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Anomalous conductivity due to relativistic Landau quantization
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We use a recently developed a kinetic model derived from the Dirac equation to study electromagnetic wave
propagation in superstrong magnetic fields, such as in magnetars, where relativistic Landau quantization is
prominent. The leading contribution to the conductivity tensor in such a plasma is calculated. It is found that
the electron Hall current has an anomalous contribution, in the quantum relativistic regime, where the effective
particle energy has a significant contribution from the diamagnetic and Zeeman energy. As a result, a new
quantum resonance frequency appears, and the dispersion relation for the left- and right-hand polarized modes
are strongly modified for long and moderate wavelengths. The implications for magnetar physics are discussed.
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I. INTRODUCTION

As is well known, letting the electromagnetic field strength
approach the critical field opens for a host of new phe-
nomena. For example, aided by a strong electric field, the
Schwinger mechanism allows virtual electron-positron pairs
to tunnel out of the Dirac sea and become real [1,2]. It may
be noted, however, that field strengths of this magnitude can-
not yet be produced in the laboratory. In an astrophysical
context, on the other hand, magnetic fields of the order of
the critical field, and sometimes larger, are known to exist in
magnetars [3–5]. Also in this case, physics induced by the
virtual particles can be crucial, as the vacuum polarization
induced by the ultrastrong magnetic fields is believed to be
the reason for the observed polarization of electromagnetic
radiation emitted from magnetars. Specifically, for photons
propagating perpendicular to the magnetic field, the vacuum
polarization leads to so-called photon splitting, implying that
photons in one polarization state can decay into photons
with a lower frequency belonging to the opposite polarization
state [3,6].

With real particles present and affected by the magnetic
field, either at the magnetar surface or in a magnetar accretion
disk, the ultrastrong magnetic field will lead to relativistic
Landau quantization [4,7–10] of electrons. In a laboratory
context, Landau quantization is known to be a key feature
in the quantum Hall effect of the two-dimensional electron
gas [11], where the transverse resistivity becomes quantized.
However, for the case where electrons are subject to relativis-
tic Landau quantization, less is known. While many works
have treated certain aspects of relativistic Landau quantiza-
tion [5,8,9], e.g., computed the energy and effective mass of
electrons in different Landau states, rigorous treatments of the
current response due to an electric field have not been made.
On the other hand, when studying electromagnetic wave
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propagation in magnetar environments, several authors (e.g.,
[12–16]) have stressed the significance of the strong field vac-
uum polarization, but at the same time evaluated the current
response of the plasma based on classical theory [12,14,15],
or semiclassical models [13,16], not fully accounting for the
dynamics of the perturbed eigenstates. There is reasonable
justification for this approach since a strong magnetic field
mainly influences the perpendicular current response, which
tends to be rather effectively suppressed for electrons due
to their shorter Larmor radius. Hence, there is room for a
classical ion response to dominate the perpendicular current.
Moreover, the parallel electron current tends to be classical
as a rough approximation, since it is only marginally affected
by the magnetic field. While there is a fair bit of merit to this
description, nevertheless, we will show that the picture given
above is an over simplification.

In the present work, we will use a recently developed
kinetic approach [4] in order to evaluate the electron con-
ductivity in a relativistically Landau quantized plasma, of
particular relevance for magnetar environments. We find that
the quantum relativistic features induce crucial deviations
from the classical conductivity. For certain cases, the idea
that relativistically Landau quantized electrons behave almost
like classical particles, but with an effective mass depen-
dent on the energy state [5,8,9], can be confirmed. However,
for other equally common cases, e.g., electromagnetic waves
propagating parallel to the magnetic field, the deviations from
classical theory are dramatic. Specifically, both the right and
left-hand circular polarized modes behave much differently
from classical theory. In this case, one of the wave frequencies
approaches zero as the wavenumber k → 0, and the other
approaches a new type of quantum resonance frequency ωres

given by ωres ∼ (h̄ωc/mc2)(h̄ωp/mc2)ωp, where h̄ is the re-
duced Planck constant, m is the electron mass, c is the speed
of light in vacuum, ωc is the electron cyclotron frequency, and
ωp is the electron plasma frequency. The present results are a
prerequisite for understanding the dynamics of relativistically
Landau quantized states, as well as for interpreting spectra
emitted from magnetars. [5,7,14,17–22].
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II. BASIC EQUATIONS

In this work, our starting point will be the kinetic theory
derived in Ref. [4]:

∂tW± + 1

ε
p · ∇rW± + qE · ∇pW± + q

ε
p × B · ∇pW± = 0,

(1)

where we use q = −e for the electron charge.
This evolution equation is very similar to the usual rel-

ativistic Vlasov equation. However, in order to account for
relativistic Landau quantization, the particle energy ε is gen-
eralized to be a momentum operator with

ε =
√

m2 + p2 ± 2μBB0 − μ2
BB2

0(ẑ × ∇p)2 (2)

in units where c = 1. Here the index ± on the distribution
function (Wigner function [23]) refers to the particle spin
state, up or down relative to the external magnetic field B0,
and μB = eh̄/2m is the Bohr magneton. The kinetic evolution
equation is combined with Maxwell’s equations, where the
current and charge densities are given as

j =
∑
±

q
∫

1

ε
(pW±)d3 p (3)

and

ρ =
∑
±

q
∫

W±d3 p. (4)

The above kinetic theory is based on a Foldy-Wouthuysen
transformation [24,25] of the Dirac Hamiltonian, separating
the positive and negative energy states. The model is applica-
ble for an ultrastrong and homogeneous background magnetic
field, B0 = B0ẑ, allowing for magnetic fields B0 ∼ Bcr that
can be found in magnetars, where the critical field strength
is Bcr = m2/|q|h̄. Perturbations of the electromagnetic field
added to B0 must still be small compared to the critical
field, though, as the electron and positron states cannot be
separated otherwise. The model is designed to fully include
the effect of relativistic Landau quantization, but ignore other
quantum effects, except degeneracy, that might be included by
simply picking a degenerate initial state. Ignoring dynamical
quantum effects, besides those due to Landau quantization,
is possible if the relevant dimensionless parameters involving
h̄ are small, excluding μBB0/m ∼ 1 which is allowed. To be
concrete, we thus assume h̄k � pth(where pth is characteristic
thermal momentum such that particle dispersive effects can be
ignored), h̄k2/mω � 1 (making the magnetic dipole force due
to the spin small), together with h̄k � m and h̄ω � m such
that spin-orbit coupling [26,27] and other quantum relativistic
effects, except those where the strong Landau quantization
can be dropped. In the above, ω and k represent characteristic
frequency and wavenumber scales of the macroscopic vari-
ables.

The physics behind the model is that in a superstrong
magnetic field, the magnetic dipole energy due to the spin
and the energy associated with the orbital angular momen-
tum gives a significant contribution to the particle energy
and thereby to the effective gamma factor γ = ε/m. This is
accompanied by a relativistic momentum spread in the energy

eigenstates. In the expression (2), the term ±2μBB0 is the
energy contribution from the Zeeman energy due to the spin,
whereas the term μ2

BB2
0(ẑ × ∇p)2 gives the orbital diamag-

netic energy contribution. When the distribution function is
in a Landau quantized energy eigenstate, W± = W±n, we have
εW±n = √

m2 + p2
z + μBB0(±1 + n) W±n (see Eqs. (34) and

(35) of Ref. [4] for the expression for the energy eigenstate
W±n). However, this particular expression is of use mostly to
evaluate ε when acting on the time-independent background,
which can be written as a sum of energy eigenstates. For a
perturbation of the background, which in general depends on
the azimuthal momentum coordinate, using cylindrical coor-
dinates in momentum space, the distribution function cannot
be written as a sum over energy eigenstates. To evaluate the
operator ε in this case, we must use the defining expression,
where the root in the energy expression is Taylor expanded to
infinite order,

ε = m

(
1 + 1

2

p2 ± 2μBB0 − μ2
BB2

0(ẑ × ∇p)2

m2
+ · · ·

)
. (5)

Naturally, the same definition of ε applies also when acting on
the energy eigenstates, but in this case, the infinite series sums
up to a simple energy eigenvalue. In all equations written, note
that ε is acting on all momentum dependence that stands to the
right, e.g., in the last term of (1), ε does not act only on ∇pW±,
but also on the momentum in the cross product p × B, and
similarly for the energy operator ε that appears in the current
density (3) to be used in Ampere’s law.

III. LINEAR THEORY

Next, we use Eq. (1) to study linear waves in a mag-
netized plasma. We divide the variables according to W =
W0(p) + W1(r, p, t ) and B = B0 + B1(r, t ). Furthermore, we
use a plane wave ansatz W1(r, p, t ) = W̃1(p)ei(k·r−ωt ). Using
the ansatz and linearizing Eq. (1) (noting that the electric field
E also is a small perturbation), we obtain[

−iω + i
k
ε

· p + qB0

ε

∂

∂ϕp

]
W̃1

= −q

[
E + 1

ε
p × B1

]
· ∇pW0. (6)

Here we have introduced the azimuthal angle ϕp in momen-
tum space, and in what follows we will use the cylindrical
momentum variables p⊥, ϕp, and pz. Due to the energy ε being
a momentum operator, the standard techniques that work for
the linearized Vlasov equation are not directly applicable.
However, the equation can be solved using an expansion of
W̃1 according to

W̃1 =
∞∑

n=−∞

∞∑
r=0

gnr (p⊥, pz )einϕp

(
k⊥ p⊥
mωc

)r

. (7)

Note that, in principle, we can include terms to an arbitrary
order in the summation over n and r. However, in the strongly
magnetized regime that we consider (where all other frequen-
cies are small compared to the electron cyclotron frequency),
only the low values of n and r will give a significant contri-
bution. Moreover, without loss of generality we let the wave
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vector be directed in the xy plane, i.e., k = kxx̂ + kzẑ, such
that k⊥ = kx. Using the expansion (7), we solve W̃1 to leading
order, including terms up to n = ±1 and r = 1. The need
to include terms with n = ±1 means we cannot neglect the
dependence of W̃1 on ϕp. Combining the solution for W̃1 with
Ampere’s law, we obtain the dispersion relation for electro-
magnetic wave propagation (including also the electrostatic
limiting cases) in a magnetized plasma, extending previous
classical results [28] to account for relativistic Landau quanti-
zation. The dispersion relation can be written as det Di j = 0,
where the matrix is written as

Di j = δi j

(
1 − k2

ω2

)
+ kik j

ω2
+ χi j, (8)

where δi j comes from the displacement current in Ampere’s
law, and the terms proportional to the wavenumber come from
the curl of the magnetic field. The last term, χi j, is the plasma
susceptibility and is related to the plasma currents as χi j =
σi j/iωε0, where σi j is the conductivity tensor determined from
the kinetic evolution equation. With the wave vector in the xz
plane, the expression for Di j becomes

Di j =

⎡
⎢⎢⎢⎣

1 − k2
z

ω2 + χxx χyx
kxkz

ω2 + χzx

χ∗
yx 1 − k2

ω2 + χyy χyz

kxkz

ω2 + χ∗
zx χ∗

yz 1 − k2
x

ω2 + χzz

⎤
⎥⎥⎥⎦,

(9)

where

χxy = χ∗
yx = − iωq2π

4

∫
d2 p

1

ε0

±p⊥
ω − kpz/ε1 ∓ qB0/ε1

×
[

∂ f0

∂ p⊥
− kz

ω

1

ε1

(
pz

∂W0

∂ p⊥
− p⊥

∂W0

∂ pz

)]
(10)

χyz = χ∗
zy = iωq2π

4

∫
d2 p

1

ε0

∓p⊥
ω − kpz/ε1 ∓ qB0/ε1

×
[

kz

ω

1

ε1

(
pz

∂W0

∂ p⊥
− p⊥

∂W0

∂ pz

)]
. (11)

Here ε0 and ε1 constitute the energy operator from Eq. (2)
acting on different angular momentum dependences. Specifi-
cally, when the energy operator acts on a Wigner function with
no dependence on ϕp [i.e., the terms with n = 0 in the sum of
Eq. (7)] we can use the simplification

F ≡ (ẑ × ∇p)2 = ∂2

∂ p2
⊥

+ 1

p⊥

∂

∂ p⊥
. (12)

However, when the energy operator acts on a Wigner function
with a dependence on ϕp proportional to exp(±iϕp), [i.e., the
terms with n = ±1 in the sum of Eq. (7)] we must use

F ′ ≡ (ẑ × ∇p)2 = ∂2

∂ p2
⊥

+ 1

p⊥

∂

∂ p⊥
− 1

p2
⊥

. (13)

As a result, terms with n = 0 in the expansion Eq. (7) result
in an energy operator of the form

ε0 =
√

m2 + p2 ± 2μBB0 − μ2
BB2

0F , (14)

whereas terms with n = ±1 result in an energy operator
given by

ε1 =
√

m2 + p2 ± 2μBB0 − μ2
BB2

0F ′. (15)

As terms with a higher order dependence [for |n| > 1 in
Eq. (7)] can be omitted in the expansion, only two versions
of the energy operator (ε0 and ε1) are needed.

The given components for the electron susceptibility con-
stitute the dominating contributions for electrons in the regime
ω � ωc = qB0/m ∼ qB0/ε1. Accordingly, we should replace
the denominators in the expressions above according to ω −
kpz/ε1 ∓ qB0/ε1 → qB0/ε1. For consistency with other ap-
proximations, this should be done whenever applying the
expressions. The only reason to show the susceptibilities in
Eqs. (10) and (11) without this simplification is to emphasize
the similarity of the quantum result with previous well-known
classical formulas when the arguments of the Bessel functions
are small [28]. The expression for χzz is not given above,
but we note that this term has been computed previously, see
Ref. [4]. Contrary to the terms given here, the component for
χzz can essentially be written as for a classical plasma, except
that each Landau-quantized energy eigenstate behaves like
a separate particle species, which contributes to the plasma
frequency with its own effective mass, see Ref. [4] for details.

The remaining susceptibilities for electrons, χxz and χzx

will not be given here as this contribution can be approximated
with zero, since in the regime ω � ωc studied here, those
components will always be negligible compared to the ion
contribution. While the ion contribution has not been written
out, a contribution from the ions can always be added to give
the total susceptibility. The ions susceptibility will typically
be given by the classical textbook results (see, e.g., Ref. [28]),
since even for magnetar field strengths h̄ωci � kBT , where ωci

is the ion cyclotron frequency, kB is the Boltzmann constant,
and T is the temperature (the condition for neglecting ion
Landau quantization) tend to apply.

As studied, e.g., in Refs. [12–16], in addition to plasma
currents, vacuum polarization currents can influence wave
propagation in the presence of a strong magnetic field.
In Ref. [14], the classical linearized plasma susceptibility
was computed, in addition to the contribution from vacuum
polarization currents, for an arbitrary direction of propaga-
tion. The vacuum polarization contribution is proportional to
α(B0/Bcr )2, as well as another dimensionless factor smaller
than unity, where α is the fine structure constant, see, e.g.,
Eqs. (31)–(36) of Ref. [14] for details. Whether or not con-
tributions of such a magnitude can be important for strong
magnetic fields depends on the directions of wave propaga-
tion, as well as the wave polarization. An illustrative example
of this can be found in Ref. [29], where the dominating modifi-
cation of the vacuum dispersion relation for the extraordinary
mode propagating perpendicular to the magnetic field comes
from the vacuum polarization current, whereas the dominating
contribution to the ordinary wave mode comes from plasma
currents. In general, the vacuum polarization susceptibility
computed by Ref. [14] can be added to the plasma suscep-
tibility computed here to provide a a more complete picture.

However, for the example to be studied in the next
section (electromagnetic waves propagating parallel to a
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magnetic field), the vacuum polarization will give a negligible
contribution. The reason is that in this field geometry, the
contribution from the vacuum polarization vanishes unless
there is a nonzero plasma susceptibility (see, e.g., Eq. (60)
of Ref. [14]). As a result, the vacuum contribution will only
be a small correction of the plasma susceptibility (smaller by a
factor of the order of the fine structure constant), and therefore
such contributions will not be considered further.

IV. THE LINEAR DISPERSION RELATION

Let us next consider the dispersion relation for electromag-
netic waves propagating parallel to the external magnetic field.
Although we are interested in the case of ultrastrong magnetic
fields, approaching the critical field, in order to obtain simple
analytical results, we will make an expansion in the parameter
μBB0/m � 1. For ω/ωce � 1 , we keep terms to first order in
ω/ωce, but allow for ω/ωci ∼ 1. Moreover, we keep correction
terms to second order in μBB0/m. By considering an electron-
ion plasma, and evaluating the ion current in the classical
cold limit, we find that the total (including electrons and ions)
susceptibility is given by χyx = χyx,e + χyx,i with the electron
contribution

χyx,e = ω2
pe

ωceω

[
1 + 3

2

(
μBB0

m

)2
]

(16)

and the ion contribution

χyx,i = ω2
piωci

ω2
ci − ω2

, (17)

such that the total susceptibility is

χyx = ω2
pe

ωceω

[
ω2

ω2 − ω2
ci

+ 3

2

(
μBB0

m

)2
]
. (18)

Consequently, for reasonably low frequencies, ω � ωci, the
second term ∝ (μBB0/m)2, which is the quantum contribution
associated with the electron Landau quantization, will domi-
nate for magnetic fields not too much smaller than the critical
field. Calculating the determinant of the dispersion matrix Di j

for k⊥ = 0, we obtain the dispersion relation(
1 − k2

ω2
− ω2

pi

ω2 − ω2
ci

)
= ±3

2

ω2
pe

ωceω

(
μBB0

m

)2

,

where the two signs correspond to the left and right hand
circularly polarized modes, respectively. Naturally, the dis-
persion relation can be studied in all generality. However, to
illustrate the main new features we limit ourselves to frequen-
cies well below the ion-cyclotron frequency, in which case we
obtain (

1 − k2

ω2
+ ω2

pi

ω2
ci

)
= ±3

2

ω2
pe

ωceω

(
μBB0

m

)2

. (19)

In the short-wavelength limit, the quantum term becomes neg-
ligible, and we get

ω2 = k2

1 + ω2
pi

/
ω2

ci

(20)

for both the left and right hand circularly polarized mode.
For ω approaching ωci, naturally we should avoid the low-
frequency simplification, and the left and right hand modes
will have different frequencies also in the classical limit. The
solution to Eq. (19) is

ω = − 3ω2
pe

4ωce
(
1 + ω2

pi/ω
2
ci

)(
μBB0

m

)2

±

√√√√√√
⎡
⎢⎣ 3ω2

pe

4ωce

(
1 + ω2

pi

ω2
ci

)(
μBB0

m

)2

⎤
⎥⎦

2

+ k2(
1 + ω2

pi

ω2
ci

) .

(21)

Thus, in the long wavelength limit, we have a new type of
quantum resonance frequency ωq, such that when k → 0, for
the left hand circularly polarized mode we get ω → ωq with

ωq = − 3ω2
pe

2ωce
(
1 + ω2

pi/ω
2
ci

)(
μBB0

m

)2

, (22)

whereas the right-hand circularly polarized mode fulfills

ω  k2

4ωq
(
1 + ω2

pi/ω
2
ci

) (23)

for long wavelengths fulfilling k2

(1+ω2
pi/ω

2
ci )

� ω2
q. We thus see

that for a sufficiently strong magnetization of the plasma,
when relativistic Landau quantization is significant, both the
left and right-hand circularly polarized modes show a distinct
quantum behavior for long wavelengths, see Fig. 1 where the
left- and right-handed solutions to Eq. (19) are compared with
the classical limit. For shorter wavelengths, k2

(1+ω2
pi/ω

2
ci )

� ω2
q

not covered in Fig. 1, the quantum behavior is suppressed,
and we recover the classical limit. The wavelength where
the transition from quantum to classical behavior takes place
depends on the plasma density. For the high densities at the
surface of magnetars, the plasma frequency is of the order
ωpe ∼ 1019−20s−1. In this case, for magnetars with surface
magnetic fields slightly below the critical field, the quantum
limits of the dispersion relation shown above apply for wave-
lengths in the UV region and longer.

V. DISCUSSION AND CONCLUSION

As is known from condensed matter physics, and seen in
the quantum Hall effect, the effect of Landau quantization
may induce peculiar properties of the conductivity. In con-
densed matter systems, this may happen already in a nonrela-
tivistic description. In that case, besides Landau quantization,
the special quantum features are dependent on the system
being a 2D electron gas. In the present theory, the electrons
are not limited to two dimensions, but instead, the relativistic
aspects of Landau quantization are crucial, accounting for
the contribution to the electron’s effective mass through the
diamagnetic and Zeeman energies. At first glance, the extra
quantum contributions to the Hall term of the electron suscep-
tibility [leading to the quantum contribution in the total sus-
ceptibility (18), i.e., the second term ∝ (μBB0/m)2] may be
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FIG. 1. The frequency ω is plotted as a function of the wave vector k for μBB0/m = 0.2 and ωc/ωp = 10.

expected. Why would the susceptibility (conductivity) be un-
affected when the Zeeman energy becomes significant? How-
ever, looking more carefully at the result, it appears to chal-
lenge a key principle of physics, namely Lorentz invariance.

Normally, in the limit when k → 0 and ω → 0, the
total current density of all species cancels. The reason is
as follows: For an electromagnetic field that is effectively
static and homogenous, in a reference system moving with
the E × B − drift, where vE = E × B/B2, particles will
only feel a static magnetic field. Hence, independent of
species, there will only be a gyration and no net drift in this
system. This corresponds to all species s having the current
density qsn0svE in the original system. Due to the background
neutrality of all species, this implies a vanishing total current
density. Fundamentally, a vanishing current density in the
limit k → 0 and ω → 0 is a classical result that follows from
Lorentz invariance. In the present case, while our governing
equations do not show Lorentz invariance directly (since they
are built around a preferred reference system subject to a
strong magnetic field B0), we should still demand our results
to be consistent with Lorentz invariance. Clearly, since the
model is derived from the Dirac equation and Maxwell’s
equations, we should not have a theory that is in conflict with
the basic principles of special relativity. Thus, the question
arises, how can the effective electron drift velocity deviate
from the E × B − drift in the limit k → 0 and ω → 0,
without contradicting Lorentz invariance?

A first observation is that, contrary to classical theory, it
is no longer meaningful to think of individual velocities for
different phase space elements, represented by p/ε. In the
limit where this would be accurate, the quantum contribution
to χxy vanish, and the current density for electrons indeed
become qen0evE . A complication of the present theory, where
the energy ε is a momentum-operator, is that the effective
velocity of the theory depends on the behavior in a region
of momentum space, rather than in a single point. Moreover,
the effective velocity averaged over all momentum for en-

ergy transport (ven = ∫
1
ε
(pε f )d3 p/

∫
ε f d3 p) and for particle

transport ( vp = ∫
1
ε
(p f )d3 p/

∫
f ) only coincide if the distri-

bution function f is an energy eigenstate, in general ven �= vp.
However, even when this ambiguity regarding what consti-
tutes the velocity is noted, one can argue that in a reference
system with a static magnetic field, there should be no net
current density. If this were true, one would obtain the same
cancellation of the total current density as in the classical
case.

This argument leaves out a key aspect of the present the-
ory, though. When a Landau quantized eigenstate in a pure
magnetic field is exposed to an electric field, for the particle
to move at all, the momentum distribution of the particles
need to be modified in a way that prevents the particle state
from being written as a sum of energy eigenstates (this is not
possible, as we break the angular symmetry and get a depen-
dence on ϕp). Breaking the original symmetry contributes to
the energy by a positive and quantized amount, since for the
perturbed distribution function we must let B2

0( ∂2

∂ρ2 + 1
ρ

∂
∂ρ

) →
B2

0( ∂2

∂ρ2 + 1
ρ

∂
∂ρ

+ 1
ρ2 ) in the orbital magnetic energy part of

the energy operator. This quantized change of energy when
modifying the particle state has no classical correspondence
and is what determines the momentum-velocity relation when
calculating the magnitude of the perturbed distribution func-
tion. Importantly, the effective velocity obtained in this step
is not the same as the effective velocity that we get when
calculating the current density. Here, for the part surviving the
momentum integration, the energy operator acts on a function
of momentum that is angular symmetric, which leads to a
different expression of what can be interpreted as the effective
velocity. Ultimately, in the relativistically Landau quantized
regime, what constitutes “particle velocity” depends on the
details of the definition. As a result, a ratio of different particle
energies, which would simply be unity in a classical calcula-
tion, is what induces a relativistically quantum-corrected Hall
current.
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The main conclusion from our analysis is that the anoma-
lous conductivity for relativistically Landau quantized states
can modify the electromagnetic wave propagation properties
in magnetar environments in a distinct way. However, it is a
challenge to relate the properties of the plasma susceptibility
tensor to observational magnetar data. Nevertheless, a specific
possibility might be to look for the quantum resonance given
by Eq. (22) in the observed spectra.

In the present work, we have focused on the simplest
aspects of the linearized theory of electromagnetic waves. A
more complete study of the linear susceptibility and general-
izations to also cover the nonlinear regime are projects for

future work. It may then be of interest to include also the
physics associated with the magnetic dipole force due to the
electron spin [10,26], and the vacuum polarization associated
with strong magnetic fields, see, e.g., Refs. [5,13,30,31]
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