prad_inv — proton-radiography inverse solver in 1-

D, using specified boundary conditions. It takes as input data
proton fluence I and I0, KB, and a required boundary condition
pair (x1, b1), and (x2, b2). I0 provides only the overall shape,
since it is first renormalized to achieve the specified boundary
conditions on b(x), per Eq. (18).

(2) prad_inv_I0 — proton-radiography inverse solver in
1-D, using a specified I0. It takes as input data I and I0 as a
function of coordinate x, along with a specified KB, and an
optional (x0, B0) pair to initiate the integration. It integrates
Eq. (13) coupled to Eq. (8), using standard ODE solvers. The
routine interpolates I and I0 between values at the specified
mesh points as needed.

(3) prad_fwd — produces a forward model proton image
Ifwd(x) from a given magnetic field profile b(x). It launches
a large number off synthetic protons which are sent through
the mapping and binned to final positions. Because it uses
binning, it correctly produces the proton image even in caustic
regimes. Required inputs are I0(x), b(x), and KB.
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